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1. Introduction

Let k be a field of characteristic 0 and V be a k-vector space. The symmetric algebra S(V ) =
⊕

n≥0 S
n(V )

is a graded bialgebra by declaring the elements of V primitive, i.e. Δ(x) = x ⊗ 1 + 1 ⊗ x for all x ∈ V , 
and extending to a morphism of (unital) algebras Δ: S(V ) → S(V ) ⊗ S(V ). Then Lie brackets on V are 
in one-to-one correspondence with graded deformations of S(V ) as a bialgebra (or just as an augmented 
algebra).

We are interested in graded deformations of bialgebras generalizing S(V ), namely, the Nichols algebras 
of braided vector spaces, which have become prominent in the theory of Hopf algebras (see the survey 
[1] and references therein). Recall that a braided vector space is a vector space V equipped with a linear 
isomorphism c: V ⊗ V → V ⊗ V that satisfies the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c),
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where id = idV . The Nichols algebra of (V, c), denoted by B(V, c) or just B(V ) if the braiding is clear from 
the context, is the unique (up to isomorphism) graded braided bialgebra B =

⊕
n≥0 Bn with B0 = k, B1 = V

such that the restriction of the braiding of B to V is c, B is generated by V as an algebra, and V coincides 
with the space P (B) of primitive elements of B.

In the case of symmetric braiding, i.e., c2 = id, the concept of braided Lie algebra is well understood 
[18,8,20,23,21]. This includes the usual Lie algebras (when c is the flip v ⊗ w �→ w ⊗ v), Lie superalgebras 
(when V is graded by Z2 and c is the signed flip v ⊗ w �→ (−1)p(v)p(w)w ⊗ v where p denotes parity) and 
color Lie superalgebras. It follows from Kharchenko’s version of PBW Theorem [20, Theorem 7.1] that such 
Lie structures on (V, c) are in one-to-one correspondence with graded deformations of B(V, c) as a braided 
bialgebra with a fixed braiding (see Section 3).

It is an important and difficult question for what finite-dimensional braided vector spaces the Nichols 
algebra is also finite-dimensional. This condition puts severe restrictions on c. For example, in the case of 
signed flip, this happens if and only if the even part of V is zero, in which case the Nichols algebra is the 
exterior algebra Λ(V ) and there are no nontrivial graded deformations.

We believe that such rigidity is typical for finite-dimensional Nichols algebras. We establish it for a 
wide class of symmetric braidings (Theorem 3.3) using the description of finite-dimensional triangular Hopf 
algebras by Etingof and Gelaki [11,15,12]. We also establish a sufficient condition of rigidity (Theorem 5.3) 
using cohomological techniques, and verify that it is satisfied for finite-dimensional Nichols algebras in the 
Yetter–Drinfeld category kΓkΓYD over an abelian group Γ (Theorem 6.3) using a description of these Nichols 
algebras in terms of generators and relations [4]. It follows that any finite-dimensional Nichols algebra arising 
from a diagonal braiding, i.e., a braiding of the form c(xi ⊗ xj) = qijxj ⊗ xi where {x1, . . . , xθ} is a basis 
of V and qij ∈ k×, does not admit nontrivial graded deformations (Theorem 6.4).

It should be mentioned that the so-called bosonizations of these Nichols algebras often admit nontrivial 
graded deformations (or “liftings”), as has been shown by Andruskiewitsch and Schneider in the course of 
their program of classification of pointed Hopf algebras [3].

Our sufficient condition also applies to some interesting infinite-dimensional Nichols algebras (see Sec-
tion 7) and other braided bialgebras close to Nichols algebras (Theorem 7.1). This may explain the difficulty 
of constructing new examples in [7], where an attempt is made to define and study braided Lie algebras for 
non-symmetric braiding.

2. Preliminaries

2.1. Braided tensor categories

It is often more convenient to work in a category rather than with a stand-alone braided vector space. By 
a tensor category we always mean a strict monoidal k-linear category, see e.g. [24] for details. We are mostly 
interested in categories of k-vector spaces endowed with some additional structure. To simplify notation, 
we omit associativity isomorphisms and parentheses in tensor products. In particular, we denote the tensor 
powers of an object V by V ⊗n for all n ≥ 0, where V ⊗0 is the unit object.

A braided tensor category is a tensor category V with a braiding, i.e. a natural family of isomorphisms 
cV,W : V ⊗W → W ⊗ V in V satisfying the so-called hexagon axioms:

cU,V⊗W = (idV ⊗cU,W )(cU,V ⊗ idW ) and cU⊗V,W = (cU,W ⊗ idV )(idU ⊗cV,W ),

for all U, V, W in V. The braid equation follows:

(cV,W ⊗ idU )(idV ⊗cU,W )(cU,V ⊗ idW ) = (idW ⊗cU,V )(cU,W ⊗ idV )(idU ⊗cV,W ).

The category is said to be symmetric if cW,V cV,W = idV⊗W for all V , W in V.
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The most well known braided tensor categories are the category of (co)modules over a (co)quasitriangular 
bialgebra and the category of Yetter–Drinfeld modules over a Hopf algebra with bijective antipode. We will 
now briefly recall the relevant definitions and fix notation; details can be found in textbooks such as [27,22]. 
We use the standard Sweedler notation for coalgebras and comodules.

A coquasitriangular (CQT) bialgebra is a pair (H, β) where H is a bialgebra and β is a bilinear form 
H ×H → k that is invertible with respect to convolution and satisfies

β(h(1), k(1))h(2)k(2) = β(h(2), k(2))k(1)h(1),

β(hk, �) = β(h, �(1))β(k, �(2)),

β(�, hk) = β(�(2), h)β(�(1), k),

for all h, k, � ∈ H. The category of right comodules MH is braided as follows:

cV,W (v ⊗ w) = β(v(1), w(1))w(0) ⊗ v(0), for all v ∈ V, w ∈ W. (1)

Similarly, the category of left comodules HM is braided by

cV,W (v ⊗ w) = β(w(−1), v(−1))w(0) ⊗ v(0), for all v ∈ V, w ∈ W.

If G is a group then the Hopf algebra H = kG admits a CQT structure β if and only if G is abelian. In 
this case the possible maps β are just linear extensions of bicharacters G × G → k×. Right H-comodules 
are just G-graded vector spaces, V =

⊕
g∈G Vg, and the braiding is given by v ⊗ w �→ β(g, h)w ⊗ v for all 

v ∈ Vg, w ∈ Wh, g, h ∈ G.
An object V of the Yetter–Drinfeld category HHYD is simultaneously a left module and a left comodule 

such that the following compatibility condition holds:

h(1)v(−1) ⊗ h(2) · v(0) = (h(1) · v)(−1)h(2) ⊗ (h(1) · v)(0) for all v ∈ V, h ∈ H.

A morphism is a linear map preserving both action and coaction. The braiding is given by

cV,W : v ⊗ w �→ v(−1) · w ⊗ v(0).

The category of right Yetter–Drinfeld modules YDH
H is defined in a similar manner. If Γ is a group and 

H = kΓ then an object in HHYD is just a Γ-graded vector space with a left action of Γ such that g·Vh = Vghg−1 , 
for all g, h ∈ Γ. The braiding is given by v ⊗ w �→ g · w ⊗ v, for all v ∈ Vg, w ∈ W . In particular, if Γ is 
abelian then the semisimple objects in YDH

H are vector spaces graded by the direct product Γ × Γ̂ where 
Γ̂ is the character group of Γ. For a vector space V with such a grading, we will denote the homogeneous 
component of degree (g, χ) by V χ

g . The braiding becomes v ⊗w �→ ψ(g)w ⊗ v, for all v ∈ V χ
g and w ∈ Wψ

h .
If a CQT bialgebra (H, β) is a Hopf algebra then its antipode is bijective. Moreover MH can be regarded as 

a full subcategory of the Yetter–Drinfeld category YDH
H if we define the right action of H on a right comodule 

V by means of the usual left action of H∗ and the homomorphism of algebras Hop → H∗: h �→ β(·, h), i.e., 
v · h =

∑
β(v(1), h)v(0), for all v ∈ V , h ∈ H. Similarly, HM can be regarded as a full subcategory of HHYD.

If (U, c) is a finite-dimensional braided vector space then the FRT construction [22,29] yields a CQT 
bialgebra (H, β) such that U ∈ MH and c = cU,U where cU,U is given by (1). Moreover, for any V, W ∈ MH

and a linear map f : V → W that commutes with the braiding with U in the sense that (f ⊗ id)cU,V =
cU,W (id⊗f) and (id⊗f)cV,U = cW,U (f ⊗ id), there exists a biideal I of H contained in the left and right 
kernels of the bilinear form β such that f is a morphism in MH/I [29, Corollary 1.9]. Hence, replacing 
(H, β) by (H̄, β̄), where H̄ is the quotient of H by the largest biideal contained in the left and right kernels 
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of β and where β̄ is induced by β, we obtain a braided category, MH̄ , that contains (U, c) and all linear 
maps that commute with the braiding with U .

There is a Hopf algebra version of the above construction — see e.g. [29] and references therein — for 
braided vector spaces satisfying a certain condition, called rigidity in [29], which allows us to define the 
braiding operators cU,U∗ , cU∗,U and cU∗,U∗ , where U∗ is the dual space. Namely, there exists a CQT Hopf 
algebra (H, β) such that U ∈ MH and c = cU,U . Again, any linear map that commutes with the braiding 
with U can be included in the category MH/I where I is a Hopf ideal contained in the left and right 
kernels of β, see the proof of [29, Proposition 5.4]. Since the largest biideal contained in the kernels of β is 
automatically a Hopf ideal, we obtain a CQT Hopf algebra H̄ such that MH̄ includes (U, c) and all linear 
maps that commute with the braiding with U .

We are especially interested in the case of diagonal braiding: c(xi ⊗ xj) = qijxj ⊗ xi where {x1, . . . , xθ}
is a basis of U and qij ∈ k×. Here we can take H = kG, where G is the free abelian group Zθ, and define 
the bicharacter β by setting β(ei, ej) = qij , where {e1, . . . , eθ} is the standard basis of Zθ. If we make U a 
G-graded vector space by declaring xi ∈ Uei then we get c = cU,U in MH . Alternatively, we can make U
an object of kΓkΓYD for each abelian group Γ containing elements g1, . . . , gθ such that there exist characters 
χ1, . . . , χθ ∈ Γ̂ satisfying χj(gi) = qij ; then we declare xi ∈ Uχi

gi and get c = cU,U in kΓkΓYD. We can choose 
the group Γ so that it is generated by g1, . . . , gθ and the characters χ1, . . . , χθ separate points of Γ. It is 
easy to see that in this case a linear map f : V → W commutes with the braiding with U if and only if f is 
a morphism in kΓkΓYD.

2.2. Braided bialgebras

A bialgebra in a braided tensor category V with unit object 1 is an object B with four morphisms: 
multiplication m: B ⊗ B → B, unit u: 1 → B, comultiplication Δ: B → B ⊗ B and counit ε: B → 1 such that 
(B, m, u) is a unital algebra, (B, Δ, ε) is a counital coalgebra, and the following compatibility conditions 
hold:

Δm = (m⊗m)(idB ⊗cB,B ⊗ idB)(Δ ⊗ Δ), εu = id1, εm = ε⊗ ε, Δu = u⊗ u.

Note that the braiding appears only in the compatibility condition involving m and Δ.
One can define a braided bialgebra without reference to any categories [29]: it is a braided vector space 

(B, c) with four linear maps, m: B ⊗ B → B, u: k → B, Δ: B → B ⊗ B and ε: B → k, that commute with 
the braiding induced by c among the tensor powers of B and satisfy the following conditions: (B, m, u) is a 
unital algebra, (B, Δ, ε) is a counital coalgebra, u is a counital coalgebra map, ε is a unital algebra map, 
and finally Δm = (m ⊗m)(idB ⊗c ⊗ idB)(Δ ⊗ Δ).

Obviously, a bialgebra B in a braided tensor category consisting of vector spaces and linear maps (such 
as MH or HHYD) satisfies the definition of braided bialgebra with c = cB,B. Conversely, it is shown in [29]
that any finite-dimensional braided bialgebra (B, m, u, Δ, ε, c) can be included in the category MH over 
a suitable CQT bialgebra (Hopf algebra if c is rigid) H such that m, u, Δ, ε are morphisms in MH and 
c = cB,B in MH .

We are mainly interested in the case of the Nichols algebra B(V ) of a finite-dimensional vector space V
with a rigid braiding c, which is a braided Hopf algebra, not necessarily finite-dimensional but equipped 
with a grading over non-negative integers whose components are finite-dimensional. It can be constructed as 
the quotient of the tensor algebra T (V ) by a graded biideal I(V ) [1, Proposition 2.2], which is determined 
by the braiding c; indeed the homogeneous components of I(V ) are the kernels of the so-called quantum 
symmetrizers on the tensor powers of V [1, Proposition 2.11]. This construction can be carried out either with 
the stand-alone braided vector space (V, c) or in a suitable braided category of comodules or Yetter–Drinfeld 
modules.
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2.3. Graded deformations and liftings

We review the theory of formal graded deformations and liftings from [25], but in a slightly more general 
setting. The theory of formal bialgebra deformations was introduced by Gerstenhaber and Schack [16], while 
the graded version and its connection to liftings was considered by Du, Chen and Ye [10]. In this context, 
a graded bialgebra will mean a bialgebra B in a braided tensor category V (consisting of vector spaces and 
linear maps) equipped with a grading, as an object in V, over non-negative integers, B =

⊕
n≥0 Bn, which 

is at the same time an algebra and a coalgebra grading, i.e., BiBj ⊆ Bi+j and Δ(Bk) ⊆
⊕

i+j=k Bi ⊗Bj , for 
all i, j, k ≥ 0.

Let t be an indeterminate and consider the polynomial algebra k[t] equipped with its standard grading, 
i.e., t has degree 1. By extending scalars from k to k[t], the braided tensor category V gives rise to the braided 
tensor category Vk[t]. A (formal) graded deformation of a graded bialgebra (B, m, Δ) in V is a k[t]-linear 
graded structure (mt, Δt) on B[t] = B ⊗ k[t] such that (B[t], mt, Δt) is a graded bialgebra in Vk[t].

We say that two graded deformations, (B[t], mt, Δt) and (B[t], m′
t, Δ′

t), are equivalent if there exists a 
k[t]-linear graded bialgebra isomorphism f : (B[t], mt, Δt) → (B[t], m′

t, Δ′
t).

A lifting (U , π) of B consists of a filtered bialgebra U and a filtered vector space isomorphism π: U → B
such that grπ: grU → grB = B is an isomorphism of graded bialgebras. An equivalence between liftings 
(U , π) and (U ′, π′) is a filtered bialgebra isomorphism f : U → U ′ such that grπ ◦ gr f = grπ′.

A graded deformation is given by a sequence of pairs of maps (mi, Δi), i ≥ 0, of degree −i such that 
mt|B⊗B = m +

∑
i≥1 mit

i and Δt|B = Δ +
∑

i≥1 Δit
i. We also denote (m0, Δ0) = (m, Δ). A graded 

deformation (B[t], mt, Δt) defines a lifting (U , π), where U is B as a filtered vector space, π is identity, and 
(mU , ΔU ) = (mt, Δt)|t=1.

If (U , π) is a lifting, then the linear maps m̃: B ⊗ B π−1⊗π−1
−−−−−−→ U ⊗ U mU−−→ U π−→ B and Δ̃: B π−1−−→ U ΔU−−→

U ⊗U π⊗π−−−→ B⊗B decompose into direct sums of homogeneous components mi, Δi of degrees −i for i ≥ 0, 
and the structure maps (mt, Δt) = (

∑
i mit

i, 
∑

i Δit
i) on B[t] define a formal graded deformation of B.

Up to equivalence, these correspondences are inverses of each other.

2.4. Graded bialgebra cohomology

Let B be a bialgebra in V. Consider the bisimplicial complex B = (Bp,q)p,q≥0,

Bp,q = Hom(B⊗p,B⊗q).

The left and right diagonal actions and coactions of B on B⊗n will be denoted by λl, λr, ρl, ρr, respectively. 
Note that they involve the braiding. The horizontal faces

∂h
i : Hom(B⊗p,B⊗q) → Hom(B⊗(p+1),B⊗q)

and degeneracies

σh
i : Hom(B⊗(p+1),B⊗q) → Hom(B⊗p,B⊗q)

are those for computing Hochschild cohomology:

∂h
0 f = λl(id⊗f),

∂h
i f = f(id⊗ . . .⊗m⊗ . . .⊗ id), 1 ≤ i ≤ p,

∂h
p+1f = λr(f ⊗ id),

σh
i f = f(id⊗ . . .⊗ u⊗ . . .⊗ id);
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the vertical faces

∂c
j : Hom(B⊗p,B⊗q) → Hom(B⊗p,B⊗(q+1))

and degeneracies

σc
j : Hom(B⊗p,B⊗(q+1)) → Hom(B⊗p,Bq)

are those for computing coalgebra (Cartier) cohomology:

∂c
0f = (id⊗f)ρl,

∂c
jf = (id⊗ . . .⊗ Δ ⊗ . . .⊗ id)f, 1 ≤ j ≤ q,

∂c
q+1f = (f ⊗ id)ρr,

σc
i f = (id⊗ . . .⊗ ε⊗ . . .⊗ id)f.

The vertical and horizontal differentials are given by the usual alternating sums

∂h =
∑

(−1)i∂h
i , ∂c =

∑
(−1)j∂c

j .

By abuse of notation we identify a cosimplicial bicomplex with its associated cochain bicomplex. The 
bialgebra cohomology of B is then defined as

H∗
b(B) = H∗(TotB),

where

TotB = B0,0 → B1,0 ⊕ B0,1 → . . . →
⊕

p+q=n

Bp,q ∂b

→ . . .

and ∂b is given by the sign trick (i.e., ∂b|Bp,q = ∂h ⊕ (−1)p∂c: Bp,q → Bp+1,q ⊕ Bp,q+1).
Let B0 denote the bicomplex obtained from B by replacing the edges by zeroes, i.e., Bp,0

0 = 0 = B0,q
0 for 

all p, q. The truncated bialgebra cohomology is

Ĥ
∗
b(B) = H∗+1(TotB0).

For computations, it is convenient to use the normalized bicomplex B+, which is obtained from the cochain 
bicomplex B by replacing Bp,q = Hom(B⊗p, B⊗q) with the intersection of degeneracies

(B+)p,q = (∩Kerσh
i ) ∩ (∩Kerσc

j) � Hom((B+)⊗p, (B+)⊗q),

where B+ = ker(ε). This change does not affect the cohomology.
We can describe the first two cohomology groups as follows:

Ĥ
1
b(B) = {f :B+ → B+ | f(ab) = af(b) + f(a)b, Δf(a) = a(1) ⊗ f(a(2)) + f(a(1)) ⊗ a(2)}

and

Ĥ
2
b(B) = Ẑ2

b(B)/B̂2
b(B),
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where

Ẑ2
b(B) =

{
(f, g)

∣∣ f :B+ ⊗ B+ → B+, g:B+ → B+ ⊗ B+,

af(b, c) + f(a, bc) = f(ab, c) + f(a, b)c, (2)

c(1) ⊗ g(c(2)) + (id⊗Δ)g(c) = (Δ ⊗ id)g(c) + g(c(1)) ⊗ c(2), (3)

(f ⊗m)Δ(a⊗ b) − Δf(a, b) + (m⊗ f)Δ(a⊗ b) = (4)

− (Δa)g(b) + g(ab) − g(a)(Δb)
}

and

B̂2
b(B) =

{
(f, g)

∣∣ ∃h:B+ → B+, f(a, b) = ah(b) − h(ab) + h(a)b,

g(c) = −c(1) ⊗ h(c(2)) + Δh(c) − h(c(1)) ⊗ c(2)
}
,

where the elements a, b, c range over B+. All maps above are assumed to be morphisms in V. By Δ(a ⊗b) we 
mean the braided coproduct in B⊗B, namely, (id⊗cB,B ⊗ id)(a(1) ⊗a(2) ⊗ b(1) ⊗ b(2)), and we write f(−, −)
instead of f(− ⊗ −). In the resulting deformation (see the next subsection), Equation (2) will correspond 
to associativity, Equation (3) to coassociativity and Equation (4) to compatibility.

Now assume that B is Z-graded and let B� denote the subcomplex of B consisting of homogeneous maps 
of degree �, i.e.,

Bp,q
� = Hom(B⊗p,B⊗q)� = {f :B⊗p → B⊗q | f is homogeneous of degree �}.

Complexes (B0)�, B+
� and (B+

0 )� are defined analogously. The graded bialgebra and truncated graded 
bialgebra cohomologies are then defined by:

H∗
b(B)� = H∗(TotB�) = H∗(TotB+

� ),

Ĥ
∗
b(B)� = H∗+1(Tot(B0)�) = H∗+1(Tot(B+

0 )�).

Note that if the support of the grading is finite, in particular if B is finite-dimensional, then

H∗
b(B) =

⊕
�∈Z

H∗
b(B)� and Ĥ

∗
b(B) =

⊕
�∈Z

Ĥ
∗
b(B)�.

2.5. Cohomological aspects of graded deformations

Given a graded deformation of B, let r be the smallest positive integer for which (mr, Δr) �= (0, 0) (if such 
an r exists). Then (mr, Δr) is a 2-cocycle in Ẑ2

b(B)−r. Every nontrivial deformation is equivalent to one for 
which the corresponding (mr, Δr) represents a nontrivial cohomology class [16,10]. Hence, if Ĥ

2
b(B)(�) = 0

for all � < 0, then B is rigid, i.e., has no nontrivial graded deformations.
Conversely, given a positive integer r and a 2-cocycle (m′, Δ′) in Ẑ2

b(B)−r, the maps m +trm′ and Δ +trΔ′

define a bialgebra structure on B[t]/(tr+1) over k[t]/(tr+1). There may or may not exist (mr+k, Δr+k), k ≥ 1, 
for which mt = m + trm′ +

∑
k≥1 t

r+kmr+k and Δt = Δ + trΔ′ +
∑

k≥1 t
r+kΔr+k make B[t] into a bialgebra 

over k[t].
An r-deformation of B is a graded deformation of B over k[t]/(tr+1), i.e. a pair (mr

t , Δr
t ) defining a 

bialgebra structure on B[t]/(tr+1) over k[t]/(tr+1) such that (mr
t , Δr

t )|t=0 = (m, Δ). For any 2-cocycle 
(m′, Δ′) in Ẑ2

b(B)−r, there exists an r-deformation, given by (m + trm′, Δ + trΔ′).
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If a given (r − 1)-deformation can be extended to an r-deformation, then all ways of doing so are 

parametrized by Ĥ
2
b(B)−r. More precisely, suppose that (B[t]/(tr), mr−1

t , Δr−1
t ) is an (r− 1)-deformation, 

where

mr−1
t = m + tm1 + . . . + tr−1mr−1, Δr−1

t = Δ + tΔ1 + . . . + tr−1Δr−1.

If

D = (B[t]/(tr+1),mr−1
t + trmr,Δr−1

t + trΔr)

is an r-deformation, then

D′ = (B[t]/(tr+1),mr−1
t + trm′

r,Δr−1
t + trΔ′

r)

is an r-deformation if and only if (m′
r −mr, Δ′

r − Δr) ∈ Ẑ2
b(B)−r. Note also that if (m′

r −mr, Δ′
r − Δr) ∈

B̂2
b(B)−r, then deformations D and D′ are equivalent.
The obstruction to extend r-deformations to (r + 1)-deformations lies in Ĥ

3
b(B)−r.

3. The case of symmetric braiding

Let (V, c) be a braided vector space with c2 = id. Then B(V ) is a quadratic algebra: it is the quotient of 
T (V ) by the ideal generated by the elements x ⊗y−c(x ⊗y), for x, y ∈ V . If c is the flip (respectively, signed 
flip) then B(V ) = S(V ) (respectively, S(V0) ⊗Λ(V1)) and the graded deformations of B(V ) are in one-to-one 
correspondence with brackets [ , ]: V ⊗ V → V making V a Lie algebra (respectively, superalgebra). For 
arbitrary c, we need the following generalization of Lie algebra introduced by Gurevich [18] under the name 
“Lie c-algebra”.

Definition 3.1. Let L be a vector space, c: L ⊗L → L ⊗L a symmetric braiding, and [ , ]: L ⊗L → L a linear 
map. Then (L, [ , ], c) is a braided Lie algebra if

c([ , ] ⊗ idL) = (idL ⊗[ , ])(c⊗ idL)(idL ⊗c) (compatibility),

[ , ](idL⊗L +c) = 0 (anticommutativity)

[ , ]([ , ] ⊗ idL)
(

idL⊗L⊗L +(c⊗ idL)(idL ⊗c) + (c⊗ idL)(idL ⊗c)
)

= 0 (Jacobi identity).

Note that the compatibility condition (together with c2 = id) simply means that the bracket commutes 
with c, and the above Jacobi identity implies a similar identity for [ , ](idL ⊗[ , ]) instead of [ , ]([ , ] ⊗ idL). 
It is straightforward to check that if a vector space A is equipped with a symmetric braiding c and an 
associative product m: A ⊗ A → A that commutes with c then (A, [ , ]c, c) is a braided Lie algebra, where 
[ , ]c is the braided commutator m(idA⊗A −c).

Braided Lie algebras naturally arise as Lie algebras in a symmetric tensor category V. A Lie algebra in V
is an object L endowed with a morphism [ , ]: L ⊗L → L such that the anticommutativity and Jacobi identity 
hold for c = cL,L. If (H, β) is a cotriangular bialgebra (i.e., a CQT bialgebra satisfying β−1(h, k) = β(k, h)
for all h, k ∈ H) then the category MH is symmetric; Lie algebras in this category were introduced and 
studied in [8,9] under the name (H, β)-Lie algebras. By an argument similar to [29] (see Subsection 2.2
above), any finite-dimensional braided Lie algebra can be regarded as an (H, β)-Lie algebra for a suitable 
cotriangular bialgebra (Hopf algebra if the braiding is rigid).

Given a braided Lie algebra (L, [ , ], c), the universal enveloping algebra, which we will denote Uc(L), is 
the quotient of the tensor algebra T (L) by the ideal generated by the degree 2 elements x ⊗y−c(x ⊗y) −[x, y]
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where x, y ∈ L. The usual increasing filtration of T (L) gives rise to the standard filtration of Uc(L). As one 
would expect, Uc(L) becomes a braided bialgebra if we declare the elements of L primitive. It is not true 
in general that, given an ordered basis of L, the corresponding PBW monomials form a basis of Uc(L). 
However, the following version of PBW Theorem holds.

Theorem 3.2. (See [20, Theorem 7.1].) The graded algebra grUc(L) associated to the standard filtration of 
Uc(L) is naturally isomorphic to Uc(L◦) where L◦ denotes the braided Lie algebra with the same underlying 
braided vector space as L but with zero bracket. �

The standard filtration of Uc(L) coincides with its coradical filtration. Also Uc(L◦) = B(L, c).
It follows that graded deformations of B(V, c) as a braided augmented algebra or as a braided bialgebra 

(with a fixed braiding) are in one-to-one correspondence with brackets on V making it a braided Lie algebra. 
Here the “graded deformations” and “braided Lie algebras” can be understood in the sense of a stand-alone 
object or an object in MH for a suitable cotriangular bialgebra (H, β).

For H = kG, where G is an abelian group, the cotriangular structures on H are linear extensions of 
skew-symmetric bicharacters β: G × G → k×. In this case the (H, β)-Lie algebras are known as the color 
Lie superalgebras with grading group G and commutation factor β. Note that the braiding is diagonal and, 
conversely, any braided Lie algebra with a diagonal braiding can be regarded as a color Lie superalgebra 
for some G and β.

By a trick going back to Scheunert [28], color Lie superalgebras can be twisted to become ordinary Lie 
superalgebras. This procedure works in the same way for all color Lie superalgebras with given G and β, 
and is associated to a suitable cocycle twist of (kG, β) as a CQT bialgebra. Recall that a right 2-cocycle
on a bialgebra H is a convolution-invertible map σ: H ⊗ H → k satisfying the following equations for all 
h, k, � ∈ H:

σ(h, k(1)�(1))σ(k(2), �(2)) = σ(h(1)k(1), �)σ(h(2), k(2)), σ(h, 1) = σ(1, h) = ε(h).

Also recall that if (H, β) is a cotriangular (more generally, CQT) bialgebra then (Hσ, βσ) is again a cotri-
angular (respectively, CQT) bialgebra, see e.g. [22]; here Hσ = H as a coalgebra, the multiplication of Hσ

is given by

h ·σ k = σ−1(h(1), k(1))h(2)k(2)σ(h(3), k(3)),

and

βσ(h, k) = σ−1(k(1), h(1))β(h(2)k(2))σ(h(3), k(3)).

Moreover, σ yields an equivalence of braided tensor categories MH and MHσ , which is the identity on objects 
and morphisms and only transforms the tensor product. If A is an algebra (not necessarily associative) in 
MH with multiplication m: A ⊗ A → A, then the corresponding algebra in MHσ is A as an H-comodule 
but with new multiplication:

mσ(a⊗ b) = σ(a(1), b(1))m(a(0) ⊗ b(0)).

We denote this new algebra by Aσ and call it the σ-twist of A. It is shown in [23] that multilinear polynomial 
identities of A are preserved under σ-twist if we interpret them in each of the categories MH and MHσ

in terms of the appropriate action of symmetric groups on tensor powers of A. In particular, associative 
algebras remain associative and (H, β)-Lie algebras become (Hσ, βσ)-Lie algebras.
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If H is cocommutative then Hσ = H but β is twisted. If H = kG, with G an abelian group, then there 
exists a 2-cocycle σ: G ×G → k× such that βσ is a “sign bicharacter”:

βσ(g, h) =
{

−1 if g, h ∈ G−,

1 otherwise;

where G− = G \G+ and G+ is a subgroup of index ≤ 2. It follows that σ twists any color Lie superalgebra 
L with commutation factor β into a Lie superalgebra with even part L+ and odd part L−, where L± =⊕

g∈G±
Lg.

Etingof and Gelaki [11] showed that, under a certain condition on the antipode called pseudo-involutivity, 
a cotriangular Hopf algebra (H, β) can be twisted by a suitable cocycle to become the algebra of regular 
functions on a pro-algebraic group G such that βσ = 1

2 (ε ⊗ ε + ε ⊗ a + a ⊗ ε − a ⊗ a) for some central 
element a ∈ G with a2 = 1. It immediately follows [23, Theorem 4.3] that the same cocycle twists (H, β)-Lie 
algebras to Lie superalgebras equipped with a G-action. Here the even and odd components are just the 
eigenspaces with respect to the action of a, with eigenvalues 1 and −1 respectively.

If H is finite-dimensional then pseudo-involutivity of the antipode is equivalent to involutivity and hence 
to semisimplicity of H. Later, Etingof and Gelaki [12,15] described all finite-dimensional cotriangular Hopf 
algebras by showing that (H, β) can be twisted in such a way that its dual triangular Hopf algebra becomes 
a “modified supergroup algebra”. As a corollary, any (H, β)-Lie algebra is twisted to a Lie superalgebra 
equipped with a supergroup action [23, Theorem 4.6].

One can use the twisting procedure to transfer known properties of Lie superalgebras to (H, β)-Lie 
algebras in the above cases. Let Uβ(L) be the universal enveloping algebra of an (H, β)-Lie algebra L, i.e., 
Uc(L) for c = cL,L determined by β. It is straightforward to verify that Uβσ

(Lσ) is naturally isomorphic to 
(Uβ(L))σ. In particular, for V in MH and c = cV,V induced by β, the σ-twist of the Nichols algebra B(V, c)
is naturally isomorphic to B(V, c′) where c′ is the braiding on V induced by βσ. This gives an alternative 
proof of PBW Theorem for (H, β)-Lie algebras [23].

Theorem 3.3. Let (H, β) be a cotriangular Hopf algebra that is either pseudo-involutive or finite-dimensional. 
Let V be a finite-dimensional H-comodule with the corresponding braiding c. If the Nichols algebra B(V, c)
is finite-dimensional then it does not admit nontrivial graded deformations as an augmented algebra or 
bialgebra in MH .

Proof. By our assumption on (H, β), there exists a cocycle σ such that (Hσ, βσ) is as described by Etingof 
and Gelaki. Then the braiding c′ induced by βσ on V is just the signed flip associated to a Z2-grading 
V = V0 ⊕ V1, so B(V, c′) = S(V0) ⊗ Λ(V1), which is finite-dimensional only if V0 = 0. But in this case V
does not admit nontrivial Lie superalgebra structures. It follows that V does not admit nontrivial (H, β)-Lie 
algebra structures and hence B(V, c) is rigid in MH . �
Corollary 3.4. Let (V, c) be a finite-dimensional braided vector space such that c can be obtained from a 
coaction by a finite-dimensional cotriangular Hopf algebra. If B(V, c) is finite-dimensional then it does not 
admit nontrivial graded deformations as a braided augmented algebra or bialgebra.

Proof. By assumption, V can be regarded as an object in MH for some finite-dimensional cotriangular 
Hopf algebra (H, β) such that c = cV,V . Any graded deformation of B(V, c) can be realized in MH̄ for some 
quotient (H̄, β̄) of the cotriangular Hopf algebra (H, β), so it must be trivial by the above theorem. �
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4. The vanishing of second algebra cohomology for a class of augmented algebras in a braided category

Let V be a braided tensor category consisting of vector spaces and linear maps. Let (B, ε) be an augmented 
algebra in V acting trivially (i.e., via ε) on some U in V.

� A map f : B ⊗ B → U in V is an ε-cocycle if f(1, a) = 0 = f(a, 1) and f(xy, z) = f(x, yz) for all a ∈ B
and all x, y, z ∈ B+. The space of all ε-cocycles is denoted by Z2

ε(B, U).
� An ε-cocycle is an ε-coboundary if there exists a map t: B → U such that t(1) = 0 and f(x, y) = t(xy)

for all x, y ∈ B+. The space of all ε-coboundaries is denoted by B2
ε(B, U).

� The quotient of ε-cocycles by ε-coboundaries is denoted by H2
ε(B, U) = Z2

ε(B, U)/B2
ε(B, U).

In what follows (B+)2 denotes the range of the multiplication B+ ⊗B B+ m−→ B+, i.e., (B+)2 =
span{xy | x, y ∈ B+}.

Lemma 4.1. (Cf. [25, Subsection 4.1].) Let B be an augmented algebra in V and let M = ker
(
B+ ⊗B B+ m−→

B
)
. If the map B+⊗BB+ m−→ (B+)2 splits in V, then for every space U ∈ V, we have H2

ε(B, U) = Hom(M, U).

Proof. Let ϕ: (B+)2 → B+ ⊗B B+ be a splitting of m and let p: B+ ⊗ B+ → B+ ⊗B B+ be the canonical 
projection. We define a map Φ: Hom(M, U) → H2

ε(B, U) as follows: if f : M → U , then the cocycle Φ(f): B+⊗
B+ → U is Φ(f) = f(p −ϕm). The inverse Ψ of Φ is defined as follows: if g: B+ ⊗B+ → U is a cocycle, then 
Ψ(g): M → U is the unique map such that Ψ(g)p = g. Now observe that maps Φ and Ψ are well defined: 
Φ(f) is always a cocycle and Ψ(g) = 0 whenever g is a coboundary. Note also that ΨΦ = id and that the 
range of ΦΨ − id consists of coboundaries. �
Remark 4.2. A splitting of B+ ⊗B B+ m−→ (B+)2 in V automatically exists (it is usually not unique) if 
B+ ⊗B B+ is a semisimple object in V. This happens whenever V is either the category of Yetter–Drinfeld 
modules over a semisimple and cosemisimple Hopf algebra or the category of comodules over a cosemisimple 
CQT bialgebra. It also happens if V is the category of Yetter–Drinfeld modules over kΓ, where Γ is a possibly 
infinite abelian group, and B is a direct sum of its one-dimensional subobjects in V (e.g., a quotient of the 
tensor algebra T (V ), for some V of finite dimension over k).

Let V be an object in V, T (V ) its tensor algebra and I an ideal generated by homogeneous elements of 
degree at least two. Let B = T (V )/I and let π: T (V ) → B be the canonical projection. We also abbreviate 
T (V )+ =

⊕
n≥1 V

⊗n and T (V )(2) =
⊕

n≥2 V
⊗n.

Lemma 4.3. The following is a commutative diagram:

I ⊗ T (V )+ + T (V )+ ⊗ I
m

−−−−→ I⏐⏐� ⏐⏐�
T (V )+ ⊗ T (V ) ⊗ T (V )+

id ⊗m−m⊗id
−−−−−−−−→ T (V )+ ⊗ T (V )+

m
−−−−→ T (V )(2)

π⊗π⊗π

⏐⏐� π⊗π

⏐⏐� π̃⊗π

⏐⏐�
B+ ⊗ B ⊗ B+ id ⊗m−m ⊗ id

−−−−−−−−−→ B+ ⊗ B+ p
−−−−→ B+ ⊗B B+

m
⏐⏐� m̃

⏐⏐�
+ 2 + 2
(B ) (B )
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where the maps m̃ and π̃ ⊗ π are the universal maps arising from fact (1) below. Moreover, we have the 
following facts:

(1) The second and third rows of the diagram are cokernel diagrams.
(2) The second column of the diagram is exact at T (V )+ ⊗ T (V )+.
(3) The composition T (V )(2) π̃⊗π−−−→ B+ ⊗B B+ m̃−→ (B+)2 is equal to the restriction of π to T (V )(2).
(4) The map π̃ ⊗ π is surjective.
(5) If ϕ: T (V )(2) → T (V )+ ⊗ T (V )+ is any splitting of multiplication (e.g., the composition T (V )(2)

∼−→
V ⊗ T (V )+ → T (V )+ ⊗ T (V )+ is such a splitting), then π̃ ⊗ π = p(π ⊗ π)ϕ.

Proof. Clearly, each of the squares of the diagram commutes. We prove the remaining claims below:

(1) The third row is a cokernel diagram by definition. The second row is a cokernel diagram due to the fact 
that T (V )+ = V ⊗T (V ) as a right T (V )-module (with the obvious action on the second tensor factor), 
hence T (V )+ ⊗T (V ) T (V )+ = V ⊗ T (V )+, and V ⊗ T (V )+ m→ T (V )(2) is an isomorphism.

(2) Clear.
(3) As π is an algebra map, we have m(π⊗π)m = πm. Hence m̃(π̃ ⊗ π)m = πm. By the universal property 

of cokernels this means that m̃(π̃ ⊗ π) = π.
(4) Follows from the fact that maps p and π ⊗ π are surjective.
(5) Follows from the universal property of cokernels. �
Corollary 4.4. The following sequence is exact:

0 → T (V )+I + IT (V )+ → I
π̃⊗π−→ B+ ⊗B B+ m̃→ (B+)2 → 0

Therefore, I/(T (V )+I + IT (V )+) � ker
(
B+ ⊗B B+ → (B+)2

)
.

Proof. To avoid ambiguity, we denote the restriction of π̃ ⊗ π to I by τ . We first prove that ker(τ) =
T (V )+I+IT (V )+. The inclusion T (V )+I+IT (V )+ ⊆ ker(π̃ ⊗ π) follows from π̃ ⊗ π(T (V )+I+IT (V )+) =
(π̃ ⊗ π)m(T (V )+ ⊗ I + I ⊗ T (V )+) = p(π ⊗ π)(T (V )+ ⊗ I + I ⊗ T (V )+) = 0.

Let x ∈ ker(τ). Since m(T (V )+⊗T (V )+) = T (V )(2), there exists y ∈ T (V )+⊗T (V )+ such that m(y) = x. 
Now 0 = (π̃ ⊗ π)m(y) = p(π ⊗ π)(y), and hence (π ⊗ π)y = (id⊗m − m⊗ id)z for some z ∈ B+ ⊗ B ⊗ B+. 
Let w ∈ T (V )+ ⊗ T (V ) ⊗ T (V )+ be such that (π ⊗ π ⊗ π)(w) = z. Define y′ = y − (id⊗ m−m ⊗ id)w. As 
(π⊗π)y′ = 0 we have that y′ ∈ I ⊗T (V )+ +T (V )+ ⊗ I and hence x = m(y) = m(y′) ∈ IT (V )+ +T (V )+I.

We now prove that π̃ ⊗ π(I) = ker(B+ ⊗B B+ m̃−→ (B+)2). The inclusion ⊆ follows from part (3) of the 

lemma above: m̃ ˜(π ⊗ π)(I) = π(I) = 0. The inclusion ⊇ follows from the fact that π̃ ⊗ π is surjective. �
Corollary 4.5. If I is generated by a subobject R, then the induced morphism

R → ker
(
B+ ⊗B B+ → (B+)2

)
is surjective. �

We summarize the above results in a theorem which will be needed in the next section to establish rigidity 
of certain graded bialgebras in V.

Theorem 4.6. Let V be an object in V and T (V ) its tensor algebra. Let R ⊂ T (V )(2) be a graded subspace 
that is an object in V. Consider the augmented algebra B = T (V )/〈R〉 and an object U in V on which B acts 
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trivially (i.e., via ε). If the multiplication map B+ ⊗B B+ m−→ (B+)2 splits in V, then there is an injection 
H2

ε(B, U) → Hom(R, U).
In particular, if f is an ε-cocycle such that for every u ∈ B ⊗ B in the range of the composition R →

V ⊗ T (V )+ → B ⊗ B we have f(u) = 0, then f is an ε-coboundary. �
5. A sufficient condition for rigidity of graded bialgebras in a braided category

Let B be a graded bialgebra in V. For a homogeneous map f : B ⊗ B → B of degree � and a nonnegative 
integer r we define fr: B⊗B → B by fr|(B⊗B)r = f and fr|(B⊗B)s = 0 for s �= r. For g: B → B⊗B, we define 
gr analogously. We also define f≤r by f≤r =

∑r
i=0 fi, and f<r, g≤r, g<r in a similar fashion.

Lemma 5.1. (Cf. [25, Lemma 2.3.6].) Let B be a graded bialgebra in V such that B0 = k and B is generated 
as an algebra by B1.

(1) If (f, g) ∈ Z2
b(B)�, r > 1, f≤r = 0, and g<r = 0, then gr = 0.

(2) If (f, g) ∈ Z2
b(B)�, � < 0, and f≤r = 0, then g≤r = 0.

(3) If (0, g) ∈ Z2
b(B)�, � < 0, then g = 0.

Proof. The proof in [25] carries over word for word. First note that for every (f, g) ∈ Z2
b(B) we have f≤1 = 0

and g≤2 = 0, due to the fact that (B+ ⊗ B+)0 = 0 = (B+ ⊗ B+)1. Hence (1) easily yields (2) and (3).
For (1) recall that ∂cf = −∂hg by Equation (4). If r > 1, a ∈ B1 and b ∈ Br−1, then

(∂cf)(a, b) = 0 = −(∂hg)(a, b) = −(Δa)g(b) + g(ab) − g(a)(Δb) = g(ab).

As Br is spanned by such products ab, we have that g(Br) = 0. �
Lemma 5.2. (Cf. [25, Lemma 2.3.5].) Let B be a connected graded bialgebra in V, let r ∈ N, and let 
f : B⊗B → B be a homogeneous unital Hochschild cocycle in V (with respect to left and right regular actions 
of B on itself). If f<r = 0, then fr: B ⊗ B → B is an ε-cocycle.

Proof. This follows directly from ∂hf = 0, see Equation (2). �
Theorem 5.3. (Cf. [25, Lemma 4.2.2].) Let V be an object in V and T (V ) its (braided) tensor bialgebra. 
Let R ⊂ T (V )(2) be a graded subspace that is an object in V and generates a biideal in T (V ). Consider 
the quotient B = T (V )/〈R〉, which is a graded bialgebra in V, and assume that the multiplication map 

m: B+⊗BB+ → (B+)2 splits in V. If for some negative � we have that Hom(R, P (B))� = 0, then Ĥ
2
b(B)� = 0.

In particular, if Hom(R, P (B))� = 0 for all negative �, then B is rigid.

Proof. Let (f, g) ∈ Z2
b(B)�. We will find a map s =

∑∞
r=0 sr: B → B such that for every nonnegative r, 

(f, g)r = (∂hsr, −∂csr), from where the result trivially follows since (f, g) = ∂b
∑∞

r=0 sr. Here the sum 
s =

∑∞
r=0 sr is potentially infinite but locally finite. The cases r = 0, 1 are clear. Suppose that s0, . . . , sr−1

have been found. Let (f ′, g′) = (f, g) − ∂bs<r = (f, g) −
∑r−1

i=0 (∂hsi, −∂csi). Note that, by assumption, 
f ′|<r = 0 and hence, by Lemma 5.1, also g′|<r = 0. Let u ∈ (B ⊗ B) be in the range of the composition 
R → V ⊗ T (V )+ → B ⊗ B. Since m(u) = 0 we have from Equation (4) that fr(u) ∈ P (B). Therefore, the 

composition R → V ⊗T (V )+ → B⊗B f→ B has range in P (B) and must be the zero map. By Theorem 4.6, 
we get a map t: B → B such that fr = tm. Now define sr = tr and observe that f ′

≤r = f ′
r = ∂hsr. Hence, 

by Lemma 5.1, we also have g′r = −∂csr. �
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6. Nichols algebras of diagonal type

In what follows (V, c) will denote a braided vector space of diagonal type, dimV = θ, such that the 
associated Nichols algebra B(V ) has a finite root system ΔV

+ in the sense of [19], i.e., ΔV
+ is the set of 

Nθ
0-degrees of generators of a PBW basis. In particular, this is the case if B(V ) is finite-dimensional. Let

−cVij := min {n ∈ N0 | (n + 1)qii(1 − qniiqijqji) = 0} , j �= i. (5)

Now we fix

• a basis {x1, . . . , xθ} of V and qij ∈ k× such that c(xi ⊗ xj) = qijxj ⊗ xi,
• elements xα ∈ B(V ) of degree α, α ∈ ΔV

+, which generate a PBW basis, see [4].

We use the following notation:

• q̃ij := qijqji for all i �= j.
• χ: Zθ × Zθ → k× is the bicharacter such that χ(αi, αj) = qij , 1 ≤ i, j ≤ θ, where {α1, . . . , αθ} is the 

canonical basis of Zθ.
• Nα is the order of qα := χ(α, α), α ∈ ΔV

+.
• GN is the group of roots of unity of order N and G′

N is the subset of primitive roots of unity of order 
N , N ∈ N.

• O(V ) is the set of Cartan roots of V , i.e., the orbit of Cartan vertices under the action of the Weyl 
groupoid. Recall that i ∈ {1, . . . , θ} is a Cartan vertex of V if q̃ij = q

cVij
ii for all j �= i [4, Definition 2.6].

We recall the following result, which gives a presentation by generators and relations for any Nichols algebra 
of diagonal type with finite root system.

Theorem 6.1. (See [4].) B(V ) is presented by generators x1, . . . , xθ and relations:

xNα
α , α ∈ O(V ); (6)

(adc xi)1−cVijxj , q
1−cVij
ii �= 1; (7)

xNi
i , i is not a Cartan vertex; (8)

� if i, j ∈ {1, . . . , θ} satisfy qii = q̃ij = qjj = −1, and there exists k �= i, j such that q̃ik2 �= 1 or q̃jk2 �= 1,

x2
ij ; (9)

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = −1, q̃ik = q̃ij q̃kj = 1, q̃ij �= −1,

[xijk, xj ]c ; (10)

� if i, j ∈ {1, . . . , θ} satisfy qjj = −1, qiiq̃ij ∈ G′
6, q̃ij �= −1, and also qii ∈ G′

3 or −cVij ≥ 3,

[xiij , xij ]c ; (11)

� if i, j, k ∈ {1, . . . , θ} satisfy qii = ±q̃ij ∈ G′
3, q̃ik = 1, and also −qjj = q̃ij q̃jk = 1 or q−1

jj = q̃ij = q̃jk �= −1,

[xiijk, xij ] ; (12)
c
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� if i, j, k ∈ {1, . . . , θ} satisfy q̃ik, q̃ij , q̃jk �= 1,

xijk − 1 − q̃jk
qkj(1 − q̃ik)

[xik, xj ]c − qij(1 − q̃jk) xjxik; (13)

� if i, j, k ∈ {1, . . . , θ} satisfy one of the following situations
(i) qii = qjj = −1, q̃ij2 = q̃jk

−1, q̃ik = 1, or
(ii) q̃ij = qjj = −1, qii = −q̃jk

2 ∈ G′
3, q̃ik = 1, or

(iii) qkk = q̃jk = qjj = −1, qii = −q̃ij ∈ G′
3, q̃ik = 1, or

(iv) qjj = −1, q̃ij = q−2
ii , q̃jk = −q3

ii, q̃ik = 1, or
(v) qii = qjj = qkk = −1, ±q̃ij = q̃jk ∈ G′

3, q̃ik = 1,[
[xij , xijk]c , xj

]
c
; (14)

� if i, j, k ∈ {1, . . . , θ} satisfy qii = qjj = −1, q̃ij3 = q̃jk
−1, q̃ik = 1,[[

xij , [xij , xijk]c
]
c
, xj

]
c
; (15)

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
2 = q̃jk ∈ G′

3, q̃ik = 1,[
[xijk, xj ]c xj

]
c
; (16)

� if i, j, k ∈ {1, . . . , θ} satisfy qkk = qjj = q̃ij
−1 = q̃jk

−1 ∈ G′
9, q̃ik = 1, qii = q6

kk[
[xiij , xiijk]c , xij

]
c
; (17)

� if i, j, k ∈ {1, . . . , θ} satisfy qii = q̃ij
−1 ∈ G′

9, qjj = q̃jk
−1 = q5

ii, q̃ik = 1, qkk = q6
ii

[[xijk, xj ]c , xk]c − (1 + q̃jk)−1qjk
[
[xijk, xk]c , xj

]
c
; (18)

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
3 = q̃jk ∈ G′

4, q̃ik = 1,[[
[xijk, xj ]c , xj

]
c
, xj

]
c
; (19)

� if i, j, k ∈ {1, . . . , θ} satisfy qii = q̃ij = −1, qjj = q̃jk
−1 �= −1, q̃ik = 1,

[xij , xijk]c ; (20)

� if i, j, k ∈ {1, . . . , θ} satisfy qii = qkk = −1, q̃ik = 1, q̃ij ∈ G′
3, qjj = −q̃jk = ±q̃ij,

[xi, xjjk]c − (1 + q2
jj)q−1

kj [xijk, xj ]c − (1 + q2
jj)(1 + qjj)qijxjxijk; (21)

� if i, j, k, l ∈ {1, . . . , θ} satisfy qjj q̃ij = qjj q̃jk = 1, qkk = −1, q̃ik = q̃il = q̃jl = 1, q̃jk2 = q̃lk
−1 = qll,[[

[xijkl, xk]c , xj

]
c
, xk

]
c
; (22)

� if i, j, k, l ∈ {1, . . . , θ} satisfy q̃jk = q̃ij = q−1
jj ∈ G′

4 ∪G′
6, qii = qkk = −1, q̃ik = q̃il = q̃jl = 1, q̃jk3 = q̃lk,[[

xijk, [xijkl, xk]
]
, xjk

]
; (23)
c c c
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� if i, j, k, l ∈ {1, . . . , θ} satisfy qll = q̃lk
−1 = qkk = q̃jk

−1 = q2, q̃ij = q−1
ii = q3 for some q ∈ k×, qjj = −1, 

q̃ik = q̃il = q̃jl = 1, [[
[xijk, xj ]c , [xijkl, xj ]c

]
c
, xjk

]
c
; (24)

� if i, j, k, l ∈ {1, . . . , θ} satisfy one of the following situations
(i) qkk = −1, qii = q̃ij

−1 = q2
jj, q̃kl = q−1

ll = q3
jj, q̃jk = q−1

jj , q̃ik = q̃il = q̃jl = 1, or
(ii) qii = q̃ij

−1 = −q−1
ll = −q̃kl, qjj = q̃jk = qkk = −1, q̃ik = q̃il = q̃jl = 1,[

[xijkl, xj ]c , xk

]
c
− qjk(q̃ij−1 − qjj)

[
[xijkl, xk]c , xj

]
c
; (25)

� if i, j, k ∈ {1, . . . , θ} satisfy q̃jk = 1, qii = q̃ij = −q̃ik ∈ G′
3,[

xi, [xij , xik]c
]
c
+ qjkqikqji [xiik, xij ]c + qij xijxiik; (26)

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = qkk = q̃jk = −1, qii = −q̃ij ∈ G′
3, q̃ik = 1,

[xiijk, xijk]c ; (27)

� if i, j ∈ {1, . . . , θ} satisfy −qii, −qjj , qiiq̃ij , qjj q̃ij �= 1,

(1 − q̃ij)qjjqji
[
xi, [xij , xj ]c

]
c
− (1 + qjj)(1 − qjj q̃ij)x2

ij ; (28)

� if i, j ∈ {1, . . . , θ} satisfy that −cVij ∈ {4, 5}, or qjj = −1, −cVij = 3, qii ∈ G′
4,

[
xi, x3αi+2αj

]
c
− 1 − qiiq̃ij − q2

iiq̃ij
2
qjj

(1 − qiiq̃ij)qji
x2
iij ; (29)

� if i, j ∈ {1, . . . , θ} satisfy 4αi +3αj /∈ ΔV
+, qjj = −1 or mji ≥ 2, and also −cVij ≥ 3, or −cVij = 2, qii ∈ G′

3,

x4αi+3αj
= [x3αi+2αj

, xij ]c; (30)

� if i, j ∈ {1, . . . , θ} satisfy 3αi + 2αj ∈ ΔV
+, 5αi + 3αj /∈ ΔV

+, and q3
iiq̃ij , q

4
iiq̃ij �= 1,

[xiij , x3αi+2αj
]c; (31)

� if i, j ∈ {1, . . . , θ} satisfy 4αi + 3αj ∈ ΔV
+, 5αi + 4αj /∈ ΔV

+,

x5αi+4αj
= [x4αi+3αj

, xij ]c; (32)

� if i, j ∈ {1, . . . , θ} satisfy 5αi + 2αj ∈ ΔV
+, 7αi + 3αj /∈ ΔV

+,

[[xiiij , xiij ], xiij ]c; (33)

� if i, j ∈ {1, . . . , θ} satisfy qjj = −1, 5αi + 4αj ∈ ΔV
+,

[xiij , x4αi+3αj
]c −

b− (1 + qii)(1 − qiiζ)(1 + ζ + qiiζ
2)q6

iiζ
4

a q3
iiq

2
ijq

3
ji

x2
3αi+2αj

, (34)

where ζ = q̃ij, a = (1 − ζ)(1 − q4
iiζ

3) − (1 − qiiζ)(1 + qii)qiiζ, b = (1 − ζ)(1 − q6
iiζ

5) − a qiiζ. �
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We fix a realization of (V, c) as a Yetter–Drinfeld module over an abelian group Γ, i.e., there exist gi ∈ Γ, 
χi ∈ Γ̂ such that χj(gi) = qij and we make V an object of kΓkΓYD by declaring xi ∈ V χi

gi . Let RV be the set of 
relations defining B(V ) according to the previous theorem. Note that kRV is a Yetter–Drinfeld submodule 
of T (V ), because each relation is Zθ-homogeneous. For each R ∈ RV of degree (a1, . . . , aθ) ∈ Zθ, set

gR := ga1
1 · · · gaθ

θ , χR := χa1
1 · · ·χaθ

θ , so R ∈ T (V )χR
gR . (35)

The support of R ∈ RV is the set suppR := {i | ai �= 0}, i.e., the set of indices of letters xi appearing in R.

Proposition 6.2. For every R ∈ RV and t ∈ {1, 2, . . . , θ}, we have (gR, χR) �= (gt, χt).

Proof. We prove this for each defining relation. For (7), see [6, Proposition 3.1]; the proof does not use that 
the braiding is of standard type.

We discard easily the cases (6), (8), (9), (14)(v), (25)(ii), (27), (34) because χR(gR) = 1.
For the remaining cases, note that the propositions in [4, Section 3] show that (gR, χR) �= (gt, χt) for 

each t /∈ suppR. Therefore, we have to consider only the case t ∈ supp(R).
For each remaining relation R, we compute χR(gR) and/or {χR(gt)χt(gR) | t ∈ suppR}.

(10): We have χR(gR) = qiiqkk �= qii, qkk. Suppose that gR = gj , χR = χj . Then q̃ij = χR(gi)χi(gR) =
(qiiq̃ij)2 and q̃kj = χR(gk)χk(gR) = (qkk q̃kj)2, so q2

iiq̃ij = q2
kk q̃kj = 1. But such a generalized Dynkin 

diagram is not in [19], a contradiction.
(11): Now χR(gR) = q3

ii �= qii, q̃ij �= χR(gi)χi(gR) = q̃ij
2, so (gR, χR) �= (gi, χi), (gj , χj).

(12): For both sets of conditions, q̃ijq2
jj q̃jk = 1 so χR(gR) = qiiqkk �= qii, qkk. Suppose that gR = gj , 

χR = χj . But q̃ij �= χR(gi)χi(gR) = q̃ij
2, a contradiction.

(13): Recall that q̃ij q̃ik q̃jk = 1. Suppose that gR = gi, χR = χi. Then qii = χR(gi) = qiiqijqik, so 
qijqik = 1. Also qjiqki = 1, so q̃ij q̃ik = 1 and then q̃jk = 1, a contradiction.

(14)(i): Simply note that χR(gR) = −qkk �= −1, qkk.
(14)(ii): As χR(gR) = qiiqkk �= qii, qkk, the remaining case is t = j. But also q̃ij = −1 �= χR(gi)χi(gR) =

−qii.
(14)(iii): It follows since χR(gR) = −qii �= −1, qii.
(14)(iv): Again χR(gR) = qiiqkk �= qii, qkk, so the remaining case is t = j. Suppose that gR = gj , χR = χj , 

so 1 = q2
jj = χR(gj)χj(gR) = q̃ij

2
q̃jk = −qii, a contradiction.

(15): It follows since χR(gR) = −qkk �= −1, qkk.
(16): Again χR(gR) = qiiqkk �= qii, qkk. Suppose that gR = gj , χR = χj , so

qjj = qiiqkk, 1 = q̃ij q̃jk = χR(gi)χi(gR)χR(gk)χk(gR) = q2
iiq

2
kk = q2

jj ,

which is a contradiction.
(17): It follows from χR(gR) = q−2

jj �= qii, qjj , qkk.
(18): It follows from χR(gR) = qjj �= qii, qkk, and χR(gi)χi(gR) = 1 �= q̃ij .
(19): The proof is analogous to the one for (16).
(20): As χR(gR) = q2

jjqkk and qjj �= ±1, we discard the case t = k. The case t = j is also discarded 
because 1 = χR(gi)χi(gR) �= q̃ij . Finally suppose that χR = χi, gR = gi, so −1 = q̃ij = χR(gj)χj(gR) = q3

jj . 
Then qjj ∈ G′

6 and −1 = χR(gR) = q2
jjqkk, so qkk = qjj . But this case corresponds to a diagram which is 

not in [19], a contradiction.
(21): Note that χR(gR) = q2

jj �= qjj , −1 = qii = qkk because q2
jj = q̃ij

2 ∈ G′
3.

(22): Simply χR(gR) = −qii �= qii, qjj , qkk, qll in all the possible cases.
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(23): For t = l we have that χR(gR) = q3
jjqll �= qll, and for t = i, k we have χR(gj)χj(gR) = 1 �= q̃ij , q̃kj . 

Suppose that χR = χj and gR = gj . Then q̃ij = χR(gi)χi(gR) = q̃ij
3, which is a contradiction because 

q̃ij �= ±1.
(24): Now, χR(gi)χi(gR) = χR(gj)χj(gR) = 1 �= q̃ij , q̃kj , so we discard the cases t = i, j, k. Now q̃kl =

q−1
kk �= χR(gk)χk(gR) = qkk so also (χR, gR) �= (χl, gl).

(25)(i): Again χR(gi)χi(gR) = χR(gj)χj(gR) = 1 �= q̃ij , q̃kj , and the cases t = i, j, k are solved. As 
q̃kl = q3

jj �= χR(gk)χk(gR) = qjj , we conclude that (χR, gR) �= (χl, gl).
(26): For t = j, k note that χR(gi)χi(gR) = q̃ij q̃ik �= q̃ij , q̃ik. For (χR, gR) = (χi, gi),

qii = χR(gR) = −qjjqkk, q̃ij = χR(gj)χj(gR) = q̃ij
3
q2
jj , q̃ik = χR(gk)χk(gR) = q̃ik

3
q2
kk,

so qjj = −qkk = ±q2
ii, but this diagram is not in [19], a contradiction.

(28): We look for the possible generalized Dynkin diagrams for which we need R.

◦ζ4 ζ9

◦ζ8
, ζ ∈ G′

12: χR(gR) = 1 �= qii, qjj .

◦ζ8 ζ
◦ζ8

, ζ ∈ G′
12: χR(gi)χi(gR) = χR(gj)χj(gR) = ζ10 �= q̃ij .

◦−ζ
ζ7

◦ζ3
, ζ ∈ G′

9: χR(gR) = ζ8 �= qii, qjj .

◦ζ6 ζ11

◦ζ8
, ζ ∈ G′

24: χR(gR) = ζ4 �= qii, qjj .

◦−ζ
−ζ12

◦ζ5
, ζ ∈ G′

15: χR(gR) = ζ12 �= qii, qjj .

(29): We consider each possible generalized Dynkin diagram.

◦−ζ
ζ3

◦−1 , ζ ∈ G′
5: χR(gR) = 1 �= qii, qjj .

◦ζ3 −ζ4

◦−ζ11
, ζ ∈ G′

15: χR(gR) = ζ11 �= qii, qjj .

◦ζ8 ζ3

◦−1 , ζ ∈ G′
20: χR(gR) = ζ12 �= qii, qjj .

◦ζ8 ζ13

◦−1 , ζ ∈ G′
20: χR(gR) = ζ12 �= qii, qjj .

◦−ζ3 ζ3

◦−1 , ζ ∈ G′
7: χR(gR) = ζ2 �= qii, qjj .

◦ζ2 ζ3

◦−1 , ζ ∈ G′
8: χR(gR) = 1 �= qii, qjj .

(30): Again consider each possible generalized Dynkin diagram.

◦ζ4 ζ11

◦−1 , ζ ∈ G′
12: χR(gR) = ζ10 �= qii, qjj .

◦ζ8 ζ7

◦−1 , ζ ∈ G′
12: χR(gR) = ζ2 �= qii, qjj .

◦ζ8 ζ3

◦−1 , ζ ∈ G′
24: χR(gi)χi(gR) = ζ, χR(gj)χj(gR) = 1 �= q̃ij .

◦ζ6 ζ
◦−1 , ζ ∈ G′

24: χR(gR) = ζ15 �= qii, qjj .

◦−ζ
−ζ12

◦ζ5
, ζ ∈ G′

15: χR(gR) = ζ10 �= qii, qjj .

(31): The unique diagram is ◦ζ3 ζ8

◦−1 , ζ ∈ G′
9, and χR(gR) = −ζ6 �= qii, qjj .

(32): We consider each possible generalized Dynkin diagram.
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◦ζ
ζ2

◦−1 , ζ ∈ G′
5: χR(gR) = 1 �= qii, qjj .

◦ζ
ζ17

◦−1 , ζ ∈ G′
20: χR(gR) = ζ5 �= qii, qjj .

◦ζ11 ζ7

◦−1 , ζ ∈ G′
20: χR(gR) = ζ15 �= qii, qjj .

◦ζ3 −ζ4

◦−ζ11
, ζ ∈ G′

15: χR(gR) = ζ �= qii, qjj .

◦ζ5 −ζ13

◦−1 , ζ ∈ G′
15: χR(gR) = ζ10 �= qii, qjj .

(33): The unique diagram is ◦ζ3 −ζ2

◦−1 , ζ ∈ G′
9, and χR(gR) = ζ9 �= qii, qjj . �

Theorem 6.3. Suppose V is an object in kΓkΓYD such that its Nichols algebra has a finite root system. Then 
HomkΓ

kΓ(kRV , V ) = 0.

Proof. If f ∈ HomkΓ
kΓ(kRV , V ) and R ∈ RV , then f(R) ∈ V χR

gR . By Proposition 6.2, V χR
gR = 0 for each 

R ∈ RV , so f = 0. �
Theorem 6.4. If B(V ) is a Nichols algebra of diagonal type with finite root system then B(V ) does not admit 
nontrivial graded deformations as a braided bialgebra.

Proof. We fix a realization of (V, c) in kΓkΓYD where Γ is an abelian group. Without loss of generality, we may 
assume that the gi’s generate Γ and the χi’s generate Γ̂. By Theorem 6.3 and Remark 4.2, the conditions 
needed to invoke Theorem 5.3 are satisfied, so B(V ) does not admit nontrivial graded deformations in kΓkΓYD. 
But our choice of realization ensures that any graded deformation of B(V ) is in kΓkΓYD and hence must be 
trivial. �
7. Examples

7.1. Positive parts of quantum groups

It is well known that, in the generic case, the positive part of a quantized enveloping algebra is a Nichols 
algebra of diagonal type. By Theorem 6.4, these positive parts are rigid. More generally, this applies to the 
“diagram” of the pointed Hopf algebra U(D) associated to a generic datum D of finite Cartan type — see 
[2], where it is shown that any pointed Hopf algebra whose group-like elements form a finitely generated 
abelian group is isomorphic to some U(D) if it is a domain with finite Gelfand–Kirillov dimension and its 
infinitesimal braiding is positive.

7.2. Distinguished pre-Nichols algebras

These are infinite-dimensional braided Hopf algebras projecting onto the corresponding finite-dimensional 
Nichols algebras. They were formally defined in [5, Definition 3.1] generalizing the situation with quantum 
groups at roots of unity and the corresponding small quantum groups. Let V be a braided vector space of 
diagonal type such that B(V ) is finite-dimensional. Then the distinguished pre-Nichols algebra B̃(V ) is the 
quotient of T (V ) by the relations in Theorem 6.1 except the powers of root vectors (6). As a consequence 
of Theorem 6.3, we have:

Theorem 7.1. Let (V, c) be a braided vector space of diagonal type such that B(V ) is finite-dimensional. Then 
B̃(V ) does not admit nontrivial graded deformations as a braided bialgebra. �
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7.3. Nichols algebras over dihedral groups

Let Dm denote the dihedral group of order 2m. For odd m, it is not known whether the category of 
Yetter–Drinfeld modules over Dm has any finite-dimension Nichols algebras. For even m ≥ 4, the only 
known finite-dimensional Nichols algebras have a symmetric braiding [13], so Theorem 3.3 applies.

7.4. Nichols algebras over symmetric groups

Let n ≥ 3. The quadratic algebra FKn, introduced by Fomin and Kirillov [14], is presented by generators 
x(ij), 1 ≤ i < j ≤ n, and relations

x2
(ij) = 0, 1 ≤ i < j ≤ n,

x(ij)x(jk) = x(jk)x(ik) + x(ik)x(ij), 1 ≤ i < j < k ≤ n,

x(jk)x(ij) = x(ik)x(jk) + x(ij)x(ik), 1 ≤ i < j < k ≤ n,

x(ij)x(kl) = x(kl)x(ij), #{i, j, k, l} = 4.

Milinski and Schneider [26] showed how to make FKn a graded bialgebra in the category of Yetter–Drinfeld 
modules over the symmetric group Sn. As an algebra, it is generated by the vector space Vn with basis 
{x(ij) | 1 ≤ i < j ≤ n}. Identifying (ij) with the corresponding transposition in Sn, we can make Vn a 
Yetter–Drinfeld module where the coaction is defined by declaring xσ a homogeneous element of degree σ, 
and the action is the conjugation twisted by the sign. The corresponding braiding on Vn is given by

c(xσ ⊗ xτ ) = χ(σ, τ)xστσ−1 ⊗ xσ, χ(σ, τ) =
{

1 σ(i) < σ(j), τ = (ij), i < j,

−1 otherwise,

where σ and τ are transpositions. Then the above relations generate a biideal in the (braided) tensor 
bialgebra T (Vn).

It is easy to see that FKn projects onto the Nichols algebra B(Vn). For n = 3, 4, 5, it is known that 
FKn = B(Vn) and has dimension, respectively, 12, 576 and 8 294 400 (see [26] for n = 3, 4 and [17] for 
n = 5). Milinski and Schneider conjectured that FKn coincides with B(Vn) for all n. Moreover, it has been 
conjectured that dimFKn = ∞ for n ≥ 6 [14].

Theorem 7.2. Let n ≥ 3. Then FKn does not admit nontrivial graded deformations as a braided bialgebra.

Proof. All relations are in degree 2 and cannot have coaction given by transposition. As the only primitives 
in degrees smaller than 2 are in degree 1 and have coaction given by transpositions, the assumption of 
Theorem 5.3 is satisfied and these algebras are rigid. �
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