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Abstract
!

The enzyme 4-hydroxyphenylpyruvate dioxyge-
nase catalyzes the second step in the tyrosine
degradation pathway. In mammals, this enzyme
is the molecular target of drugs used for the treat-
ment of metabolic disorders associated with de-
fects in the tyrosine catabolism, mainly the fatal
hereditary disease tyrosinemia type 1. This study
evaluated the inhibitory effect of 91 extracts on 4-
hydroxyphenylpyruvate dioxygenase from
mostly native plants from central Argentina.
Flourensia oolepis ethanol extract showed itself
to be the most effective, and bioguided fractiona-
tion yielded pinocembrin (1) as its active princi-
ple. This flavanone, with an IC50 value of 73.1 µM
and a KI of 13.7 µM, behaved as a reversible inhib-
itor of the enzyme and as a noncompetitive inhib-
itor. Molecular modeling studies confirmed the
inhibitory potency of 1 and explained its activity
by means of in silico determination of its binding
mode in comparison to inhibitors of known activ-
ity, cocrystallized with 4-hydroxyphenylpyruvate
dioxygenase. The main structural determinants
that confer its potency are discussed. Analysis of
the binding mode of the flavanone 1 with 4-hy-
droxyphenylpyruvate dioxygenase revealed the
basis of the noncompetitive reversible mecha-

nism of inhibition at the molecular level, which
seems to be a common feature in this ubiquitous
family of natural compounds. The resulting infor-
mationmay establish the basis for obtaining novel
4-hydroxyphenylpyruvate dioxygenase inhibitors
for the treatment of tyrosinemia type 1 and other
disorders associated with tyrosinase catabolism.

Abbreviations
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AcOEt: ethyl acetate
Et2O: diethyl ether
HGA: homogentisate
HPP: 4-hydroxyphenylpyruvate
HPPD: 4-hydroxyphenylpyruvate

dioxygenase
IC50: inhibitor concentration leading to

50% activity loss
KI: inhibition constant
Km: Michaelis-Menten constant
MeOH: methanol
NTBC: nitisinone
QM: quantum mechanics
TH1: tyrosinemia type 1
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Introduction
!

HPPD (EC 1.13.11.27) is an iron-dependent, non-
heme oxygenase enzyme present in most orga-
nisms. It is involved in the second step of the tyro-
sine degradation pathway, catalyzing the conver-
sion of HPP to HGA [1]. The latter intermediate
will be finally converted, by successive reactions
involving other enzymes, into the energy contrib-
utors acetoacetate and fumarate [1]. In mammals,
inborn defects in all of the enzymes involved in
this pathway lead to a number of serious meta-
bolic disorders [2], including fatal hereditary TH1
[3]. This disease is caused by a functional defi-
ciency of the enzyme fumarylacetoacetate hydro-
lase that catalyzes the final step in the catabolism
of tyrosine, leading to the upstream accumulation
of the hepatotoxic and nephrotoxic metabolites,
fumarylacetoacetate, maleylacetoacetate, and
succinylacetone [3,4]. High levels of these compo-
nents result in the characteristics of the disease,
which, if untreated, is lethal in both its acute and
chronic forms [3,4].
Chiari ME et al. The Inhibitory Activity… Planta Med



Table 1 Inhibitory activity of the most effective ethanol extracts of native and endemic plants from central Argentina and pinocembrin (1) on HPPD.

Species Inhibition (%)* IC50 (µg/mL/µM) values and 95% confidence limits (lower, upper)

Achyrocline satureioides 93.90 ± 4.12 186.686 (89.319–390.192)

Baccharis coridifolia 94.63 ± 1.26 157.857 (40.603–605.971)

Flourensia oolepis 85.87 ± 0.40 65.724 (26.523–162.864)

Ophryosporus charua 85.27 ± 8.48 126.380 (8.352–1935.510)

Salvia cuspidata 92.52 ± 7.48 120.166 (20.328–710.347)

Solanum sisymbriifolium 84.88 ± 5.14 170.915 (39.512–739.307)

1 18.714 (6.755–51.841)/73.067 (26.385–202.339)

Mesotrione 100.00 0.011 (0.0006–0.211)/0.033 (0.002–0.623)

* Data represent the mean ± standard error of the evaluated parameter in duplicate of three different repetitions. Extracts were tested at 250 µg/mL

Fig. 1 Chemical struc-
ture of pinocembrin (1).

Fig. 2 Effects of concentrations of HPPD on its activity for the catalysis of
the enol form of HPP at different concentrations of pinocembrin (1). Values
are the mean ± SE of two separate experiments.
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Preventing the production of these harmful metabolites by
blocking HPPD activity is thus the main therapy for this life-
threatening disorder [3]. Moreover, HPPD inhibition alleviates
the symptoms of the other less severe metabolic diseases associ-
ated with the catabolic cascade of tyrosine [1]. Previous trials
have also tested HPPD inhibitors for the treatment of Parkinsonʼs
disease [5], thus enlarging the spectrum of action of the mole-
cules with this property.
As far as we know, very little information about plant-derived
products showing HPPD inhibitory activity has been found in
the literature [6–9], even when the starting point for the synthe-
sis of NTBC, a herbicide which is also used as the therapy of
choice for the treatment of TH1 [3], was the natural β-triketone,
leptospermone [10]. The search for alternative HPPD inhibitors
obtained from plants thus seems well worth investigating.
As part of our ongoing effort to find enzyme inhibitors from
plants [11–13], 91 extracts from mostly native species from cen-
tral Argentina were screened in vitro for anti-HPPD activity. The
responsible active principle from the most effective plant was
isolated and identified. We describe here in detail the inhibitory
potency, kinetic behavior, parameters of inhibition, and interac-
tion of this inhibitor with the enzyme.
Results
!

In order to obtain agents with inhibitory activity on HPPD, ex-
tracts derived from 91 plants from central Argentina were
screened. In this study, the ethanol extracts from Dysphania am-
brosioides (L.) Mosyakin & Clemants (Chenopodiaceae), Otho-
lobium higuerilla (Gillies ex Hook.) J.W. Grimes (Fabaceae), and
Solanum palinacanthum Dunal (Solanaceae) showed inhibitory
effects with percentages ranging from 71 to 78% (Table 1 S, Sup-
porting Information), while the extracts from Achyrocline satur-
eioides (Lam.) DC. (Asteraceae), Baccharis coridifolia DC. (Astera-
ceae), Flourensia oolepis S.F. Blake (Asteraceae), Ophryosporus
charua (Griseb.) Hieron. (Asteraceae), Salvia cuspidata Ruiz &
Chiari ME et al. The Inhibitory Activity… Planta Med
Pav. (Lamiaceae), and Solanum sisymbriifolium Lam. (Solanaceae)
showed at least 85% inhibition when tested at 250 µg/mL (l" Ta-
ble 1). Among these, F. oolepis extract was the most effective,
with an IC50 of 65.7 µg/mL, followed by S. cuspidata (IC50 =
120.2 µg/mL) and O. charua (IC50 = 126.4 µg/mL) ones (l" Table 1).
Given these results, F. oolepiswas selected to be submitted to bio-
guided fractionation in order to isolate its anti-HPPD principle.
The flavanone identified as pinocembrin (1) (l" Fig. 1) [14] was
obtained from this process, and showed an IC50 value of 73.1 µM
(18.7 µg/mL) (l" Table 1).
The inhibitory mechanism of compound 1 on HPPD was then
studied. The plots of the remaining enzyme activity versus the
concentration of enzyme in the presence of different concentra-
tions of 1 gave a series of straight lines, which all passed through
the origin. Increasing the inhibitor concentration resulted in a de-
crease in the slope of the lines, thus indicating that the enzyme
undergoes a reversible inhibition (l" Fig. 2).
We decided to further characterize the HPPD interaction with
compound 1 by evaluating the type of inhibition on the enzyme.
The kinetic of inactivation was analyzed by the Lineweaver-Burk
double reciprocal method. The plots obtained yield a family of
straight lines with different slopes with a common intercept in
the X-axis (l" Fig. 3). With increasing concentrations of the flava-
none, Vmax decreased while Km remained unchanged. These re-
sults showed that 1 was a noncompetitive inhibitor. The inhibi-
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tion constants for inhibitor binding with the free enzyme or en-
zyme-substrate complex, KI or KIS, respectively, were the same in
Fig. 3 Lineweaver-Burk plots for the inhibition of HPPD in the presence of
different concentrations of pinocembrin (1). The insets represent the plot
of the vertical intercepts (1/Vmax app) versus pinocembrin concentrations to
determine the inhibition constants. The lines were drawn using linear least
squares fit. Values are the mean ± SE of two separate experiments.
quantity (KI = 13.7 µM). All kinetic parameters, determined by
Lineweaver-Burk plots, are summarized in l" Table 2.
Prior to discussing the binding modes of 1, the calculation proto-
col used for the molecular docking simulation was validated by
challenging the procedure to reproduce both the position and
the pose of the cocrystallized inhibitors in the X‑ray structures
and to correlate the docking energies against known experimen-
tal activities for the whole panel of compounds A–M (l" Fig. 4).
With this aim, different models were built and evaluated (for fur-
ther details, see Materials and Methods section and Supporting
Information), and the twowith the best correlations to the exper-
imental data were discussed further. As shown in l" Fig. 5, the
structure of the complex DAS869/R. novergicus HPPD was closely
reproduced by the procedure. The correlations between the IC50 s
Table 2 Kinetic parameters of the enzyme and inhibition constants with pino-
cembrin (1).

Kinetic parameters

Km (µM) 44.43

Vmax (ΔAbs/min) 0.007

KI (µM) 13.75

KIS (µM) 13.75

Fig. 4 Family of HPPD inhibitors of known activity
and inhibitors cocrystallized with HPPD in their
most likely protonation state at physiological pH.

Chiari ME et al. The Inhibitory Activity… Planta Med

El
ec

tr
o
n
ic

re
p
ri
n
t
fo
r
p
er
so

n
al

u
se



Fig. 5 A Correlation between the free energies of
binding and the experimental IC50 s for the panel of
known compounds A–M. The letter codes corre-
spond to the structures on l" Fig. 4. B Superim-
position of the experimental structure of DAS869
cocrystallized in the active site (highlighted in or-
ange) of R. novergicus HPPD and the lowest energy
structure of the first lowest energy cluster found by
the docking procedure. Key residues are shown in
thinner tubes; the iron ion is shown as a red sphere.
(Color figure available online only.)
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reported in the literaure [15–21] and the free energies of binding
(= RTlnKi) found for the set of known inhibitors were also very
good (R2 = 0.873, l" Fig. 5; further details in Table 2 S, Supporting
Information). In the absence of the water molecule as part of the
receptor structure (Model III, Fig. 4 S, Supporting Information),
the correlation with the experimental activities was still good
(R2 = 0.867), although the coincidence between the lowest energy
docked structure and the X‑ray structure was slightly poorer
than that obtained by including thewater molecule (the three su-
perimposed structures are shown in Fig. 2 S, Supporting Informa-
tion). The structure of the NTBC cocrystallized inhibitor was not
as closely reproduced as in the case of DAS869 onto the mammal
protein shown in l" Fig. 5; however, the correlation with the ex-
perimental IC50 s was good (R2 = 0.861, Table 3 S and Fig. 3 S, Sup-
porting Information). The overall good agreement with the avail-
able experimental information allowed us to attempt to describe
in detail the binding of compound 1 to HPPD within this ap-
proach.
The tight binding inhibitors NTBC and DAS869 were cocrystal-
lized with their β-dioxo systems coordinated to the metal, and
the docking simulations revealed a clear preference of these in-
hibitors for the coordinated poses (all of the 500 lowest energy
docked conformations obtained fell on the metal coordination
sphere). In contrast, compound 1was found to have a comparable
affinity for a different binding mode in its phenolate form (1−)
and it was not directly bound to the iron in its neutral form (the
one most likely to occur at physiological pH due to its relatively
high pKa value).
In the case of 1−, this was still capable of mimicking the DAS869
and NTBC in its second lowest energy cluster. This similarity is
clear in l" Fig. 6a, where 1− and the experimental structure of
NTBC are superimposed (Model II). This can also be noted by
comparing the poses in l" Fig. 6c,d to DAS869 (Model I, l" Fig. 5).
The phenyl B-ring was forming a π-π stacking with the Phe364
and also interacting with the same hydrophobic and aromatic
residues as the -CF3 group of NTBC. The main difference relies
on the free 7-OH function, absent in NTBC, which is involved in
Chiari ME et al. The Inhibitory Activity… Planta Med
a strong interaction as both an H-bond donor and acceptor, with
a conserved couple of serine and asparragine residues (Ser230
and Asn245 and the corresponding Ser226 and Asn241 in the
bacterium and mammal sequences, respectively).
However, as noted above, the pose inl" Fig. 6a is the second low-
est energy structure, since the first lowest one found for 1− is not
interacting with the metal. Indeed, the pose of lowest energy
shown in l" Fig. 6b (1.28 kcal/mol more stable than that shown
in l" Fig. 6a) is in the upper entry to the coordination site, as
shown by superimposing this structure on the crystal structure
of the coordinated NTBC (l" Fig. 6b). This site will be discussed
just with Model II, since the experimental structure is complete
enough to allow us to cover the whole binding region, including
both entrances to the site (see below). It is recalled here that both
mesotrione and NTBC anions have no pose in this region.
With respect to the neutral form of 1, this was similar to its phe-
nolate (l" Fig. 6b) and is shown in l" Fig. 7a, where the binding
domain scanned is shown together with the experimental struc-
ture of NTBC; it can be seen that NTBC and 1 poses are clearly not
overlapping. As shown in l" Fig. 7b,c, the lowest energy docked
structure of the neutral 1 accommodates in the entrance of the
site with its 7-OH, cromene, and carbonyl oxygens involved in
four H-bonds and its B-ring comprised of hydrophobic interac-
tions with the residues which shape the top entrance of the coor-
dination site (l" Fig. 7d,e). Secondary binding modes of the neu-
tral 1were found closer to the iron, but none of themwas directly
interacting with Fe(II), i.e., mimicking the DAS869, NTBC or mes-
otrione binding modes. [The second lowest energy pose of the
neutral 1within Model II (1.46 and 1.67 kcal/mol less stable than
the lowest one, respectively) as well as the two lowest energy
poses found with Model I (docking region restricted to the iron
coordination site) were closer to the iron. These secondary
modes of neutral compound 1 are shown in Fig. 9 S, Supporting
Information.] In addition, the poses of 1 were clearly less stable
than those found for these coordinating inhibitors (binding ener-
gies by the docking are summarized in l" Table 3).



Fig. 7 a Cartoon representation of the HPPD in
Model II, with the box showing the docking domain
where the experimental structure of NTBC and the
neutral form of 1 are shown together. The lowest
energy structure found for the neutral form of 1 is
similar to that found for its anion and it does not
overlap with NTBC, which is coordinated to the Fe
(II). b Molecular surface of the HPPD, showing one
entrance to the active site, where part of the CF3
group of the crystal structure of NTBC appears. The
view is rotated in c, showing the other entrance to
the coordination site where part of the docked
structure of 1 appears. d Detailed view of the H-
bond network and hydrophobic contacts interact-
ing with 1. e Electrostatic potential map at the en-
trance to the site where the lowest energy docked
structure of 1 was found; color ranges according to
the electrostatic potential from red (− 5.a.u.
[atomic units]) to blue (+ 5 a.u.). (Color figure
available online only.)

Fig. 6 Poses of compound 1 as phenolate (1−):
a Superimposition of the experimental structure of
NTBC cocrystallized onto the S. avermitilis HPPD
(highlighted in yellow) and the second lowest en-
ergy structure of 1−. As with NTBC, 1− interacts as a
bidentate ligand to the Fe(II) through its β-dioxo
system. The B-ring features a π-π stacking with
Phe364 and has hydrophobic contacts with the
same residues as NTBC. b The lowest energy pose
of 1−, however, does not overlap with NTBC (shaded
in green). Also, it does not interact with the coordi-
nation site. c,d The two lowest energy poses of 1−

in the coordination site of R. novergicus HPPD are
similar to the one in (a). Both poses have similar
energies (within 0.2 kcal/mol of difference). The
main difference found was that the interaction with
the metal is tighter in (c) whilst the H-bond network
with the couple of Ser and Asn residues is tighter in
(d). (Color figure available online only.)
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Finally, the reduced models of the coordination sphere of the Fe
(II) were computed with QM calculations (details in Supporting
Information) in order to discriminate between the relative
strength of the metal coordination, which could just be treated
in an ad hoc way by means of the docking parameters and the
overall effect of all contacts with the protein. The results sum-
marized inTable 4 S, Supporting Information, reveal that the neu-
tral form of 1 has a positive enthalpy of complex formation. This
means that it is unable to displace two water molecules from the
coordination sphere. Therefore, despite the limitations of the
docking approach, it is indeed unlikely to mimic the pose of the
competitive inhibitors cocrystallized in the experimental struc-
Chiari ME et al. The Inhibitory Activity… Planta Med



Table 3 Brief summary of dock-
ing results.

Compound Free energy of binding/(kcal/mol)

Lowest energy structure in

the Fe(II) coordination site

Lowest energy structure

in the binding domain

Model I

NTBC − 7.75

Mesotrione − 8.78

DAS869 − 10.1

1 (Anionic species) − 7.09

1 (Neutral species) − 6.76

Model II

NTBC − 9.98 − 9.98

Mesotrione − 11.49 − 11.49

1 (Anionic species) − 8.55 − 9.80

1 (Neutral species) − 8.17* − 9.59

* Not coordinated to Fe(II)
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tures. However, its anionic form showed a similar chelating abil-
ity to that of mesotrione, and its complex formation free energy
was even slightly more favored by about 10 kcal/mol. This would
indicate that the preference of 1− for another site is not directly
related with its chelating ability but with other structural factors,
which will be discussed below.
Discussion
!

The results obtained from screening the anti-HPPD activity of 91
plants from the central region of Argentina showed F. oolepis, O.
charua, and S. cuspidata with the highest effectiveness, with the
first of these being the most potent (l" Table 1).
Bioguided fractionation of F. oolepis led to the isolation of the fla-
vanone pinocembrin (1) (l" Fig. 1). Its inhibitory value (IC50 =
18.7 µg/mL; l" Table 1) showed this compound to be almost four
times more potent than the crude ethanol extract. The presence
of synergism between extract components was thus discarded,
pointing to 1 as the only compound responsible for the inhibitory
action of the plant. As far as we know, this is the first time that
the anti-HPPD effect of 1 has been reported [14,22–25].
It is worth noting that the average inhibitory concentration of
compound 1 (l" Table 1) was of the same order of magnitude as
those of isoleptospermone and leptospermone, isolated from
Leptospermum scoparium J.R. Forst. & G. Forst. and Callistemon
citrinus (Curtis) Skeels (Myrtaceae) [6,26], resulting from 50% in-
hibition of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) HPPD
(IC50 s of 14.3 and 11.8 µM, respectively) [7]. The differences may
be attributed to the different HPPD source.
To gain more insight into the behavior of compound 1 in its inter-
action with HPPD, its mechanism and mode of inhibition were
determined. Compound 1 behaves as a reversible inhibitor. Ki-
netic analysis showed that 1 binds to HPPD as a noncompetitive
inhibitor, and thus the inhibitor can bind with a free enzyme or
with an enzyme-substrate complex and the inhibition cannot be
overcome by increasing substrate concentration.
Interestingly, deeper insights about the different mechanism of
inhibition clearly arose from the molecular modeling study. Both
the anionic (l" Fig. 6a) and neutral (l" Fig. 7) form of 1, when an-
alyzed in the whole binding domain of HPPD, showed greater af-
finity for the pocket at the entrance of themetal coordination site
than for the Fe(II) site itself, where DAS869, mesotrione, and
NTBC tightly bind to the metal, as observed in both our docking
results and in the experimental crystal structures. This site did
Chiari ME et al. The Inhibitory Activity… Planta Med
not overlap with the site of these inhibitors (see the structures
of NTBC and 1 superimposed in l" Fig. 7a), and thus presumably
would not overlap with the primary binding of HPP. These dock-
ing results are in agreement with the proposal of a noncompeti-
tive inhibition found by kinetics studies. Particularly, in the case
of the neutral form of 1 (prevalent at physiological pH), there was
no low energy structure mimicking the mode of interaction of
the tight-binding inhibitors with the iron.
Following previous explanations, the presence of two carbonyl
bonds lying in a plane due to their conjugation in some triketones
is a necessary requirement for potent HPPD inhibition [20,27].
These observations involved mesotrione used as a reference.
Compound 1, which has a similar framework to mesotrione be-
cause of its structural rigidity, showed lower activity. The dimin-
ished activity could be attributed to the fact the 4-carbonyl group
is part of a γ-pyrone six member ring. The fusion of the A and C
rings warrants the planarity of the β-dioxo system, but it also
prevents the flexibility for accommodating the other substitu-
ents. This results in a large coordinated plane π system (which fits
well in the noncompetitive site as shown in l" Fig. 7), in contrast
to the crystallographic poses of both NTBC and DAS869 in the Fe
(II) coordination sphere, where the π conjugation is twisted into
two separated planes. On the other hand, the characteristic flava-
none B-ring does not seem to be responsible for the different
binding mode since it fits well either in the metal coordination
site (by π-π stacking with Phe364) or in the hydrophobic part of
the pocket, which shapes the noncompetitive site. However, de-
spite the lower activity of 1 compared to mesotrione, the flava-
none could be considered a potent HPPD inhibitor, according to
its KI value (13.7 µM) and in agreement with the considerations
of Ling et al. [28].
All the structural data discussed above may help in rationally im-
proving the potency in derivatives of 1 and could be summarized
as follows:
1. The quantum calculations of the complexation energies sug-

gest that the anion of 1 is not a poor chelating agent of the Fe
(II) coordination site compared to the known potent inhibitors
since its results were even better than mesotrione. Thus, its
preference for other binding modes should be ascribed to its
shape and the role of other substituents (see below). On the
other hand, although 1− seems to act as a ligand of Fe(II), note
that mesotrione as well as the crystallographic references
DAS869 and NTBC is substantially more acidic than 1.

2. The free 7-OH group plays a role both in the binding as a biden-
tate ligand of the iron in the anionic form and in the binding to
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the site, where it does not interact with the coordination cen-
ter. However, in the first case, interaction with the neutral Ser/
Asn residues is rather weak, with long distances and unfavored
angles, whilst in the second case, it compliments very well
with the electrostatic potential of the noncompetitive site and
forms a strong H-bond with a charged Asp residue (l" Fig. 7).
Another related issue is that none of the inhibitors in the set
used to validate the procedures has a free OH in this position
relative to the β-dioxo system. Moreover, neither NTBC nor
DAS869 experimental complexes show H-bond interactions
with the couple of Ser/Asn residues. On the contrary, DAS869
exposes its hydrophobic t-butyl group to the polar residues
and NTBC to its aliphatic ring. In general, as previously noted
[2], there was no H-bond interaction found for this kind of in-
hibitor. Thus, the 7-OH group could be one factor contributing
to differentiate the behavior of 1.

The results shown give evidence about the inhibitory activity,
mode, and mechanism of action of compound 1 and its role as a
starting structural backbone for the development of semisyn-
thetic or synthetic agents with improved HPPD inhibitory activ-
ity. Rational clues about how to derivatize this backbone also
arose from the structural analysis presented.
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Materials and Methods
!

Plant materials
Plants were collected in the hills of Córdoba Province, Argentina,
from November to December 2005. Most of them were native
species with a small number of adventive and introduced plants
(Table 5 S, Supporting Information). Aerial parts of F. oolepis (chil-
ca), the source of the extract to be submitted to isolation, were
also collected inMarch 2006. Previous to performing this process,
the activity of the extract was verified. Voucher specimens have
been deposited in the “Marcelino Sayago” Herbarium of the
School of Agricultural Science, Catholic University of Córdoba
and were authenticated by the botanist Gustavo Ruiz (details
available as Table 5 S, Supporting Information). Plants were se-
lected according to their availability, accessibility, and the lack of
scientific information about their inhibition on HPPD.
Crushed aerial plant material was extracted by 48 h maceration
with 96% ethanol. The yields of each extract, obtained after sol-
vent removal and expressed as the percentage of weight of air-
dried crushed plant material, are shown in Table 5 S, Supporting
Information.

Chemicals, equipments, and reagents
HPP, mesotrione (Pestanal®, purity 99.9%, by HPLC), and tauto-
merase from bovine kidney Grade I was purchased from Sigma-
Aldrich Co. L-glutathione and 2,6-dichlorophenolindophenol
were obtained from Carl Roth and Merck, respectively. Silica gel
used for column chromatographies was purchased from Sigma-
Aldrich Co. and all solvents were HPLC grade. Analtech silica gel
GF plates (2000 microns) were used for preparative TLC. 1H- and
13C‑NMR spectra were recorded in DMSO-d6 (Sigma-Aldrich Co.)
with a Bruker AVANCE II 400 spectrometer (Bruker Corporation)
operated at 400MHz for 1H and at 100MHz for the 13C nucleus.
HPLC was performed on a Shimadzu LC-10 AS (Shimadzu Corp.)
equipped with a Phenomenex Prodigy 5 µ ODS (4.6mm i.d.
× 250mm) reversed-phase column, eluting with water/metha-
nol/trifluoracetic acid (TFA) 65:35:1 as the mobile phase and
with UV detection at 365 nm.
Isolation of the 4-hydroxyphenylpyruvate
dioxygenase inhibitory compound
The resulting ethanol extract from F. oolepis (9.70 g) was sub-
jected to vacuum liquid chromatography on silica gel (427.3 g,
63–200 µm, 11.0 × 24.0 cm; Macherey & Nagel) using a 10% step
gradient of hexane/Et2O (v/v 100% hexane to 100% Et2O; 200–
750mL, each), Et2O/AcOEt (v/v 90–10% Et2O in AcOEt to 100%
AcOEt; 250–300mL, each), and AcOEt/MeOH (v/v 90–10% AcOEt
in MeOH to 100% MeOH; 250mL, each) to yield 30 fractions
which were collected in 11 fractions according toTLC monitoring
(Fr1–Fr11). Among these, Fr3–Fr4 (4.01 g), eluted with Et2O 100
(750mL) to Et2O/AcOEt 90:10 (300mL), showed inhibitory activ-
ity on HPPDwith an IC50 of 62 µg/mL. After submitting these frac-
tions to column chromatography on silica gel (35–70 µm,
3.0 × 60 cm; Fluka) eluted with a 10% gradient of hexane/Et2O/
acetone, 25 fractions were obtained and combined in 10 fractions
(Fr1-Fr10) according toTLC analysis. Those fractions obtainedwith
hexane/Et2O 50:50 to 25:75 showed 70% or higher inhibitory
activity at a fixed dose of 50 µg/mL and therefore were rechroma-
tographed in a column chromatography (36.8 g, 35–70 µm,
3.0 × 60 cm; Fluka) eluted with a 10% step gradient of hexane/
Et2O starting on 100% hexane to 100% Et2O to yield 35 fractions
combined in seven fractions (Fr1–Fr7). A solid, identified by NMR
as 5,7-dihydroxyflavanone or pinocembrin (1) [14] (l" Fig. 1;
copies of the original spectra are obtainable from the correspond-
ing author), was obtained by spontaneous crystallization (99%
purity by HPLC; yield: 1.14 g/100 g of crushed plant material and
4.95 g/100 g of extract) from active Fr5 eluted with hexane/Et2O
50:50.
The remaining active impure mixture, containing only pinocem-
brin and another substance, was further purified by preparative
TLC to finally obtain orange-yellow needles. This solid, identified
by NMR as 2′,4′-dihydroxychalcone [29] (99% purity by HPLC;
yield: 1.24/100 g of crushed plant material; copies of the original
spectra are obtainable from the corresponding author), showed
no effectiveness against HPPD (IC50 = 456.7 µM).

4-Hydroxyphenylpyruvate dioxygenase preparation
HPPD was extracted from porcine liver acetone powder. This
source was chosen due to the high similarity (more than 80%) be-
tween this enzyme and that of human origin [30]. For the prepa-
ration of the powder, the method described by Taniguchi and
Armstrong [31] was followed. Briefly, 200 g of fresh liver were
homogenized with 200mL of cold phosphate buffer (50mM,
pH 7.4). Then, the slurry was stirred for 5min at 4°C with 3 L of
cold acetone. The resulting homogenate was filtered and the res-
idue was washedwith cold acetone and then peroxide-free ether.
After drying at room temperature, the solid was sieved. The re-
sulting powder (60 g) was extracted for 2 h with the phosphate
buffer at 4°C as described in Roche et al. [32]. After centrifugation
at 16300 g for 30min at 4°C, a glutathione solution (0.1mg/mL)
was added to the supernatant. This was fractioned and stored at
− 20°C as a source of HPPD [32]. The protein concentration was
determined as 28.77mg/mL using the Bradford method (BioRad
Laborarories) with bovine serum albumine as the calibrating pro-
tein. This preparation presented an HPPD-specific activity of
183.5 units/mL, defining 1 unit as the increase in absorbance of
0.001/min.
Chiari ME et al. The Inhibitory Activity… Planta Med
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p-Hydroxyphenylpyruvate dioxygenase inhibitory assay
The inhibitory activity of HPPD was determined spectrophoto-
metrically with the enol-borate tautomerase method following
the technique reported by Schulz et al. [33] with some modifica-
tions. Briefly, 150 µL of HPP 1.8mM, 300 µL of a mixture of 100 µL
of glutathione 166mM and 1000 µL of 2,6-dichlorophenolindo-
phenol 3.3mM (freshly prepared), and 10 µL of tautomerase
(10 U/mL) were added to 8500 µL of borate buffer (0.42M ad-
justed to pH 6.2 with 0.25M Na2HPO4). The tautomerization was
allowed to equilibrate at room temperature, measuring the in-
crease in absorbance at 308 nm due to the enol-borate complex
formation [34]. Then, 10 µL of a solution of the extracts or com-
pounds, previously dissolved in ethanol, or of each fraction ob-
tained in the isolation processes dissolved in DMSO, was added
to 950 µL of the reagent mixture. Finally, 40 µL of enzyme prepa-
ration was added. Extracts were first tested at 250 µg/mL and
those showing 85% inhibition or higher in three different repeti-
tions were further evaluated for the concentration necessary for
50% inhibition (IC50). Controls containing only ethanol or DMSO
were simultaneously run. Mesotrione dissolved in DMSO (final
concentration = 250 µg/mL) was used as a positive control.
The reaction was run at 25°C following the decrease in absorb-
ance monitored at 308 nm from time 0 and thereafter at 10min
intervals. The reaction extent was determined by the difference
in absorbance at 10 and at 40min and the percentage of inhibi-
tion was calculated according to the following equation (1):

Inhibitionð%Þ ¼ 100� �Abssample � 100
�Abscontrol

� �
(1)

The mechanism by which 1 inhibits the enzyme was further in-
vestigated through the graph of the relationship of the enzyme
activity with its concentration in the presence of different con-
centrations of the inhibitor. Under the conditions employed in
this study, the enzymatic reaction follows a Henri-Michaelis-
Menten equation, and the kinetic of the enzyme was therefore
studied using the Lineweaver-Burk double-reciprocal plot of ve-
locity in the function of different substrate concentrations (after
tautomerization). The inhibition constant KI was obtained from
the second plot of the vertical intercept (1/Vmax

app) of the dou-
ble-reciprocal lines versus the concentration of compound 1. KI

is represented by the equation (2):

Intercept ¼ 1
KIVmax

I½ � þ 1
Vmax

(2)

Molecular modeling
Ab initio calculations on the active site and inhibitors, and prepa-
ration of the models for docking: HPPD is a non-heme iron (II)-de-
pendent metalloenzyme. It has been suggested [1,35] that the
coordination site of the Fe(II) of the free enzyme may be de-
scribed by a fast equilibrium between the pentacoordinated and
hexacoordinated forms (two histidines, the glutamate, and two
or three water molecules, respectively). In order to obtain a reli-
able charge distribution for the docking simulations, QM calcula-
tions were performed at the CAM-B3LYP/LACVP [36] level of
theory on reduced models of the site including the Fe(II) ion,
two (or three) coordinated water molecules, and the coordinated
residues capped at their α-carbons. This approach had already
been satisfactorily used for describing a more complex (dinu-
clear) metal coordination site [13]. The RESP charges [37] were
obtained from the quantum results, and the solvation parameters
Chiari ME et al. The Inhibitory Activity… Planta Med
for Fe(II) had an effective radius of 1.3 Å for RESP fitting. The rest
of the protein was charged as previously [13] using Gasteiger
charges (Autodock 4.2 program default) [38] (further details
available as Supporting Information). Even though divalent iron
is expected to form high spin complexes, no assumptions were
made about the actual spin state and all possibilities were calcu-
lated. The reduced model of the active site was therefore simu-
lated as a singlet, triplet, quintet, and heptuplet. Since the quintet
(S = 2) was found to be themost stable state, this was used for fur-
ther QM calculations and for setting up the docking protocol (for
details see Table 6 S, Supporting Information). The structures of
the most stable conformers of the inhibitors were obtained by
full geometry optimization using the same level of theory as in
the calculations of the coordination site model. The nature of
minima of the stationary points was established bymeans of har-
monic frequency analysis using the Gaussian 09 package [39].
General docking setup: The bindingmode of 1was analyzed in sil-
ico by docking it to a mammal structure of the HPPD from Ratus
novergicus (PDB entry 1SQI) complexed with the DAS869 inhib-
itor. The binding was compared with the inhibitor NTBC onto
the HPDD from Streptomyces avermitilis (PDB entry 1T47) as
more accurate and complete information is available for this pro-
tein. For both structures and by considering both penta- and hex-
acoordinations (see Supporting Information for further details),
different models were built (see below) and all of these were val-
idated by evaluating their performance in the following tests:
1. Blind docking was intended to reproduce the experimental in-

hibitor/protein structures since R. novergicus and S. avermitilis
proteins were cocrystallized with DAS869 [21] and NTBC [15]
(chemical structures in l" Fig. 4), respectively. All the models
built were challenged to reproduce the experimental pose of
the inhibitor in the crystal.

2. The correlation of the binding energies was estimated by dock-
ing against a panel of 13 experimental IC50 s for the compounds
shown in l" Fig. 4 [15–21]. The set includes 10 di- and trike-
tone-related compounds with known activity, mesotrione,
which was measured in this work as a known inhibitor,
DAS869, and NTBC.

A summary of the models built and subjected to the above exper-
imental correlations is as follows:
" Model I: R. novergicus HPPD with one water molecule coordi-

nated.
" Model II: S. avermitilis HPPD with all water molecules re-

moved.
" Model III: as Model I but with the water molecule removed.
" Model IV: as Model II but with one water molecule coordi-

nated.
" Model V: as Model I but with flexible His336, His364, and

water molecule.
" Model VI: as Model II but with flexible His336 and His364.
The results obtained only from Models I and II were discussed in
themain text since they yielded the best correlations with the ex-
periments for each structure after applying the validation proce-
dures described above (for further details see Tables 2 S and 3 S,
Supporting Information). The data regarding the rest of the mod-
els, which showed similar trends but lower correlation indexes
(with R2 ranging from 0.706 to 0.867), are summarized in Fig. 4 S,
5 S, 6 S and 7 S, Supporting Information.
Since the evaluated compounds A–M (l" Fig. 4) could present dif-
ferent tautomer and protonation states, the ligand structures
used for the docking procedures in each case corresponded to
that which is more likely to exist at physiological pH. With this



Fig. 8 Schematic representation of the reaction of
FE(II) chelation by inhibitors.
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in mind, computational simulations of the pKaʼs of the tautomer-
ic forms of compounds A–M were performed using ACD/Labs
software [40,41] (details available in Table 7 S, Supporting Infor-
mation). The pKa values (both calculated and experimentally re-
ported, when available) found for all the assayed compounds
were below 7, and therefore the anionic form was the one used
for calculation, as drawn in l" Fig. 4. However, for our subject
compound 1, as its pKa was 7.56, close to the physiological pH,
both the neutral and phenolate forms were simulated and ana-
lyzed in detail.
The Autodock 4.2 package [38,42] was used for the docking sim-
ulations, and analysis and visualization of the results were made
using both MGLTools 1.5.4 [38] and VMD 1.8.9 [43] (further de-
tails available as Supporting Information).

Evaluating the chelating ability of 1 and mesotrione
by quantum calculations
Finally, reduced models of the active site of the HPPD were used
for calculating the chelating ability of mesotrione and the neutral
and phenolic forms of 1. The estimated ΔGs for the reaction on
l" Fig. 8 were obtained from the total energies at the CAM-
B3LYP/LACVP+ level of theory without zero point corrections
(details available as Supporting Information) both in vacuum
and using an implicit solvation model (IEFPCM) with a dielectric
constant of 12.8 [44–46].

Statistical analysis
The results are expressed as the mean ± SE obtained by Infostat
Software, 2008. The IC50 was calculated by log-Probit analysis re-
sponding to five concentrations of each extract, active fractions,
or compound by duplicate in two different experiments at the
95% confidence level with upper and lower confidence limits.

Supporting information
Complete information about tested plants and their activity to-
gether with information about the molecular modeling are avail-
able as Supporting Information.
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