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Abstract We report new analytical solutions for the thickness profile of partially wetting two-dimensional droplets.
The model includes the effects of capillarity and both short- and long-range molecular forces. We analyze the
dependence of the maximum thickness, the contact angle, and the cross-sectional area on the height of the nanometric
precursor film that surrounds the droplet. We found asymptotic expressions for the thickness profile and for the
contact angles for large and small droplets. The results are compared to those obtained previously for polar liquids.
The analytical solutions found here are useful to assess the validity of the hypothesis and the semi-analytical
solutions proposed in the literature. In addition, these solutions enable the inference of information about the
molecular potential from the measured steady profiles.
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1 Introduction

The analyses of droplets and thin films are receiving considerable attention in both fundamental and in applications
fields [1–3]. New techniques for imaging and production of droplets make it possible to obtain detailed thickness
profiles of micro- and nano-droplets [4,5]. This precise information is useful to test theoretical models that relate
morphological parameters, such as the contact angle, the thickness of the precursor film, or the position of the
inflection points, with parameters related to the molecular interaction between the solid and the fluid, such as the
Hamaker and dielectric constants [6,7]. These parameters are essential to understand the wetting properties of
liquids and to chemically characterize the interfaces.

The molecular forces between the solid and the liquid are remarkably important at small scales and have a
noticeable effect on the thickness profile of droplets. Classical solutions, such as cylindrical or spherical shapes,
have failed to quantitatively account for certain features of flows at the micro- and nano-scales (see, e.g., [2,3]). Thus,
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more research is needed to better understand the physics of microflows and improve the efficiency of microfluidic
systems where the actions of molecular and interfacial forces play a key role. In other words, “a well-founded
understanding of equilibrium behavior is a prerequisite for the accurate modeling of the dynamic contact line
behavior” [8].

The interaction between the solid and fluid molecules is usually modeled in terms of a disjoining–conjoining
pressure which takes into account the action of two antagonistic molecular forces [9], such as electrostatic forces
between charged surfaces, dispersion forces, interactions due to layers of neutral molecules adsorbed on the two
surfaces, structural effects of the solvent, among others. In a previous work, one of our group collaborated in the
development of a method that allows to find, for the first time, analytical solutions for the thickness profile h of
two-dimensional droplets under the effect of antagonistic molecular forces [10]. This work was extended in Ref. [11]
by including the effect of gravity. The molecular forces analyzed in those articles model London–van der Waals
and ionic-electrostatics interactions [12–14]. In particular, the ionic-electrostatic component is present in liquids (in
general, water solutions) with dissolved ions that can attach to a solid substrate. Thus, it is basically a solid–fluid
interaction. Its dependence on h−2 was confirmed in experiments with polar liquids on glass [15,16].

Here, we present new analytical solutions for the shape of a droplet of a non-polar liquid and compare them with
previous results, particularly with those in Ref. [10]. The disjoining–conjoining pressure that we use in the present
article has been largely employed to model the competition between retarded and non-retarded effects of London–
van der Waals interactions when the electrostatic component is not present [17–25]. Experiments with non-polar
films on metals and glasses agree with the theoretically proposed terms [15,16,26]. In particular, the attractive term
of the potential results from considering the London–van der Waals non-retarded molecular interactions, and it is
employed in combination with different repulsive terms, as discussed below.

The equation for the shape of a static droplet has been solved by means of numerical methods [27,28], series
expansions valid in the region where the liquid–vapor interface meets the substrate [29,30], asymptotic matching [19,
21,31], ellipsoidal droplet modeling [32] and parametric solutions [33]. A remarkable difference with these results is
that our solution describes the shape of the droplet from the maximum to the nanometric film by a single expression.
Moreover, our analytical solutions have advantages over numerical ones. First, they explicitly show the relationships
between geometrical and chemical parameters which is one of the goals of the present work. We show how the
thickness of the film surrounding the droplet, hf , the contact angle, the maximum thickness, etc, are determined by
the size of the droplet and the combined strength of the molecular forces, i.e., with the Hamaker constants, surface
tension, and the minimum of the molecular potential. Second, they are useful to verify and test numerical codes.
Third, when the ratio of the maximum height to the precursor film thickness increases, the use of realistic values
for hf (about 10–100 nm) in problems with moving contact lines is impractical because it requires cell sizes of
the order of hf (see for example Refs. [34,35]). Then, the static droplet profiles are a good alternative to describe
moving droplets that almost do not change their shape in time, as occurs (for certain range of parameters) in the
thermocapillary flow of droplets [29,36].

This article is organized as follows. In Sect. 2, we present the basic equations. In Sect. 3, we establish the
parameter ranges that allow static droplet solutions. Section 4 presents a new analytical solution for the shape of the
droplet, asymptotic analyses for small and large droplets, and a comparisons with previous results. The dependence
of the cross-sectional area, A, and the contact angle, θ , on hf and on the disjoining–conjoining potential is presented
in the first subsection of Sect. 5. In a subsequent subsection, we discuss the morphology of the droplets in terms of
A. Finally, we present the conclusions.

2 Mathematical model

Let us to consider a plane substrate covered by a liquid layer with thickness h ≡ h(x, t), viscosity μ and surface
tension γ , being x and z the coordinates along and normal to the substrate, respectively (see Fig. 1). Under the
lubrication hypothesis, the thickness of the profile must be much smaller than its extension so that it is possible
to perform a perturbation series in powers of the small aspect ratio. Assuming that the Reynolds number satisfies
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Fig. 1 Definition of
variables. The thickness of
the precursor film hf is the
control parameter of the
problem
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Re ∼ O(1), the continuity and the Navier–Stokes equations are simplified to a partial differential equation that
describes the evolution of h(x, t) [37]:

∂h

∂t
+ ∂(hu)

∂x
= 0, (1)

u = h2

3μ

∂

∂x

[
γ

∂2h

∂x2 + Π(h)

]
, (2)

where u ≡ u(x, t) is the mean velocity (averaged in z) in the x direction. The term with γ models the capillarity
and Π is the disjoining–conjoining pressure, which takes into account the molecular interaction between the liquid
and the substrate [9,13].

The model for Π(h) that we employ is [14,20,23,36,38,39],

Π(h) = κ

[(
h∗
h

)n

−
(

h∗
h

)m]
, (3)

which represents the competition between two antagonistic molecular forces. Here, we present new analytical
solutions for the case (n, m) = (4, 3). The parameter κ is proportional to the Hamaker constant [10], and h∗ is the
minimum of the potential U defined as

U (h) = −
∫

Π(h) dh. (4)

The definition in Eq. (3) is largely-employed to model the effects of molecular interactions. The case (n, m) =
(3, 2), analyzed in Ref. [10], represents the competition of London–van der Waals (n = 3) and ionic-electrostatics
forces (m = 2) [12,36,38]. The dependence with m = 2, valid for thickness much lower than the Debye length
[15,26], was verified in experiments of water films on glass, quartz and mica [16]. The term with m = 3 is an
exact classical result obtained by summing individual London–van der Waals interactions between molecules.
This term has been combined with a second term with opposite sign to avoid the films to collapse. The choice
n = 9, originated from the repulsive Lennard-Jones interaction [38,39], has been criticized because repulsive
intermolecular interactions led, on the contrary, a net attraction between the free interface and the substrate [31].
A potential with n = 6 has been derived by Pismen in the long-scale limit of a diffuse interface theory with
application to layers thicker than the molecular scales. Here we employ n = 4, perhaps one of the most popular
choices [18,19,21,22,24,40,41]; this term is an exact expression that results from considering retardation effects
in London–van der Waals interactions [15,23,42]. Experiments with tetradecane on quartz and hexane on metal
have shown that the exponents (4, 3) correctly describe retarded and non-retarded effects in London–van der Waals
interactions.
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To simplify the analysis, we define the following dimensionless variables

ĥ = h

h∗
, x̂ = x

xc
, t̂ = γ h3∗

3μx4
c

t, x2
c = γ h∗

κ
. (5)

Replacing them in Eqs. (1) and (2) and omitting the hats, the evolution equation becomes

∂h

∂t
+ ∂

∂x

[
h3 ∂3h

∂x3

]
+ ∂

∂x

[
h3 ∂

∂x

(
1

hn
− 1

hm

)]
= 0. (6)

We kept the temporal term up to this point to show that the chosen scales in Eq. (5) results in a parameter-free
equation, even in the case of moving droplets.

3 First integral and space solution

Requiring that u = 0 and integrating once, we get an equation that rules the shape of static droplets:

d2h

dx2 +
(

1

h4 − 1

h3

)
= −P; P = −h−4

f + h−3
f , (7)

where the value of P results from requiring a zero curvature at the film region of thickness hf . Integrating Eq. (7)
and requiring a vanishing first derivative at h = hf , the following expression is obtained:

h2
x = 2(h − hf)

2

h4
f h3

(h − ha)(h − hb)(1 − hf), (8)

ha = 4hf − 3h2
f + hfΔ

12(hf − 1)
, (9)

hb = 4hf − 3h2
f − hfΔ

12(hf − 1)
, (10)

Δ =
√

−32 + 24hf + 9h2
f . (11)

A solution of Eq. (8) describing a droplet in contact with a flat precursor film requires null slope at h = hf and at
the top of the droplet. Since hb < 0 for hf > 0, then the maximum of the drop is ha, and in consequence hf < ha.
Real positive values for ha implies hf > 1, and hf < ha implies hf < 4/3. Then, Eq. (8) has a droplet solution if

1 < hf <
4

3
. (12)

The minimum allowed value for hf is the same as in Ref. [10]. Given that if (n, m) = (3, 2) the upper bound is
3/2 [10] and for (n, m) = (4, 3) is 4/3, one may speculate that this maximum value is n/m. Nevertheless, applying
the same procedure for (n, m) = (9, 3) (employed, for example, in Ref. [39]), we obtain that the maximum value is
31/6. To clarify this point, we observe that the flat film surrounding a stable droplet must be stable [11]. The energy,
per unit length, of flat a film with dimensional thickness b is

ε = γ + γSL + U (b), (13)

where γSL is the energy per unit length at the solid–liquid interface. To have a minimum of energy, and then a stable
film, the second derivative of ε must be positive, which together Eq. (3) give
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b

h∗
<

( n

m

)1/(n−m)

. (14)

Notice that the upper boundary given in Eq. (14) also corresponds to the minimum of Π . This thickness has
an interesting property: it is the height at which large droplets (hf → 1) present the maximum curvature. This
information is useful to infer, from a detailed experimental profile, the value of the minimum of the molecular
potential and, consequently, the maximum value for the precursor film.

4 Droplet profile

In order to obtain an expression for the thickness profile, we integrate Eq. (8), that is,

x = ±
∫

h2
f h3/2 dh

(h − hf)
√

2(ha − h)(h − hb)(hf − 1)
. (15)

We find an analytical solution given by

x = ±(F1 + F2 + F3), (16)

where we define the quantities F1, F2, F3 as

F1 = αE
(

arcsin
(
ψ

√
ha − h

)
, M+

)
, (17)

F2 = β
[
F
(

arcsin
(
ψ

√
h − hb

)
, M−

)
− K(M−)

]
, (18)

F3 = λ
[
Π̃

(
χ, arcsin

(
ψ

√
h − hb

)
, M−

)
− Π̃(χ, M−)

]
, (19)

with

χ = 2Δ

δ
, δ = −16 + 15hf + Δ, (20)

and

ψ =
√

6(hf − 1)

hfΔ
, M± = 2Δ

±(4 − 3hf) + Δ
. (21)

The functions F(φ, k), E(φ, k), and Π̃(n, φ, k) are incomplete elliptic integrals of the first, second, and third kinds,
respectively, and K(k) = F(π/2, k) and Π̃(n, k) = Π̃(n, π/2, k) are complete elliptic integrals of the first and
third kind respectively [43], and α, β and λ are defined as follows:

α = −h2
f

√
2ha

hf − 1
, (22)

β = ih2
f

√
6ha, (23)

λ = −12(hf − 1)

δ
β. (24)

Equation (16 ) is a stationary solution of Eq. (7) describing the thickness profile h of a two-dimensional drop of a
liquid with a disjoining–conjoining pressure as given in Eq. (3) with n = 4 and m = 3. This is the main result of this
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Fig. 2 (color online) Comparison between the closed solution given in Eq. (16) and the corresponding approximate expressions for
a small droplets, here hf = 1.325, and b large droplets, here hf = 1.001

work, and it allows to study the properties of the droplet and to obtain relationships between different quantities,
such as the nanometric thickness hf , the contact angle, the cross-sectional area, and the maximum thickness.

Simpler expressions can be obtained for both small and large droplets. Small drops are obtained for hf → 4/3−.
In this limit F1, F2 ≈ 0 + O(

√
hf − 4/3) and then the profile is well represented by F3. Taking the first order of

the arguments of Π̃ , F3 can be simplified to f3

f3 = −16i
√

2

9

{
Π̃

(
1 − 9

8

(
hf − 4

3

)
, arcsin

(√
8 + 6h

32
(4 + 3hf)

)
, 2

)
− Π̃

(
1 − 9

8

(
hf − 4

3

)
, 2

)}
. (25)

Large drops are attained if hf → 1+, where F2, F3 � F1. Taking the first order of the arguments of E and
integrating, F1 is reduced to

F1 → f1 = −
√

2(ha − h)

hf − 1
+ O(hf − 1). (26)

Notice that in this limit h is a quadratic function of x and the drop profile is a parabola. In Fig. 2, we compare these
approximations with the complete solution given by Eq. (16) for two different values of hf .

We compare the solution (16) with some approaches found in the literature. A key article on the study of
stationary droplets is Ref. [40], where the authors make a rigorous mathematical analysis for different (n, m).
Among other interesting results, they derive a leading-order solution of Eq. (7) valid for large droplets (a similar
approach is employed in Ref. [19]). They distinguish three regions for the solution: ‘the droplet’, that corresponds
to the macroscopic volume, the ‘ultra-thin’ film, where the solution is flat, and the ‘interior layer’, where the two
previous regions meet. In our dimensionless variables, their ‘droplet’ solution is

h = hf − 1

2

[
1

3(hf − 1)2 − x2
]
. (27)

Identical expression is obtained by inverting f1 in Eq. (26) and taking the first order expansion of ha about hf = 1.
The good agreement, for large droplets, between Eqs. (27) and (16) is shown in Fig. 2b. On the other hand, the
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authors find that the ‘ultra-thin’ layer is given by hf = 1 + P , a result that we can reproduce by expanding P , Eq.
(7), about hf = 1.

There are some approaches to describe the ‘interior layer’ or contact line region for large drops. In Ref. [29], it
is assumed that, for h > hf , U can be approximated only with the term proportional to h−2 (the one proportional
to h−3 in Π ). It is also assumed that the thickness of the precursor film is that which minimizes the potential (in
the present context this implies that hf = 1). To reproduce this procedure in our variables one has to set P = 0 and
dh/dx = 0 for h = hf = 1. Thus one obtains

h =
(

1 + (x − xL)2
)1/2

, (28)

being xL a constant of integration that shifts the profile. In Ref. [44] an identical approach is followed but considering
both the disjoining and conjoining terms. The exponents used in that work are n = 5 and m = 3 so that a direct
comparison with our results is not possible. However, we follow the same procedure for (n, m) = (4, 3) to obtain:

x − xL = √
3h(h + 2) + log

(
1 + 2h − √

3h(h + 2)

h − 1

)
, (29)

which describes the profile around the contact line for large drops. Taking the first order of Eq. (29) about h = 1
we obtain

h = 1 + Ce−x , (30)

being C a constant. This exponential dependence on x completely agrees with the results presented in Ref. [30],
where the authors make an asymptotic study for the contact line region for any Π .

Figure 3 compares the profile in Eqs. (16) with (28) and (29). The physical reason for the inaccuracy of Eq. (28)
to reproduce the profile is that the disjoining and conjoining terms are of the same order in the region h ≈ hf . This
explains the difference in the steepness of this profile close to the flat film region. On the contrary, profiles in Eqs.
(16) and (29) are in good agreement, strengthening the idea that both terms in the disjoining–conjoining pressure
are relevant at the contact line region.

5 Comparative analysis: cases (n,m) = (4, 3) and (n,m) = (3, 2)

Here we show that changing the exponents n and m may lead to remarkable differences between microscopic, and
even macroscopic, observables. These differences are important to get information about the solid–liquid molecular
potential from a given steady profile.

5.1 Contact angle and cross-sectional area

The contact angle θ describes the wettability of a liquid on a solid. It is determined by the affinity between the
liquid and solid molecules, so it relates to the different parameters in the disjoining–conjoining pressure. We define
θ as the angle of the interface at the inflection point, that is where hxx = 0. There are four values that satisfy this
equation. One is h = hf , and only one of the other three has physical meaning for 1 < hf < 4/3. The thickness at
the inflection point is

hc = −hf

3
− 24/3(hf − 1)h2

f

3 ω
+ 2−1/3 ω

3(hf − 1)
, (31)

ω3 = (hf − 1)2 h3
f

(
20 + 7hf + 3

√
48 + 3hf(8 + 3hf)

)
. (32)
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Fig. 3 (color online). Comparison of the complete analytical pro-
file, Eq. (16), with the approximated expressions given in Eqs.
(28) and (29). Here, hf = 1.001

Fig. 4 Contact angle, in radians, as a function of hf for (n, m) =
(4, 3) and (n, m) = (3, 2)

Replacing hc in Eq. (8) we get the contact angle as an analytical function of hf

θ(hf) = arctan
(√

f (hf)
)
, (33)

f (hf) =
(
(hf ω Δ)2 − (h2

f ω − 2y)2
)

12 h4
f ω

(y + 8hf ω(1 − hf))
2

(y + 2hf ω(1 − hf))3 , (34)

y = 210/3h3
f − 27/3h4

f + 22/3ω2 − 27/3h2
f . (35)

Figure 4 shows θ versus hf for (n, m) = (4, 3) and (n, m) = (3, 2). Interestingly, a given precursor film sustains a
droplet with lower θ for the case with (n, m) = (4, 3).

Since we use different scales to non-dimensionalize the x and z coordinates (see Eq. (5)), θ is different from
the contact angle Θ of the droplet with the dimensions restored. They are related by means of the relationship
tan Θ = √

h∗κ/γ tan θ .
The area A above hf of the droplet is obtained by integrating the thickness profile on the flat film. Although it

is not possible to integrate analytically the elliptic integrals in Eq. (16), it is still possible to obtain an analytical
expression for A by using Eq. (8)

A =
∫ ∞

−∞
(h − hf) dx = 2

∫ ha

hf

h − hf

hx
dh

=
√

2 h2
f√

hf − 1

(
2 (2(ha + hb) + hf)

3

√
(ha − hf)(hf − hb)

hf

− 2i
√

ha

3

(
2(ha + hb)(E(ς, τ ) − E(τ )) − (2ha + hb)(F(ς, τ ) − K (τ ))

))
, (36)

where

ς = arcsin

(√
ha

hf

)
, τ = hb

ha
. (37)
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Fig. 5 (color online) Cross-sectional area versus hf for (n, m) =
(4, 3) and (n, m) = (3, 2). The red and blue lines correspond
to the asymptotic dependence found for the small areas for the
potentials with (n, m) = (4, 3) and (n, m) = (3, 2), respectively

Fig. 6 Thickness profiles for (n, m) = (4, 3) and (n, m) = (3, 2)

with hf = 1.12. The same precursor film sustains droplets with
different contact angle and volumes

Figure 5 shows A versus hf for the two cases. Interestingly, for a given value of hf , the potential with (n, m) =
(4, 3) sustains a smaller droplet than the case with (n, m) = (3, 2). Using the previously reported expression for
A for the case (n, m) = (3, 2) [10] and f3 in Eq. (25) we find for small droplets that A = c(n, m)(n/m − hf)

1/2

with c(3, 2) = 27/
√

2 ≈ 19.09 and c(4, 3) = 128/9 ≈ 14.2. These relationships are of interest in the analysis of
the dependence of the contact angle on the area, as we explain below.

Summarizing, we have found that for a given hf , the case with (n, m) = (4, 3) results in a droplet with a smaller
contact angle and smaller area than the case with (n, m) = (3, 2), as shown in the example of Fig. 6. To explain
these features, we observe that for a given hf in Eq. (3), the absolute value of the disjoining pressure is higher for
case with (n, m) = (3, 2) than for (n, m) = (4, 3). A higher pressure at the film region must be compensated with
a higher pressure in the non-flat region, a condition that is reached by increasing the curvature and consequently, θ

and A.

5.2 Dependence of ha and θ with A

Figure 7 shows the dependence of ha on A. For both potentials, the maximum attains A1/2 for large values of A.
More surprisingly, the molecular forces have an appreciable effect on a macroscopic quantity as the maximum of
the droplet even for large droplets. Notice that for the same large values of A, the maximum ha is about 25 % larger
for the case with (n, m) = (3, 2) than for the case with (n, m) = (4, 3).

In the limit of small drops (i.e., when hf tends to its maximum), it can be shown that

ha = 4

3
+ 81A2

8192
≈ 4

3
+ 0.01A2 for (n, m) = (4, 3), (38)

ha = 3

2
+ 4A2

81
≈ 3

2
+ 0.05A2 for (n, m) = (3, 2). (39)

Thus, for a given A, the elevation over the precursor film, ha −hf , is approximately 20 % smaller for (n, m) = (4, 3)

than for (n, m) = (3, 2).
Figure 8 compares the curves A vs θ for (n, m) = (4, 3) and (n, m) = (3, 2). For large A, both potentials

attain a constant angle: θ → θ∗ = π/6 for (n, m) = (4, 3), and θ → θ∗ = π/4 for (n, m) = (3, 2). For small
A, the angle θ for (n, m) = (3, 2) is lower than for (n, m) = (4, 3). In this limit, the simplified thickness profile
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Fig. 8 (color online) Contact angle versus cross-sectional area
for (n, m) = (4, 3) and (n, m) = (3, 2). For small volumes, the
contact angle is higher for the potential with (n, m) = (4, 3).
The red and blue lines correspond to the asymptotic dependence
found for the small areas for the potentials with (n, m) = (4, 3)

and (n, m) = (3, 2), respectively

f3 can be integrated giving A → 128/9(4/3 − hf)
1/2 and Eq. (33) gives θ → 9

√
3/16(4/3 − hf)

3/2. Then, for
(n, m) = (4, 3) we obtain

θ → 317/2

225
A3 ≈ 3.4 × 10−4 A3 for hf → 4

3
, (40)

while for (n, m) = (3, 2) the relationship is θ → (25/323/2)A3 ≈ 1.0 × 10−4 A3. Notice that the power law
dependence with A3 suggests that it is independent of the pair (n, m). Interestingly, there is an area for which both
potentials induce the same contact angle.

The analysis and conclusions of this section are valid in the dimensionless variables, and can be immediately
extended to the dimensional space only when the vertical and horizontal scales of both potentials are the same,
i.e., h∗(3,2) = h∗(4,3) and xc = xc(3,2) = xc(4,3). It is instructive to visualize a case where the scales are not the
same. For example, assuming that the asymptotic (large droplets) contact angle Θ∗ of the dimensional profile is the
same for both potentials, we ensure that the macroscopic physics is the same, while the microscopic origin of the
potential is different. From Eqs. (5, 51) and considering h∗(3,2) = h∗(4,3), we have that xc(3,2) = √

3xc(4,3). Thus,
this comparison can be carried out by rescaling the curves that correspond to the potential (3,2) in Figs. 4, 5, 6, 7
and 8 by

x → √
3x; A → √

3A; θ → arctan

(
1√
3

tan θ

)
. (41)

Figure 9 shows how these rescalings modify Fig. 8. The asymptotic contact angle for large droplets is the same, but
as A is reduced, the contact angle for (n, m) = (3, 2) becomes smaller than for the case (n, m) = (4, 3).

Figure 10 shows the comparison of two profiles that have the same asymptotic contact angle but different (n, m).
The case (3, 2) was rescaled according to Eq. (41). For large areas, the droplets are almost identical. As the area
is decreased, the profile for (n, m) = (3, 2) has smaller maximum thickness and contact angle than those for
(n, m) = (4, 3).
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Fig. 9 (color online)
Contact angle versus
cross-sectional areas for
(n, m) = (4, 3) and
(n, m) = (3, 2), as
presented in Fig. 8 but using
the rescaling proposed in
Eq. 41
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Fig. 10 (color online) Comparison between profiles with (n, m) = (4, 3) and (n, m) = (3, 2). The drops have the same h∗ and Θ∗. a
Large drop, A = 3.2 × 1010, and b small drop A = 377.1. We employed the xc corresponding to the case (n, m) = (4, 3) for all the
curves

6 Conclusions

We presented new analytical solutions for the profile of a droplet under the effect of a disjoining–conjoining
pressure. This pressure represents the effect of two, long- and short-range, antagonistic molecular forces. Equation
(16) accounts, in a single expression, for the shape of the droplet from the nanometric precursor film that surrounds
the droplet to the maximum. A simple and novel analytical relationship between the maximum thickness of the
droplet and the thickness of the precursor film is presented. We found that for the case with (n, m) = (4, 3), the
thickness of the precursor film is bounded: 1 < hf < 4/3. This result was generalized for any pair (n, m). We
observe that for hf → 1, the droplet increases its volume, and for hf → 4/3 the droplet becomes flat.

The profile is given as the sum of three terms. While the term F2 smoothly connects the contributions of F1

and F3, these two last terms account for different effects. As shown in Fig. 2b, F1 is a good approximation for
the ‘droplet’ region of large volumes, where the capillarity is dominant and the disjoining pressure is negligible.
Nevertheless, F1 does not describe the transition and precursor film regions. In contrast, F3 provides the shape of the
thickness profile of the contact line region and is a good approximation for small droplets, for which the disjoining
pressure has an noticeable effect even at the maximum (see Fig. 2). We also present simplified versions of Eq. (16)
for the limits of small and large drops.
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We compared our exact solutions with approaches found in the literature. We observe that asymptotics methods
employed in Ref. [40] correctly predict the shape for the ‘droplet’ and the ‘ultra-thin film’ regions in the limit of
large droplets. In Refs. [30,44] the authors find asymptotic expressions for the contact line region, which agree with
our results. These comparisons might give valuable insight on how to set up expansions for the 3D droplets, where
analytical solutions are not available.

The pairs (n, m) = (4, 3) and (n, m) = (3, 2) are suitable to model non-polar and polar liquids, respectively.
We find noticeable effects of the disjoining pressure on the profile. Interestingly, the contact angle depends on
the volume of the droplet: only for large droplets, the contact angle keeps constant and equal to π/6 for the case
(n, m) = (4, 3)—smaller than the value π/4 found for the case (n, m) = (3, 2). In the limit of small drops, both
potentials show a dependence on A3, suggesting that this dependence could be valid for any n and m.

We defined θ as the maximum slope of the profile. It is interesting to compare our definition with a standard
definition, Θs , employed in the literature [38,45]:

tan2(Θs)

2
= −U (h∗)

γ
. (42)

Using the definition of U given in Eq. (4), and considering that tan2(Θ) = h∗κ/γ tan2(θ), where θ is merely the
contact angle in our dimensionless space (as discussed in Sect. 5), Eq. (42) becomes

tan2(θs)

2
= n − m

(n − 1)(m − 1)
,

which gives θs = π/6 for (n, m) = (4, 3) and θs = π/4 for (n, m) = (3, 2). Thus, the usual definition Eq. (42)
agrees with our results in the limit of large droplets. In other words, Eq. (42) gives an angle that can only be observed
in the limit of large droplets. Our definition for the contact angle, which is employed in experimental works [46],
correctly predicts the contact angle of large droplets and the maximum slope for smaller ones (see Appendix). It
is worth mentioning that if we employed a full expression for the curvature, a term with 1 − cos θs would appear
in the place of tan2 θs/2 in Eq. (42), which results in the well-known Young’s equation. In Ref. [47], the authors
show that the thermodynamic contact angle given by the Young’s equation is the one observed in the limits of large
droplets.

Finally, we may ask if a thick film, i.e., hf > 4/3, can support a droplet on it. We observed that the restriction
for droplet-like solutions, hf < 4/3, is related with the stability of the film that surrounds the droplet. Effectively,
a standard linear stability analysis predicts that a film of thickness H is unstable when

−H3k4 + H2−mk2m − H2−nk2n > 0, (43)

where k is the wavenumber of normal modes. For infinite domains, as considered here, this implies that H2−mm −
H2−nn > 0. Considering (n, m) = (4, 3), the film is unstable when H > 4/3 and, then, will not be able to sustain
a droplet. This result is fully compatible with the requirement for drop solutions hf < 4/3 obtained independently
in Sect. 3.

For finite domains, a flat film will be stable if the shortest unstable wavelength is larger than the size of the
domain. The final state will depend on the volume of fluid, on the size of the container and, for some range of the
parameters, on how the container is filled (hysteretic effects) [48,49]. Non-steady distributions of fluids breaks up
into near-equilibrium droplets connected by a nanometric film that finally coalesce into a single droplet surrounded
by a stable thin film [19,21]. This final stage is described by our analytical solutions.

Acknowledgments The authors gratefully acknowledge the funding supports via the CONICET Grants PIP No. 356 and PIP No. 299,
and the ANPCyP Grant No. 2012-1707.
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Appendix: Relationship between the contact angles Θs and Θ

In this study, we establish the connection between the thermodynamic definitions of the contact angle Θs , Eq. (42)
and the contact angle Θ defined as the maximum slope of the dimensional profile (see Sect. 5.1). As we discussed
in Sect. 6, Θ → Θs only in the limit of large droplets.

In the following, we return to the dimensional variables. Thus, Eq. (7) takes the form:

γ K = dU (h)

dh
− P, (44)

where K = hxx/(1 + h2
x )

3/2 is the curvature, and P is an unknown constant [10,11]. Imposing that K → 0 when
h → hf (film region), the value of P is

P = −Π(hf). (45)

We now integrate Eq. (44) from hf to an arbitrary thickness H :

γ

∫ H

hf

K dh +
∫ H

hf

Π(h) dh = −
∫ H

hf

P dh. (46)

The three integrals in (46) can be calculated to get

γ (1 − cos α(H)) = U (H) − U (hf) + (hf − H)P, (47)

where the angle α is defined as the angle between the substrate and the profile at any h, i. e., tan α(h) = hx .
Equation (47) shows that the angle α at any thickness H will depend on H and U . If we used K = h′′(x), valid

under the lubrication hypothesis, the left-hand side of Eq. (47) would read γ /2 tan2 α(H).
Notice that the angle α evaluated at the point hc, where the slope is maximum, is the contact angle of the

dimensional profile Θ . Then, to show that the thermodynamic contact angle Θs is the limit of Θ = α(hc) for large
droplets, we first evaluate Eq. (47) in H = hc

γ (1 − cos Θ) = U (hc) − U (hf) + (hf − hc)P. (48)

We now consider large droplets by taking the limit hf → h∗. From Eqs. (45,31), we have {U (hc); (hf −hc)P} →
{0; 0}. Denoting Θ∗ ≡ Θ(hc → ∞) we conclude that, in this limit, Eq. (48) becomes

γ (1 − cos Θ∗) = −U (h∗), (49)

which is the usual definition for the thermodynamic contact angle Θs [47]. The conclusion is that Θ∗ ≡ Θ(hc →
∞) = Θs , and then Θs can only be observed in large droplets. As mentioned above, when the lubrication approxima-
tion is employed, the term (1 − cos Θ) is replaced by 1/2 tan2 Θ as shown in Eq. (42). Moreover, from the analysis
in Sect. 5.1, where we show that the maximum slope monotonically increases as hf decreases, it is straightforward
that the thermodynamic angle given in Eq. (49) is the upper limit of the observable contact angle Θ , as discussed
in the Conclusions.

From Eq. (49), we may also relate the strength of the disjoining pressure κ with Θs , n, m, and γ . Effectively,
since

U (h∗) = −κ
h∗(n − m)

(n − 1)(m − 1)
, (50)
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then

κ = γ (1 − cos Θ∗)(m − 1)(n − 1)

h∗(n − m)
. (51)

Again, if the curvature is approached as hxx , the factor 1 − cos Θ∗ is replaced by 1/2 tan2 Θ∗. In the References
the interested reader will find many examples where this relationship between the contact angle and κ is employed.
Remarkably, there is a simple relationship between the values of κ and h∗ with the Hamaker constants of the
molecular forces. If the disjoining–conjoining pressure is written as Π = An/hn − Am/hm , where Ai is related to
the Hamaker constant, then

h∗ =
(

An

Am

)1/(n−m)

(52)

and

κ =
(

A n
m

A m
n

)1/(n−m)

. (53)

which is explained in the Appendix of Ref. [10].
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