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ABSTRACT
Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since
this compartment was expected to be hydrolytic; nevertheless there is growing evidence that
certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic
enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf
central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several
secretory mammalian proteins such as collagen, a1-proteinase inhibitor, complement-5a,
interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the
apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting
signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage
proteins or plant lectins were used and both types of motifs were capable to increase accumulation.
Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability,
levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of
oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways:
direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated
proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In
addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar
trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS
occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in
carrot and the obtained results were influenced by plant physiological state. Ten different foreign
proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic
counterparts. For proteins with cytotoxic effects vacuolar sorted forms yields were superior than ER
retained variants, but for other proteins the results were the opposite an there were also examples
of similar levels for ER and vacuolar variants. In conclusion vacuolar sorting in vegetative tissues is a
satisfactory strategy to enhance protein yields that can be used in several plant species.

KEYWORDS
Foreign proteins; leaf central
vacuole; lytic vacuoles;
proteolysis; plant molecular
farming; secretory pathway;
storage vacuoles; vegetative
tissue; vacuolar sorting
signals; vacuolar deposition

The production of high-value proteins in plant has
become a reality with numerous products on the mar-
ket.1 Plant based platforms have several advantages
such as low upstream costs, no risk of contamination
with human or animal pathogens, absence of bacterial
toxins, easy and rapidly scale up with low investment
cost, availability of different technology to reduce
downstream process cost, etc. Foreign proteins can be
produced by using either transient expression in leaves
or transgenic expression systems in whole plants or
plant cell culture.1 Both transient and stable systems
are fully scalable and several large scale manufacture

facilities are available, including those that satisfy
good manufacturing practice (GMP).1 Recombinant
protein yields are widely variable and depend on
numerous factors such as plant species, promoter,
enhancers, incorporation of intron sequences, mRNA
stability, 50 and 30 untranslated regions, codon usage,
protein folding and stability, etc.2,3 Different technolo-
gies have been developed to increase transcription effi-
ciency, mRNA stability and translation effectiveness
and to improve protein folding and stability.3,4 Among
the post-translational factors, subcellular localization
is of particular interest as it has a profound impact on
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protein yields.2 In leaves, some complex proteins are
usually targeted to the apoplastic space where proteol-
ysis can occur5-7; alternatively if Golgi post-transla-
tional modifications are not necessary to obtain a fully
active molecule, they can be retained on the endoplas-
mic reticulum (ER).8 In leaves, an alternative destina-
tion is to target the recombinant protein to vacuoles.
Plant vacuoles are multifunctional organelles, essential
to plant life, which share some of their properties with
the lysosomes in animal cells. Although plant vacuoles
are lytic compartments, they also have unique func-
tions such as reservoirs for ions and metabolites, plant
defense, detoxification processes, general cell homeo-
stasis, etc.9 In seeds and specialized tissues that evolve
to store high amounts of proteins, special storage
compartments called protein storage vacuole (PSV) or
ER derived protein bodies (PB) are found.10 Foreign
proteins sorted to these special compartments accu-
mulate in large amounts and in stable forms for long
periods of time.3,11 Deposition of recombinant pro-
teins in central vacuoles of vegetative tissues has ini-
tially been considered inadequate since this
compartment was expected to be hostile. For example,
green fluorescent protein is unstable in the central
vacuole of Arabidopsis thaliana leaves or cultured cells
since light triggers vacuolar acidification and proteoly-
sis by cysteine proteases.12 Despite the lytic character-
istics of central vacuole, when seed storage proteins
are ectopically expressed in leaf tissue, they are located
in neutral vacuoles that resemble seed PSV.13 In addi-
tion, different types of vacuoles can be generated from
existing vacuoles as a consequence of environmental
changes14 or stage of development.15 Taking all these
facts into consideration, vacuoles of vegetative tissue
are highly dynamic structures whose characteristics
are affected by environmental conditions, develop-
ment programs and even ectopic deposition of pro-
teins. Herein we discuss the current status of the
employment of vacuolar delivery in vegetative tissues
as a strategy to enhance heterologous protein yields.
Accumulation of foreign protein in reproductive seed
storage compartments has been reviewed else-
where.3,11 Selected examples of vacuolar sorted recom-
binant proteins in vegetative tissue are presented in
Table 1, and we shall highlight their particularities.

Production of egg white avidin or streptavidin in
plants is of interest since they are efficient biocontrol
agents.16 Avidin binds with very high affinity to biotin,
which impairs the activity of carboxylases, enzymes

that are essential for cellular metabolism in different
organisms including insects and plants. Taking into
account that 80% of biotin pools of plant cells are
located in the cytoplasm and the rest in the mitochon-
dria and chloroplast, delivery of avidin to vacuole was
hypothesized as a safe strategy to avoid detrimental
effects caused by biotin sequestration. Avidin and
streptavidin were expressed in transgenic Nicotiana
tabacum fused to the NH2 terminus (Nt) vacuolar
sorting signal (VSS) MESKFAHIIVFFLLATPFETL-
LARKESDGPE of potato proteinase inhibitor I (PPI-
I) that is sufficient to target to vacuoles that have
d-TIP on their tonoplast defined as DV.14 DV–sorted
avidin yields in leaves were around 1.5 % TSP and
remained relatively constant throughout leaf lifetime.
Avidin was detected in protein body-like structures
within the vacuole. Plants had a normal phenotype
and produced fertile pollen and seeds.16 Furthermore,
avidin was also fused to a different type of VSS: sugar-
cane legumain sequence specific (ssVSS) that targets
to lytic vacuole (LV). The expression was analyzed in
transgenic sugarcane.17 The highest avidin levels in
leaves, stem and roots were found for the DV sorted
version, compared to the LV, ER, apoplast or cytosol
targeted variants, but these plants developed a biotin
deficient phenotype. In contrast, sugarcane plants that
expressed LV-avidin had a normal phenotype but avi-
din suffered a site-specific limited proteolysis.17 There-
fore, sugarcane DV was shown to be a stable
environment for recombinant protein accumulation.
It is worth noticing that the co-existence of 2 different
types of vacuoles in the same cells has been described
in a limited number of cell types18; sugarcane has the
unusual capacity to accumulate sucrose in stem cell
vacuoles and contains several types of vacuoles that
differ in their pH and capacity to hydrolyze different
substrates.19 Unlike sugarcane, N. tabacum leaves
does not specialize in storage. However, they were
able to accumulate DV–sorted avidin in a stable form.

A further example of stable deposition of proteins
in sugarcane vacuoles is the cellulolytic enzyme that
also needs to be compartmentalized to avoid interfer-
ence with the cell wall structure. The production of
this enzyme is of interest to make cost-competitive
cellulosic ethanol. Fungal cellobiohydrolase (CBH) I
and II and bacterial endoglucanase (EG) accumulated
to higher levels when fused to the barley polyamine
oxidase Ct VSS compared to the fusion to an ER-
retention signal.20 Yields of CBH I, CBH II and EG
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were reduced in senescent leaves probably due to
endo- and exo-peptidases released during leaf senes-
cence.20,21 These results emphasize the importance of
the development stage for a foreign protein deposition
in leaves.

Another toxic protein that was successfully
expressed in Nicotiana benthamiana leaves is the bac-
teriophage CP933 endolysin (EL), an enzyme that
hydrolyzes peptidoglycan. This feature makes EL a
promising antimicrobial agent for antibiotic-resistant
microorganism. EL was targeted to DV by fusion to Nt
VSS of PPI-I. Plants producing the DV-EL did not
exhibit the severe detrimental effects on growth found
in cytosolic-EL plants. This result suggests that seques-
tration of EL in the vacuole reduces its toxicity.22

Transglutaminases 2 (TG2) are also challenging
proteins for the different expression systems since
their cross-linking activity has toxic effects on cell
growth and development.34 Attempts to produce
transgenic BY-2 expressing cytosolic-TG2 were unsuc-
cessful, probably due to the toxic effect of this
enzyme.35 We have recently shown, by using transient
expression in Nicotiana benthamiana leaves, that ER-
TG2 and vac-TG2 yields are 9 to 16-fold higher than
cytosolic and secretory versions.23 Therefore,
compartmentalization of TG within the endomem-
brane systems avoids cytosolic toxicity and also apo-
plastic proteolysis.

Glucocerebrosidase is an acid-b-glucosidase used in
enzyme replacement therapy for Gaucher’s disease, a
rare lysosomal storage disorder. The manufacture cost
of this enzyme in other expression systems was very
high; therefore, Protalix Biotherapeutics developed a
technology to produce it in carrot suspension culture.
Two variants were produced by fusion to the Ct-VSS
from tobacco chitinase A (DLLVDTM) and also to an
ER retention sequence. Vacuolar glucocerebrosidase
yields were higher than ER variants. In addition, pau-
cimannose glycan structures in vacuolar glucocerebro-
sidase favored mannose receptor-mediated uptake by
macrophages which made this variant more effective
therapeutically than the ER version.24

Deposition of proteins with the ability to produce
fibers on vacuoles of vegetative tissues has also been
assayed. For example, human collagen type I
(rhCOL1) is a heterotrimeric protein that requires
essential posttranslational modifications to self-orga-
nize into fibers. These modifications are performed by
human prolyl-4-hydroxylases (P4H) and lysyl

hydroxylase 3 (LH3). The genes encoding for
rhPCOL1 a 1 and a 2 chains, P4H a, P4H b, and LH3
were expressed in transgenic tobacco plants using dif-
ferent targeting signals to sort to vacuoles (barley
aleurain Nt ssVSS MAHARVLLLALAVLATAAVA-
VASSSSFADSNPIRPVTDRAASTLA), apoplast or
cytosol.25 Cytoplasm sorted rhCOL1 was not detect-
able, while apoplast-targeted rhCOL1 yields were very
low. Vac-rhCol1 yields were the highest, and mole-
cules were able to form stable triple helical structures
that were fully functional in inducing proliferation of
human cells.25 These results highlight that leaf
vacuoles are a suitable compartment to store rhCOL1.
Another fibrous protein: the spider dragkine silk
(DP18) was also fused to a ssVSS: the NPIRL from
sporamine. Different sorted version were expressed in
transgenic A. thaliana. However, in this case only the
ER variant accumulated at high levels while vac-DP18
was not stable.26

Moreover, different biopharmaceuticals proteins
have been produced successfully in vacuoles of vegeta-
tive tissues. Human a 1-proteinase inhibitor
(a1-PI), also known as a1- antitrypsin, is a serine pro-
tease inhibitor essential to keep lung elasticity. The pro-
duction of a glycosylated biologically active a1-PI has
been assayed in different systems, but none of them
could fulfill the requirements of cost-effective produc-
tion, clinical safety and biological activity. Conse-
quently, this protein was expressed in Solanum
lycopersicum (tomato) by using different sorting signal
to target to cytosol, apoplast, ER and vacuole [Nt ssVSS
(NPIRL) sweet potato sporamine]. The highest average
yields in T1 progeny were 3.05 % TSP for ER, 1.89% for
vacuolar, 1.40% for apoplast and 0.08 % for cytosolic
forms. Although vacuolar a1-PI was produced in
tomato leaves with comparable yields respect to the ER
form, the enzyme exhibit lower specific activity.27

Another example of therapeutic protein sorted to
vacuoles is human complement factor 5a (C5a) that
was expressed in leaves and seeds of transgenic N.
tabacum. The Ct VSS AFVY of phaseolin 7S storage
protein was used to target C5a to the vacuole. Vac-
C5a yields were 3 to 5-fold higher than ER- or apo-
C5a. These C5a versions were also transiently
expressed in Nicotiana benthamiana leaves using an
hybrid binary vector (MagnICON) based on tobacco
mosaic virus (TMV) that contains viral sequences
required for RNA replication leading to amplification
of RNA transcript, and also the highest yields were
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detected for vac-C5a variants (3.5-fold higher than
ER).28 Therefore vacuoles were found as the most suit-
able compartment to produce C5a, and the higher
yields were attributed to the selection of the AFVY Ct,
which is considered a PSV-specific targeting signal.28

The authors argue that although lytic vacuoles are
expected to be prevalent in vegetative tissues, the
expression of storage protein derived sequence could
induce the formation of storage organelles in vegeta-
tive tissue.28 Unexpected transient overexpression of
ER-C5a and vac-C5a in Nicotiana benthamiana was
accompanied by cytotoxic effects and a rapid decrease
of recombinant C5a even though it is not anticipated
that this protein could interfere with plant metabo-
lism.28 Due to toxic effect, yields for vac-C5a
(0,7%TSP) were higher than ER-C5a (0.2% TSP) but
for non toxic protein using MagnICON system
around 10% TSP were expected. Using the same sort-
ing strategy, human interleukin (IL) 6 was expressed
in stable transgenic N. tabacum and temporally in
Nicotiana benthamiana, but ER sorted-IL6 produced

yields 6.25 higher than vac-IL6, although IL6 was also
fused to AFVY Ct VSS.29 ER-targeted IL6 in leaves
using the MagnICON system resulted in yields of up
to 7% TSP and none cytotoxic effect were observed.29

Deposition of antibodies (Abs) in vacuoles of veg-
etative tissues had also been studied and information
about trafficking and modifications in different com-
partments was obtained based on its N-glycosylation
pattern. The N-glycosylation of proteins starts in the
ER with the transfer of the Glc3Man9GlcNAc2 oligo-
saccharide to a specific Asn residues on the nascent
polypeptide followed of a limited trimming in both
the ER and Golgi and sequential addition of mono-
saccharides, as the protein travel through the Golgi
complex, to yield complex N-glycans, typically
GlcNAc2Man3FucXylGlcNAc2 structures (Fig. 1).36

Secretory plant N-glycans contain galactose b 1,3
and fucose a 1,4 linked to the terminal GlcNAc
forming the called Lewis A oligosaccharide struc-
ture.36 In addition, paucimannosidic, that derives
from the removal of terminal GlcNAc residues from

Figure 1. Schematic representation of the plant N-glycans processing pathway. The arrows indicate the trafficking pathways. N-glycosyl-
ation of vacuolar proteins suggests a direct ER-vacuole transport route bypassing the Golgi apparatus, and also the classical Golgi-
dependent pathway. ER, endoplasmic reticulum; Asn, asparagine; GlcNAc, N-acetylglucosamine Man, mannose; Fuc, fucose; Xyl, xylose ;
Gal, galactose. High-mannose type: Man 9 Man9GlcNAc2; Man 8: Man8GlcNAc2. Man 7: Man7GlcNAc2 oligosaccharides. Complex type:
GlcNAc2Man3GlcNAc2 and GlcNAc2Man3XylFucGlcNAc2 oligosaccharides; Lewis (A) GalFucGlcNAc2Man3XylFucGlcNAc2 oligosaccha-
ride. Paucimannosidic type: Man3XylFucGlcNAc2; ManXylFucGlcNAc2, ManXylGlcNAc2, ManFucGlcNAc2 oligosaccharides.
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complex N-glycans, are present in vacuolar and
secreted proteins.36-38 Humans IgG1 and IgG4 were
expressed, in transgenic suspension-cultured of
tobacco BY2, sorted to different compartments,
resulting in secretory versions producing higher
yields than ER and vacuolar versions.30,31 In addi-
tion, a mouse IgG fused to the sporamin Nt ssVSS
(NPIRL) was produced also in transgenic BY2 cells,
in intact form at levels of 8.5-80 ng/g and pauciman-
nose Man3FucXylGlcNAc2 as main N-glycan struc-
ture.32 We had also produced a vacuolar mouse IgG1
by transient expression in Nicotiana benthamiana
leaves. To target the Ab to vacuoles, the heavy chain
was fused to 2 sequences derived from amaranth 11S
storage protein: KISIA Ct VSS (vac1-Ab) and
NIFRGF ssVSS (vac2-Ab), and as control ER-Ab and
sec-Ab variants were produced. ER-Ab and vac-Abs
accumulations levels were 10-15-fold higher than
sec-Ab.33 Although NPIRL motif is typical of lytic
vacuole proteins and the short and hydrophobic C
terminus are distinctive of storage proteins39, no sig-
nificant differences were found between vac1-Ab and
vac2-Abs yields. Another important finding of our

work, was the presence of oligomannosidic (Man 7-
9) as the major glycoform in vac-Abs (75%), what
suggests a direct transport from the ER to vacuoles
bypassing the Golgi apparatus.33 Furthermore vac-
Abs have 25% of GlcNAc2Man3XylFucGlcNAc2
therefore removal of terminal GlcNAc residues in
the vacuole did not occur.33

Ability of plants cells to accumulate toxic pro-
teins in vacuoles is not surprising since variety of
natural and synthetic chemicals are inactivated and
transported to vacuole by different detoxification
mechanisms.40 For example, some xenobiotic com-
pounds are conjugated to glutathione in the cytosol
and then transported to vacuole by an ATP-depen-
dent tonoplast transporter.40 Plant secondary
metabolites, such as flavonoids are also delivery to
vacuoles using tonoplast transporters, but for
anthocyanins a transport mediated by vesicle traf-
ficking has also been described.41 Anthocyanins are
uploaded into the ER compartment by membrane
translocators, followed by an ER to vacuole trans-
port either by a direct route (bypassing Golgi) or
by Golgi dependent pathway.41

Figure 2. Comparison of yields obtained when proteins were sorted to different compartments in the secretory pathway. X axis repre-
sents the ratio of yields obtained for vacuolar-/ER-versions (Vac/ER), vacuolar-/secreted-forms (Vac/apo) or vacuolar-/cytosolic-variants
(Vac/cyto). The obtained value are shown in each bar. The X axis has a maximum value of 3.5 and higher values are not to at scale. The
bar color represents the plant species used to express the different proteins showed in the Y axis. a1-PI: human a1-proteinase inhibitor,
TG2: Human tissue transglutaminase, IL6: Interleukin 6, C5a: Human complement 5a, IgG1: Immunoglobulin G1, EG: Endoglucanase,
CBH I: Cellobiohydrolase I , CBH II: Cellobiohydrolase II.
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From the 15 vegetative vacuole-sorted proteins listed
in Table 1, accumulation levels of variants fused to dif-
ferent targeting signals, were informed only for 8 and
the results are summarized in Fig. 2. Vacuolar sorted
variants had yields 3,0-9,0 and 1,2-16,5-fold-times
higher than their cytosolic or apoplastic counterparts,
respectively. Although these values are based on a
reduced number of proteins (5), other proteins in Table 1
such as rhCol1, EL, CBH I, CBH II and EG had the
same behavior, but apoplast or cytosolic yields were not
reported due to instability or low levels (Table 1). There-
fore for 10 proteins the fusion to vacuolar sorting signals
enhanced the production of recombinant proteins. The
impact of vacuolar versus ER location on foreign protein
accumulation was variable. For proteins that produced
detrimental effect in cellular metabolism, such as CBH
II, EG, C5a and CBH I, vacuolar sorted forms yields
were 1,2-4,7 higher than ER retained variants. In con-
trast, ER-IL6- and ER-a1-PI had higher accumulation
levels than their vacuolar counterparts. Vacuolar- and
ER- sorted forms of mouse IgG1- and TG2 had equal
protein yields. These results indicate that a vacuolar sort-
ing strategy is superior to apoplastic or cytosolic target-
ing, and could be also better that ER retention.

To target foreign proteins to vacuoles, different sig-
nals have been used located either in the N or C termi-
nus, including a NPIR/NPIXL sequence specific motif
typical of protease inhibitors or vacuolar proteases
[Nt-ssVSS of barley aleurain, legumain, and sweet
potato sporamin] or short-hydrophobic Ct characteris-
tic of chitinases, cereal lectins or storage proteins (Ct-
VSS of phaseolin 7S globulin, amaranth 11S protein,
barley polyamine oxidase and tobacco chitinase A).42

Both types of VSSs were demonstrated to be useful to
maximize recombinant protein levels. Although Nt-
VSS and Ct-VSS were supposed to target proteins to
lytic and storage vacuoles, respectively, both type of
motif targeted proteins to central vacuole of vegetative
tissue by a molecular mechanism that is currently
unclear.43 The N-glycosylation pattern of the foreign
exemplified differences in vacuolar sorting mechanism,
for example glucocerebrosidase-Ct-VSS exhibited pau-
cimannose structures and complex glycan added in the
trans Golgi; supporting a Golgi dependent transport24

while a mouse IgG1 fused to a ssVSS and Ct-VSS of
amaranth storage proteins is decorated with Man 7
and Man 8 glycans supporting a direct transport
bypassing the Golgi33 (Fig. 1) These glycosylation pat-
terns maybe adequate for some foreign proteins such

as glucocerebrosidase whose vacuolar variant is easily
internalized by human cells, but it is no convenient for
therapeutic antibodies since effectors’ functions are
dependent of heavy chain glycosylation. Nevertheless
vacuolar sorted antibodies could be useful for diagnos-
tic, purification and other research applications.

Table 1 and Fig. 2 also showed also that vacuolar tar-
geting is an effective strategy to produce high yields of
intact and fully active proteins in several plant species
such as Nicotiana benthamiana, tobacco, tomato, sug-
arcane and carrot. The only species that showed unsat-
isfactory results was arabidopsis. Other important
conclusion is that the accumulation levels of vacuolar
sorted foreign proteins were dependent of the develop-
mental stage and physiological condition of leaves,
therefore to achieve high yields samples should be col-
lected prior senescence.20,21

In conclusion, vacuolar sorting in vegetative plant
tissues is a satisfactory strategy to enhance protein
yields and the obtained results are superior than tar-
geting to cytosol or to apoplast an could be also better
than ER retention for cytotoxic proteins. For recombi-
nant glycosylated proteins will be desirable to have a
better understanding of the mechanism that control
vacuolar delivery by the different targeting routes in
order to predict glycosylation pattern.

Abbreviations
Ab monoclonal antibody
CBH I Cellobiohydrolase I
CBH II Cellobiohydrolase II
Ct COOH terminus
C5a human complement 5a
DP1B silk-like protein
EG endoglucanase
EL bacteriophage CP933 endolysin
ER endoplasmic reticulum
GMP good manufacturing practice
IL6 interleukin 6
IgG immunoglobulin
LV lytic vacuole
Nt NH2 terminus
PB protein bodies
PSV protein storage vacuole
PPI-I potato proteinase inhibitor I
rhCOL1 human collagen type I
ssVSS sequence specific VSS
TG2 human tissue transglutaminase
TIP tonoplast intrinsic proteins
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TSP total soluble protein
VSS vacuolar sorting signal
a1-PI human a1-proteinase inhibitor
DV delta vacuole
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