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a b s t r a c t

We search for invariant solutions of the conformal Killing–Yano equation on Lie groups
equippedwith left invariant Riemannianmetrics, focusing on 2-forms.We show thatwhen
the Lie group is compact equipped with a bi-invariant metric or 2-step nilpotent, the only
invariant solutions occur on the 3-dimensional sphere or on a Heisenberg group. We clas-
sify the 3-dimensional Lie groups with left invariant metrics carrying invariant conformal
Killing–Yano 2-forms.
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1. Introduction

The concept of conformal Killing–Yano p-forms (also known in the literature as twistor forms or conformal Killing forms)
on Riemannian manifolds was introduced by Tachibana in [1] for p = 2 and later by Kashiwada in [2] for general p. Applica-
tions of these forms to theoretical physics were found related to quadratic first integrals of geodesic equations, symmetries
of field equations, conserved quantities and separation of variables, among others (see, for instance, [3–7]). More recently,
since the work of Moroianu, Semmelmann [8,9], a renewed interest in the subject arose among differential geometers (see,
for instance, [10–16]).

Next we give the basic definitions and recall some well known properties of conformal Killing–Yano p-forms.
A p-formω on an n-dimensional Riemannianmanifold (M, g) is called conformal Killing–Yano (CKY for short) if it satisfies

the following equation:

∇Xω =
1

p + 1
ιXdω −

1
n − p + 1

X∗
∧ d∗ω, X ∈ X(M) (1)

where ∇ is the Levi-Civita connection, X∗ is the 1-form dual to X and d∗
= (−1)n(p+1)+1

∗ d ∗ is the co-differential. If,
moreover, ω is co-closed, that is d∗ω = 0, then it is called Killing–Yano (see [17]).

For p = 1, a 1-form ω is conformal Killing–Yano if and only if its dual vector field U is conformal, that is, LUg = ϕg for
some ϕ ∈ C∞(M). A 1-form ω is Killing–Yano if and only if its dual vector field is Killing.

We list next some properties:

• Ifω is a CKY p-form onM , then ∗ω is a CKY (n−p)-form, where ∗ is the Hodge-star operator. In particular, ∗ interchanges
closed and co-closed CKY forms (see [18,9]).
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• Conformal invariance: If ω is a CKY p-form on (M, g) and g̃ := e2f g is a conformally equivalent metric, then the form
ω̃ := e(p+1)fω is a CKY p-form on (M, g̃) (see [6]).

• The space of CKY p-forms has finite dimension ≤


n + 2
p + 1


with equality attained on the standard n-sphere (see [9]).

It was shown in [15] that every Killing–Yano p-form on a compact quaternionic Kähler manifold is automatically parallel
(p ≥ 2). In [10] the authors prove that a compact simply connected symmetric space carries a non-parallel Killing–Yano
p-form if and only if it is isometric to a Riemannian product Sk × N , where Sk is a round sphere and k > p. The case of
conformal Killing–Yano p-forms on a compact Riemannian product was considered in [16], proving that such a form is a
sum of forms of the following types: parallel forms, pull-back of Killing forms on the factors, and their Hodge duals.

A family of examples of manifolds carrying CKY 2-forms is given by spheres, nearly Kähler manifolds and Sasakian
manifolds. In this article we will search for other examples, not necessarily compact. We restrict ourselves to the case of
Lie groups with a left invariant metric. In Section 2 we consider Eq. (1) for p = 2 in the left invariant setting and we give
an equivalent condition at the Lie algebra level (Proposition 2.5). We show that strong restrictions to the existence of left
invariant KY and CKY 2-forms appear whenwe consider a compact Lie groupwith a bi-invariant metric or a 2-step nilpotent
Lie group with any left invariant metric. Indeed, in Section 3 we prove that the only compact Lie group with a bi-invariant
metric that admits non-coclosed CKY 2-forms is SU(2), and in Section 4 we prove that the only 2-step nilpotent Lie groups
carrying non-coclosed CKY 2-forms are the Heisenberg groups. In Section 5 we classify the 3-dimensional Lie groups with
left invariant metrics carrying CKY 2-forms, obtaining families of globally defined metrics admitting CKY 2-forms on each
of R3, S1 × R2 and S3, and give the coordinate expression of the metrics. Moreover, we determine which of them give rise
to Sasakian structures.

2. CKY tensors on Lie groups

Let G be an n-dimensional Lie group and let g be the associated Lie algebra of all left invariant vector fields on G. If TeG is
the tangent space of G at e, the identity of G, the correspondence X → Xe := x from g → TeG is a linear isomorphism. This
isomorphism allows to define a Lie algebra structure on the tangent space TeG setting, for x, y ∈ TeG, [x, y] = [X, Y ]e where
X, Y are the left invariant vector fields defined by x, y, respectively.

A left invariant metric on G is a Riemannian metric such that La, the left multiplication by a, is an isometry for every
a ∈ G. Every inner product on TeG gives rise, by left translations, to a left invariant metric. Thus each n-dimensional Lie
group possesses a 1

2n(n + 1)-dimensional family of left invariant metrics.
A Lie group equipped with a left invariant metric is a homogeneous Riemannian manifold where many geometric

invariants can be computed at the Lie algebra level. In particular, the Levi-Civita connection ∇ associated to a left invariant
metric g , when applied to left invariant vector fields, is given by:

2⟨∇xy, z⟩ = ⟨[x, y], z⟩ − ⟨[y, z], x⟩ + ⟨[z, x], y⟩, x, y, z ∈ g, (2)

where ⟨ , ⟩ is the inner product induced by g on g. Note that ∇g = 0 implies that ∇x is a skew-symmetric endomorphism
of g for any x ∈ g.

A left invariant p-form ω on G is a p-form such that L∗
aω = ω for all a ∈ G. We will consider left invariant p-forms ω on

(G, g) satisfying (1). Since ∇ω, dω and d∗ω are left invariant as well, we will study ω ∈ Λpg∗ satisfying (1) for x ∈ g. We
will call such a form a conformal Killing–Yano p-form on g.

For p = 1, we have the following result.

Proposition 2.1. Let ⟨·, ·⟩ be an inner product on a Lie algebra g. Then any CKY 1-form on g is KY. Equivalently, if g is a left
invariant metric on the Lie group G then any left invariant conformal vector field on G is a Killing vector field.

Proof. For an arbitrary Riemannian manifold (Mn, g), a vector field ξ is conformal if Lξg = ϕ g with ϕ ∈ C∞(M) given by
ϕ = −

2
nd

∗η, where η is the 1-form dual to ξ . As a consequence, if g is a left invariant metric on G and ξ is left invariant, then
ϕ is constant on G. Therefore, ξ satisfies the equation Lξ g = c g, c ∈ R. Evaluating in y, z ∈ g we obtain

−⟨[ξ, y], z⟩ − ⟨y, [ξ, z]⟩ = c⟨y, z⟩. (3)

Setting y = z = ξ in the above equation and assuming ξ ≠ 0, we get c = 0, hence, ξ is a Killing vector field on (G, g). �

Corollary 2.2. Let G be an n-dimensional Lie group with a left invariant metric g. Then any left invariant CKY (n − 1)-form on
(G, g) is closed.

Proof. Let ω be a left invariant CKY (n − 1)-form on (G, g), then η := ∗ω is a CKY 1-form, hence Proposition 2.1 implies
that η is KY. Therefore, d∗η = 0, that is, ∗ d ∗ η = 0, which implies dω = 0, as claimed. �

From now on, we will consider left invariant CKY 2-forms on (G, g), where g is a left invariant metric. With respect to
g , any left invariant 2-form ω on G gives rise to a skew-symmetric endomorphism T of the tangent bundle of G defined by
ω(X, Y ) = g(TX, Y ), for any X, Y vector fields on G, which is also left invariant. We will still denote by T the corresponding
endomorphism of g. When ω is a left invariant CKY 2-form on (G, g), the associated endomorphism T of g will be called
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a conformal Killing–Yano tensor on g. In the special case when ω is a left invariant KY 2-form on (G, g), the associated
endomorphism T will be called a Killing–Yano tensor.

According to [9, Proposition 2.7], a left invariant 2-formω on (G, g) is CKY if and only if there exists a 1-form θ on G such
that

(∇Xω)(Y , Z)+ (∇Yω)(X, Z) = 2g(X, Y )θ(Z)− g(X, Z)θ(Y )− g(Y , Z)θ(X), (4)
for any vector fields X, Y , Z on G. Furthermore, the 1-form θ is given by

θ = −
1

n − 1
d∗ω, (5)

where n = dimG. It follows from (5) that θ is left invariant, hence θ ∈ g∗. The following lemma gives an explicit formula
for this 1-form.

Lemma 2.3. If T is a conformal Killing–Yano tensor on the n-dimensional Lie algebra (g, ⟨·, ·⟩), with associated 1-form θ defined
by (4), then θ is given by

θ(z) = −
1

n − 1


1
2
⟨vT , z⟩ − tr adTz


,

with vT =
n

i=1[Tei, ei], for any orthonormal basis {ei}i=1,...,n of g.
Proof. We recall that for any 2-formω on a Riemannian manifoldM , d∗ω can be computed as follows: if {Ui : i = 1, . . . , n}
is a local orthonormal basis of vector fields, then

d∗ω(X) = −

n
i=1

(∇Uiω)(Ui, X) (6)

for any vector field X onM [19].
The lemma follows by applying (6) to the CKY 2-formω on g defined by T , using (2) for the computation of the Levi-Civita

connection of ⟨·, ·⟩. Indeed, let {e1, . . . , en} be an orthonormal basis of g and z ∈ g, then

d∗ω(z) = −

n
i=1

(∇eiω)(ei, z)

=

n
i=1


⟨T∇eiei, z⟩ + ⟨Tei,∇eiz⟩


= − tr adTz +

1
2

n
i=1

(⟨[ei, z], Tei⟩ − ⟨[z, Tei], ei⟩ + ⟨[Tei, ei], z⟩)

= − tr adTz +
1
2
⟨vT , z⟩

since
n

i=1 (⟨[ei, z], Tei⟩ − ⟨[z, Tei], ei⟩) = tr(T adz)− tr(adz T ) = 0. �

Corollary 2.4. Let T be a CKY tensor on the Lie algebra (g, ⟨·, ·⟩). Then T is KY if and only if

tr adTz =
1
2
⟨vT , z⟩, z ∈ g,

with vT as in Lemma 2.3. In particular, if g is unimodular, T is KY if and only if vT = 0.

A left invariant 2-form ω on G will satisfy Eq. (4) if the associated left invariant endomorphism T of the tangent bundle
of G satisfies the condition in the following proposition.

Proposition 2.5. If g is a Lie algebra with dim g = n, then a skew-symmetric endomorphism T is CKY if and only if αT = βT ,
where

αT (x, y, z) = ⟨[Tx, y] − [x, Ty], z⟩ + ⟨−T [y, z] + [Ty, z] + 2[y, Tz], x⟩ + ⟨−T [x, z] + [Tx, z] + 2[x, Tz], y⟩,

and

βT (x, y, z) = −2 (2⟨x, y⟩θ(z)− ⟨y, z⟩θ(x)− ⟨z, x⟩θ(y)) ,

with θ as in Lemma 2.3. Moreover, the following identities hold for any x, y, z ∈ g:

αT (x, y, z) = αT (y, x, z), βT (x, y, z) = βT (y, x, z),
αT (x, y, z)+ αT (y, z, x)+ αT (z, x, y) = βT (x, y, z)+ βT (y, z, x)+ βT (z, x, y) = 0,

and αT ≡ 0 implies βT ≡ 0.
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Proof. By expanding the left-hand side of (4) using (2), we obtain

(∇xω)(y, z)+ (∇yω)(x, z) = −
1
2
αT (x, y, z),

for any x, y, z ∈ g, and the proposition follows. �

Remark 1. According to [20] a skew-symmetric endomorphism T of g is a Killing–Yano tensor if and only if αT ≡ 0.

3. Compact Lie groups with a bi-invariant metric

Compact Lie groups do carry bi-invariant metrics, that is, left invariant metrics which are also right invariant (see [21]).
It is well known that the sphere S3 with its standard metric has CKY 2-forms (see [9]). In the following result, we prove that
if a compact Lie group G equipped with a fixed bi-invariant metric admits a left invariant CKY tensor which is not KY, then
G is 3-dimensional. Moreover, its Lie algebra is isomorphic to su(2).

Theorem 3.1. Let G be a compact n-dimensional Lie group equipped with a bi-invariant metric g. If there exists a left invariant
conformal Killing–Yano tensor T which is not Killing–Yano, then n = 3 and the Lie algebra g of G is isomorphic to su(2).
Proof. Since G is compact it is unimodular and according to Corollary 2.4 a left invariant conformal Killing–Yano tensor T
which is not Killing–Yano has vT ≠ 0. Using that adx is skew-symmetric for any x ∈ g, it is easily verified that the expression
for αT in Proposition 2.5 can be simplified to

αT (x, y, z) = ⟨[Tx, y] − [x, Ty], z⟩, x, y, z ∈ g. (7)

Wewill prove first thatG is semisimple. Let z denote the center of g, and let us assume that z ≠ {0}. Clearly, z is orthogonal
to the commutator ideal g′

= [g, g]. For y ∈ z, ∥y∥ = 1, we compute

αT (vT , y, y) = 0, βT (vT , y, y) = −
∥vT∥

2

n − 1
,

since vT ∈ g′. As αT = βT (Proposition 2.5), we obtain vT = 0, a contradiction. Therefore, z = {0}.
Next, we will prove that TvT = 0. Since T is skew-symmetric, this is equivalent to proving that vT ∈ (Im T )⊥. There

exists an orthonormal basis {x1, y1, . . . , xr , yr , z1, . . . , zs} such that

Txj = ajyj, Tyj = −ajxj, Tzk = 0,

for some aj ∈ R, 1 ≤ j ≤ r , 1 ≤ k ≤ s. Let us compute

αT (xj, xj, yj) = 2⟨[Txj, xj], yj⟩ = 2aj⟨[yj, xj], yj⟩ = 0,

while

βT (xj, xj, yj) =
2

n − 1
⟨vT , yj⟩.

Therefore, ⟨vT , yj⟩ = 0 for 1 ≤ j ≤ r . In a similar way, using αT (yj, yj, xj) = βT (yj, yj, xj) we obtain that ⟨vT , xj⟩ = 0 for
1 ≤ j ≤ r . Since Im T = span{xj, yj : j = 1, . . . , n}, we have that vT ∈ (Im T )⊥ = ker T , and therefore, TvT = 0.

Let us suppose now that there exists x ∈ ker T with ⟨vT , x⟩ = 0. We compute

αT (x, x, vT ) = 0, βT (x, x, vT ) =
2

n − 1
∥x∥2

∥vT∥
2.

Thus, x = 0 and consequently ker T = span{vT }.
Now, for any x, y ∈ Im T we have that αT (x, x, y) = 2⟨[Tx, x], y⟩, while βT (x, x, y) = 0, and then [Tx, x] ∈ ker T , so that

there exists λ : Im T → R such that [Tx, x] = λ(x)vT , x ∈ Im T .
Now, for any z ∈ Im T , we compute

αT (z, z, vT ) = 2⟨[Tz, z], vT ⟩ = 2λ(z)∥vT∥2,

and

βT (z, z, vT ) =
2

n − 1
∥z∥2

∥vT∥
2,

so that λ(z) =
∥z∥2

n−1 and therefore [Tz, z] =
∥z∥2

n−1 vT .
Using this, we can prove that advT : Im T → Im T is an isomorphism. Indeed, for any x ∈ Im T , we have ⟨[vT , x], vT ⟩ = 0,

so that [vT , x] ∈ Im T . If [vT , x] = 0, then

0 = ⟨[vT , x], Tx⟩ = ⟨vT , [x, Tx]⟩ = −
∥x∥2

n − 1
∥vT∥

2,

hence x = 0, proving the assertion.
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It follows that anymaximal abelian subalgebra containing vT has dimension 1, and this implies thatGhas rank 1, therefore
g is isomorphic to su(2). �

The following proposition was stated in [20]. We give below the proof, for the sake of completeness.

Proposition 3.2. Let G be a Lie group with a bi-invariant Riemannian metric. If T is a left invariant skew-symmetric endomor-
phism of TG, then T is a Killing–Yano tensor if and only if T |g′ = 0.

Proof. Using that adx is skew-symmetric for any x ∈ g, it is easily verified that the expression for αT in Proposition 2.5 can
be simplified to

αT (x, y, z) = ⟨[Tx, y] − [x, Ty], z⟩, x, y, z ∈ g. (8)

Therefore, T is Killing–Yano if and only if [Tx, y] = [x, Ty] for all x, y ∈ g, that is to say, adTx = adx T for all x ∈ g. Since the
metric is bi-invariant, we obtain easily that adx T = −T adx for any x ∈ g.

Now we compute

[x, T [y, z]] = −[x, [y, Tz]]
= [y, [Tz, x]] + [Tz, [x, y]]
= T ([y, [z, x]] − [z, [x, y]]),

but on the other hand

[x, T [y, z]] = −T [x, [y, z]]
= T ([y, [z, x]] + [z, [x, y]]),

and it follows that T ([z, [x, y]]) = 0 for any x, y, z ∈ g. Since g′ is compact semisimple, it follows that T |g′ = 0.
The converse is easily verified. �

The following corollary is probably well-known:

Corollary 3.3. Let G be a Lie group with a bi-invariant Riemannian metric g. If J is a left invariant almost complex structure on
G such that (G, J, g) is nearly Kähler, then G is abelian.

4. Two-step nilpotent case

We will consider next the case of a 2-step nilpotent Lie algebra g equipped with an inner product ⟨·, ·⟩. We recall that a
Lie algebra g is called 2-step nilpotent if [[g, g], g] = 0, or equivalently, the commutator ideal g′

= [g, g] is contained in the
center z of g. Such a Lie algebra is unimodular and its associated simply connected Lie group is diffeomorphic to a Euclidean
space Rn.

If g is a 2-step nilpotent Lie algebra equipped with an inner product ⟨·, ·⟩, then there is an orthogonal decomposition
g = z ⊕ v, where z is the center of g and v its orthogonal complement. We recall from [22] that the Lie bracket on g is
completely determined by the linear operator j : z → so(v) defined by

⟨jzx, y⟩ = ⟨z, [x, y]⟩ for z ∈ z, x, y ∈ v. (9)

We will denote by h2m+1 the (2m+ 1)-dimensional Heisenberg Lie algebra given by h2m+1 = span{e1, . . . , e2m, z0} with Lie
bracket [e2i−1, e2i] = z0, 1 ≤ i ≤ m. Clearly, h2m+1 is 2-step nilpotent. It is well known that any nilpotent Lie algebra with
1-dimensional commutator ideal is isomorphic to h2m+1 × R2k+1.

Theorem 4.1. A 2-step nilpotent Lie algebra g admitting an inner product with a CKY tensor T which is not KY is isomorphic to
h2m+1 and if ξ is a unit generator of the center of h2m+1, then Tξ = 0 and T |v = λj−1

ξ , for some λ ≠ 0, where v = ξ⊥.

Proof. Let g be an n-dimensional 2-step nilpotent Lie algebra with center z and let v denote the orthogonal complement of
z. Since g is 2-step nilpotent it is unimodular and by Corollary 2.4 vT ≠ 0 for any CKY tensor T which is not KY. Note that
vT ∈ z.

Wewill prove now that dim z = 1. Otherwise, if dim z ≥ 2, let x ∈ z, with∥x∥2
= 1, ⟨x, vT ⟩ = 0, and thenαT (x, x, vT ) = 0,

whereas

βT (x, x, vT ) =
2

n − 1
∥x∥2

∥vT∥
2.

Since αT = βT , we obtain that vT = 0, a contradiction.
Since dim z = 1 and g is 2-step nilpotent, it follows that g is isomorphic to the Heisenberg Lie algebra h2m+1. Next, we

will characterize the CKY tensor T .
Let ξ denote a unit generator of z, and vT = cξ for some c ∈ R, c ≠ 0. We will use the condition αT = βT in several

cases, according to the decomposition g = Rξ ⊕ v.
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(i) For any z ∈ v, we have αT (ξ , ξ , z) = βT (ξ , ξ , z), and this implies ⟨[Tξ, z], ξ⟩ = 0. Since dim z = 1, it follows that
Tξ = 0.

(ii) For any x, y ∈ v, we have that αT (x, y, ξ) = βT (x, y, ξ) if and only if

⟨[Tx, y] − [x, Ty], ξ⟩ =
2c

n − 1
⟨x, y⟩;

(iii) For any x, y ∈ v, we have that αT (ξ , x, y) = βT (ξ , x, y) if and only if

⟨[Tx, y] + 2[x, Ty], ξ⟩ = −
c

n − 1
⟨x, y⟩.

From (ii) and (iii) we obtain

[Tx, y] =
c

n − 1
⟨x, y⟩ξ, x, y ∈ v. (10)

Moreover, it can be shown that Eq. (10) implies both (ii) and (iii). From the definition of the map j : z → so(v) above, it is
straightforward that (10) is equivalent to

jξT =
c

n − 1
Id,

and the proposition follows. �

Remark 2. It was proved in [20] that there are no non-trivial solutions to the KY equation on h2m+1.

5. Dimension 3

In this section we determine all three-dimensional metric Lie algebras which carry non-zero CKY 2-forms.Wewill show,
in Theorem5.1, that there are 6 isomorphism classes of these Lie algebras. The non-abelian ones are given by the Lie brackets
below with respect to a basis {f1, f2, f3}, where the remaining Lie brackets are zero:

e(2) : [f3, f1] = f2, [f3, f2] = −f1,
su(2) : [f1, f2] = f3, [f2, f3] = f1, [f3, f1] = f2,

sl(2,R) : [f1, f2] = −f3, [f2, f3] = f1, [f3, f1] = f2,
h3 : [f1, f2] = f3,

aff(R) : [f1, f2] = f2.

(11)

Note that e(2) is the Lie algebra of the isometry group of the Euclidean plane, h3 is the Heisenberg Lie algebra and aff(R) is
the Lie algebra of the group Aff(R) of affine motions of the real line.

We recall that in order to determine all CKY 2-forms, it is equivalent to find all non-zero CKY 1-forms, since the ∗ operator
interchanges CKY 2-forms and CKY 1-forms [9]. This, in turn, is equivalent to the study of Killing vector fields, in view of
Proposition 2.1, and this is what we will do next.

5.1. Killing vector fields on 3-dimensional metric Lie algebras

Let ξ be a non-zero Killing vector field on (g, ⟨·, ·⟩). There are two cases: ξ ∉ z or ξ ∈ z. If ξ ∉ z there exists an orthonormal
basis e1, e2, e3 with e3 =

ξ

∥ξ∥
and a, b ∈ R, a ≠ 0 such that the Lie brackets are given by

[e3, e1] = ae2, [e2, e3] = ae1, [e1, e2] = be3. (12)

The last equation follows by applying the Jacobi identity and using that a ≠ 0. We point out that the parameters (a, b) and
(−a,−b) give rise to isometrically isomorphic Lie algebras and therefore we may assume a > 0.

If b = 0 then de3 = 0 and therefore the Lie algebra is isomorphic to e(2). Moreover, d∗e3 = 0 since e3 is Killing and it
follows from (1) that e3, hence also e3, is parallel. Finally, the corresponding CKY 2-form ∗e3 is parallel. If b ≠ 0 then e3 is a
contact form, since e3 ∧ de3 ≠ 0. According to [21], the Lie algebra is isomorphic to su(2) when b > 0 and it is isomorphic
to sl(2,R)when b < 0.

If ξ ∈ z, let e3 =
ξ

∥ξ∥
and complete to an orthonormal basis e1, e2, e3. The Lie bracket is given by

[e1, e2] = xe1 + ye2 + qe3, x, y, q ∈ R. (13)

If x = y = 0 and q ≠ 0 then the Lie algebra is isomorphic to h3 and e3 is a contact form, since de3 = −qe1 ∧ e2.
Moreover, the parameters q and −q give rise to isometrically isomorphic Lie algebras and therefore we may assume q > 0.
If x2 + y2 ≠ 0 then by making an orthogonal change if necessary, we may assume that [e1, e2] = pe2 + qe3, p ≠ 0. These
Lie algebras are isomorphic to aff(R)× R. Note that if q = 0 then e3 is a closed KY 1-form, hence it is parallel.

We analyze next the metrics in each case.
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• g ≃ e(2): This Lie algebra is obtained when b = 0. Since e3 acts on the abelian ideal spanR{e1, e2} by a skew-symmetric
endomorphism, then the metric is flat (see [21, Theorem 1.5]).
• g ≃ su(2): This Lie algebra is obtained when b > 0. Considering the basis f1 =

1
√
ab
e1, f2 =

1
√
ab
e2, f3 =

1
a e3, we obtain

the Lie brackets as in (11) and the inner product is

ga,b =


1
ab

1
ab

1
a2

 =
1
ab

1
1

b
a

 . (14)

Therefore any ga,b is homothetic to a Berger metric gt =


1

1
t


, with t :=

b
a > 0. It is well known that these Berger

metrics are pairwise non isometric. For any t ≠ 1, the only Killing vector field up to amultiple is f3 and the only CKY 2-forms
are kf 1 ∧ f 2, k ∈ R. When t = 1, we obtain the bi-invariant metric on SU(2). Note that in this case, any left invariant vector
field is Killing and consequently any left invariant 2-form is CKY.

We note that the scalar curvature of gt is given by ρt = −
1
2 t + 2.

• g ≃ sl(2,R): This Lie algebra is obtained when b < 0. Considering the basis f1 =
1

√
−ab

e1, f2 =
1

√
−ab

e2, f3 =
1
a e3, we

obtain the Lie brackets as in (11) and the inner product is

ga,b =


−

1
ab

−
1
ab

1
a2

 = −
1
ab

1
1

−
b
a

 . (15)

Therefore any ga,b is homothetic to the metric gt =


1

1
t


, with t := −

b
a > 0. It is easy to verify, comparing the

eigenvalues of the Ricci operator, that these metrics are pairwise non isometric. For any t > 0, the only Killing vector field
up to a multiple is f3 and the only CKY 2-forms are kf 1 ∧ f 2, k ∈ R.

We note that the scalar curvature of gt is given by ρt = −
1
2 t − 2.

• g ≃ h3: This Lie algebra is obtained when x = y = 0 and q > 0.
Considering the basis f1 = e1, f2 = e2, f3 = qe3, we obtain the Lie brackets as in (11) and the inner product is

gq =

1
1

q2

 , q > 0. (16)

It turns out that gq is isometric, up to scaling, to g1 (see [23]) and the only Killing vector field up to a multiple is f3 and the
only CKY 2-forms are kf 1 ∧ f 2, k ∈ R.

Since any inner product on h3 is isometric, up to scaling, to g1, it follows that any left invariant metric on the Heisenberg
Lie group H3 admits non-zero left invariant CKY tensors.
• g ≃ aff(R)× R: Recall that the Lie bracket is given by

[e1, e2] = pe2 + qe3, [e1, e3] = [e2, e3] = 0, p ≠ 0, q ∈ R.

Two of these metric Lie algebras are isometrically isomorphic if and only if p′
= ±p and q′

= ±q, therefore we may assume
p > 0, q ≥ 0.

Considering the basis f1 =
1
p e1, f2 = e2 +

q
p e3, f3 = e3, we obtain [f1, f2] = f2 and the inner product with respect to this

basis is given by

gp,q =


1
p2

p2 + q2

p2
q
p

q
p

1

 , p > 0, q ≥ 0. (17)

It follows from [21] that any inner product on aff(R)× R is isometric to gp,q for some p > 0, q ≥ 0, and therefore any left
invariant metric on Aff(R)× R admits non-zero left invariant CKY tensors.
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Moreover, it can be shown that p2gp,q is isometric to g1,t , with t :=
q
p . Therefore each gp,q is isometric up to scaling to

g1,t =

1
1 + t2 t

t 1

 , t > 0. (18)

For any t > 0, the only Killing vector field up to a multiple is f3 and the only CKY 2-forms are kf 1 ∧ f 2, k ∈ R. When t = 0
these CKY 2-forms are parallel, while for t ≠ 0 they are CKY and non-coclosed.

We point out that the scalar curvature of g1,t is ρ1,t = −2 −
1
2 t

2.

To summarize the discussion above, we state the following result. We will say that a CKY form is strict if it is not KY, that
is, it is not co-closed.

Theorem 5.1. The 3-dimensional non-abelian Lie algebras admitting an inner product with non-zero CKY 2-forms are e(2), su(2),
sl(2,R), h3 and aff(R)× R. Furthermore,

(1) Any left invariant metric on E(2) admitting CKY 2-forms is flat and any of these 2-forms is parallel.
(2) On SU(2) and SL(2,R) there is a one-parameter family of left invariant metrics, pairwise non-isometric up to scaling, that

admit CKY 2-forms and any of these 2-forms is strict.
(3) Any left invariant metric on the Lie group H3 admits CKY 2-forms and any of these 2-forms is strict.
(4) Any left invariant metric on the Lie group Aff(R)× R admits CKY 2-forms. Up to scaling, each of these metrics is isometric to

g1,t as in (18) for one and only one t ≥ 0. For t = 0 the CKY 2-forms are all parallel, while for t > 0, the CKY 2-forms are
all strict.

Corollary 5.2. A left invariant metric g on SU(2) admits non trivial left invariant CKY tensors if and only if g is homothetic to a
Berger metric.

Remark 3. We point out that, according to Corollary 2.2, all the CKY 2-forms obtained in Theorem 5.1 are closed.
Furthermore, when these CKY 2-forms are strict, their Hodge duals are contact forms.

Left invariant metrics on H3 and Aff(R) × R from Theorem 5.1(iii) and (iv) define homogeneous Riemannian metrics
on R3. We will show next that a metric on R3 arising from H3 cannot be isometric, up to scaling, to a metric arising from
Aff(R)× R by studying the eigenvalues of the Ricci operator.

Proposition 5.3. A homogeneous Riemannian metric on R3 invariant by the Lie group H3 is not isometric, up to scaling, to a
homogeneous Riemannian metric on R3 invariant by the Lie group Aff(R)× R.

Proof. A homogeneous Riemannianmetric on R3 invariant by the Lie groupH3 (resp. Aff(R)×R) amounts to a left invariant
metric onH3 (resp. Aff(R)×R). Moreover, any left invariant metric onH3 is isometric, up to scaling, to g1 as in (16), whereas
any left invariant metric on Aff(R)× R is isometric, up to scaling, to g1,t as in (18).

The eigenvalues of the Ricci operator corresponding to g1 are −
1
2 ,−

1
2 ,

1
2 , while the eigenvalues of the Ricci operator

corresponding to g1,t are−1−
t2
2 ,−1−

t2
2 ,

t2
2 . If g1,t were isometric up to scaling to g1, thenwe should have |−1−

t2
2 | =

t2
2 ,

and this is not possible. �

5.2. Coordinate expression of the metrics

In order to obtain the coordinate expression of the left invariant metrics we give a basis of left invariant 1-forms in local
coordinates on each Lie group.

• su(2): using the Euler angles (ψ, θ, φ) as a local coordinate system on SU(2), a basis of left invariant 1-forms is given by

σ1 = sin θ sinψ dφ + cosψ dθ, σ2 = sin θ cosψ dφ − sinψ dθ, σ3 = dψ + cos θ dφ.

There are two cases:
(i) t > 0, t ≠ 1. The left invariant Berger metric gt can be written as

gt = σ 2
1 + σ 2

2 + tσ 2
3 ,

and any left invariant CKY 2-form on SU(2)with respect to this metric is a constant multiple of ω = σ1 ∧ σ2.
(ii) t = 1. The left invariant metric g1 can be written as

g1 = σ 2
1 + σ 2

2 + σ 2
3 ,

and any left invariant 2-form on SU(2) is CKY with respect to this bi-invariant metric.
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• sl(2,R): using the diffeomorphism SL(2,R) ≃ S1 ×R2 corresponding to the Iwasawa decomposition, wemay consider
a local coordinate system

(θ, r, s) −→


cos θ − sin θ
sin θ cos θ

 
er 0
0 e−r

 
1 s
0 1


∈ SL(2,R).

A basis of left invariant 1-forms is given by

σ1 = dr − se2r dθ, σ2 = 2s dr + ds − (s2e2r + e−2r) dθ, σ3 = e2r dθ,

and the left invariant metric gt can be written as

gt = 4σ 2
1 + (σ2 + σ3)

2
+ t(−σ2 + σ3)

2.

Any left invariant CKY 2-form on SL(2,R)with respect to this metric is a constant multiple of ω = σ1 ∧ (σ2 + σ3).

• h3: Let H3 =


1 x z
0 1 y
0 0 1


: x, y, z ∈ R


be the simply connected Lie group with Lie algebra h3. A basis of left invariant

1-forms on H3 is

σ1 = dx, σ2 = dy, σ3 = dz − x dy,

and the left invariant metric g1 can be written as

g1 = σ 2
1 + σ 2

2 + σ 2
3 .

Moreover, any left invariant CKY 2-form on H3 is a constant multiple of ω = σ1 ∧ σ2 = dx ∧ dy.

• aff(R) × R: Let Aff(R) × R =


ex y 0
0 1 0
0 0 ez


: x, y, z ∈ R


. Then (x, y, z) define global coordinates on Aff (R) × R,

and a basis of left invariant 1-forms is given by

σ1 = dx, σ2 = e−x dy, σ3 = dz.

The left invariant metric g1,t is

g1,t = σ 2
1 + σ 2

2 + (tσ2 + σ3)
2 ,

and any left invariant CKY 2-form is a constant multiple of ω = σ1 ∧ σ2 = e−xdx ∧ dy.

5.3. Sasakian structures

Among the CKY tensors found in Theorem 5.1, we determine next which ones correspond to a Sasakian structure
(compare [24]). Recall that a Riemannian manifold (M, g) is called Sasakian if there exists a unit length Killing vector field
ψ such that for all X vector field on M ,

∇Xdψ∗
= −2X∗

∧ ψ∗ (19)

whereψ∗(Y ) = g(ψ, Y ). It was proved in [9] that dψ∗ is a CKY 2-form. Note that, if g is a left invariant metric on a Lie group
G and ψ is left invariant, it suffices to verify (19) for left invariant vector fields X in order to prove that (G, g) is Sasakian.

Corollary 5.4. On H3 there is a unique left invariant Sasakian metric. On SU(2), SL(2,R) and Aff(R) × R there exists a one-
parameter family of pairwise non-isometric left invariant Sasakian metrics.

Proof. Let (g, ⟨·, ·⟩) be a three dimensionalmetric Lie algebra andψ ∈ g a unit Killing vector field.We argue as in Section 5.1.
If ψ ∉ z, there exists an orthonormal basis e1, e2, e3 with e3 = ψ such that the Lie brackets are given as in (12) for some

a, b ∈ R, a > 0.
If b = 0 then g ≃ e(2) and the metric is flat, hence it is not Sasakian.
If b ≠ 0, using that ω = e1 ∧ e2 satisfies de3 = −bω, dω = 0 and d∗ω = −be3, it is easy to verify that Eq. (19) holds if

and only if b = ±2.
When b = 2 we obtain a family ga of left invariant Sasakian metrics on SU(2), for a > 0, such that the scalar curvature

is given by ρa = 4a − 2. Observe that in the particular case when a = b, that is, the metric is bi-invariant, any unit vector
field is Killing and defines a left invariant Sasakian structure on SU(2). Identifying SU(2)with S3, this metric corresponds to
the round metric on the 3-sphere.

When b = −2, we obtain a family ga of left invariant Sasakian metrics on SL(2,R), for a > 0, such that the scalar
curvature is given by ρa = −4a − 2.

Ifψ ∈ z, there exists an orthonormal basis e1, e2, e3 with e3 = ψ such that the non-zero Lie brackets are given either by

[e1, e2] = qe3, q > 0,
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or

[e1, e2] = pe2 + qe3, p > 0, q ≥ 0.

In both cases, we have that ω = e1 ∧ e2 satisfies de3 = −qω, dω = 0 and d∗ω = −qe3 and it can be shown that Eq. (19)
holds if and only if q = 2. Therefore, in the first case, we obtain one left invariant Sasakian metric on H3 up to isomorphism,
with scalar curvature ρ = −2. In the second case there is a curve gp, p > 0, of pairwise non-isometric left invariant Sasakian
metrics on Aff(R)× R with corresponding scalar curvature ρp = −2p2 − 2. �
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