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Summary

Accurate prediction of breeding values depends on capturing the variabil-

ity in genome sharing of relatives with the same pedigree relationship.

Here, we compare two approaches to set up genomic relationship matrices

for precision of genomic relationships (GR) and accuracy of estimated

breeding values (GEBV). Real and simulated data (pigs, 60k SNP) were

analysed, and GR were estimated using two approaches: (i) identity by

state, corrected with either the observed (GVR-O) or the base population

(GVR-B) allele frequencies and (ii) identity by descent using linkage analy-

sis (GIBD-L). Estimators were evaluated for precision and empirical bias

with respect to true pedigree IBD GR. All three estimators had very low

bias. GIBD-L displayed the lowest sampling error and the highest correla-

tion with true genome-shared values. GVR-B approximated GIBD-L’s corre-

lation and had lower error than GVR-O. Accuracy of GEBV for selection

candidates was significantly higher when GIBD-L was used and identical

between GVR-O and GVR-B. In real data, GIBD-L’s sampling standard devia-

tion was the closest to the theoretical value for each pedigree relationship.

Use of pedigree to calculate GR improved the precision of estimates and

the accuracy of GEBV.

Introduction

In traditional pedigree-based evaluation, the numera-

tor or additive relationship matrix (Henderson 1976),

which is equal to twice the matrix of pairwise kinship

(or coancestry) coefficients, has been widely used to

estimate genetic covariances and breeding value of

individuals. Additive relationships carry information

on genetic resemblance from common inheritance

and are based on probabilities that gene pairs are

identical by descent or IBD (Wright 1922). In animal

breeding, and throughout this paper, it is assumed

that there is an accepted founder population relative

to which IBD is to be measured, consisting of the

founder members of a defined pedigree, with the

implication that more remote coancestry of current

gametes is ignored (Thompsom 2013). Therefore,

individuals whose genes are copies from an ancestral

one in the base population are likely to share on aver-

age the same causal loci, so that phenotypic data from

related individuals are informative for the prediction

of the breeding value of either animal. Inbreeding and

kinship coefficients, and more generally probabilities

of any IBD state, are expectations of random variables

that indicate IBD at a given point in the genome

(Thompsom 2013). In the absence of inbreeding,
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additive relationships (Wright 1922) represent the

expected proportion of genome-shared IBD.

Finite size of the genome and recombination intro-

duce randomness and variation on the amount of gen-

ome-shared IBD for any particular type of relatives

(Risch and Lange, 1979; Guo, 1996; Hill & Weir 2011),

which makes actual relationships to differ from their

expected value. The availability of dense panels of SNP

markers in livestock species allows estimating these

actual relationships using marker data. The genomic

relationship matrix (G) calculated with markers has a

paramount role in the prediction of breeding values

from animal models, when using best linear unbiased

predictors. Elements of G are estimates of the actual

proportion of the genome that two individuals share

(realized relationships), whereas the pedigree-based

relationship matrix is the expectation of this proportion

(expected relationships) (Goddard et al. 2011). The use of

realized relationships is responsible for the gain in accu-

racy while predicting breeding values in genomic selec-

tion schemes. This gain in accuracy can be shown to be

due to the reduction in the variance of Mendelian

residuals of the genomic breeding values (Cantet &

Vitezica 2014). The efficiency of the BLUP (accuracy)

depends on howwell marker-derived genomic relation-

ships capture the patterns of realized genetic relation-

ships at causal loci (VanRaden 2007, 2008; De los

Campos et al. 2013).

VanRaden (2007, 2008) proposed a calculus of

genomic relationships by adding cross-products of

marker data deviated from mean gene frequencies

and divided by the total heterozigosity at the markers.

These relationships reflect the actual proportion of

marker alleles shared by identity by state (IBS), as a

deviation from the expected proportion of alleles

shared in the population (Vela-Avit�ua et al. 2015). As

a result, likeness among alleles at all markers consti-

tutes the information on which genetic resemblance

among animals is carried to G. An alternative way of

using marker information to estimate realized rela-

tionships is to trace IBD inheritance of haplotypes

within the known pedigree (Thompson 2013). The

efficiency of either method depends on how well they

can capture the signals from the true IBD process in

the genome continuum, which in turn is affected by

linkage disequilibrium, incomplete pedigree informa-

tion and inbreeding. VanRaden’s estimates of genomic

relationships require accurate estimates of the true

allele frequencies of the unselected base population,

which can be difficult to obtain. Simple frequency

estimates obtained as means of only the subset of

known genotypes either from the current or from the

base population (founders), or even base frequency

estimates using the algorithm of Gengler et al. (2007),

can lead to biased relationship coefficients. If base

allele frequencies are unknown, incorporating pedi-

gree information into these calculations could be a

strategy when dealing with large families with a small

number of genotyped animals.

The purpose of this research was to compare two

approaches to estimate the true pairwise-realized rela-

tionships between genotyped animals, in terms of the

precision of the relationships, by analysing real and

simulated data. We define the true realized relation-

ship as the proportion of total genome that two indi-

viduals share IBD relative to the specified founders of

a pedigree. The first one is the IBS-derived approach

that is widely employed in genomic BLUP (GBLUP)

methods (VanRaden 2008) and uses only markers to

infer genome sharing across individuals. The second

approach (IBD) infers relationships tracing transmis-

sion of markers throughout the pedigree (linkage

analysis) even if there are many ungenotyped family

members, while accounting for population linkage

disequilibrium or background sharing beyond the

pedigree. We further illustrate the consequences of

using either approach on accuracy of genomic esti-

mated breeding values (GEBV).

Materials and methods

Two approaches to estimate genomic relationships

were evaluated using both simulated and real pig

data. To ascertain the precision of these estimates, the

true relationships – or realized proportion of genome

shared by relatives of a given degree – need to be

known. These are available only for simulated data,

yet unknown with real data (it is impossible to know

without error which of the alleles from the founder

allele set an individual has inherited at every genome

location). Still, for real data, we can compare the

mean and variance of the true relationships, which

can be calculated using theoretical formulae (Hill &

Weir 2011) that depend only on map length and on

the pedigree relationship between the individuals,

with the corresponding estimated mean and variance.

Thus, we used an existing real pig data set from an F2
cross, in which pedigree relationships were precisely

defined and had many pairs of individuals within

each type of pedigree relationship. The simulated data

are a more conventional population.

Simulated data set

Data were simulated using QMSim (Sargolzaei &

Schenkel 2009), by considering a simplified scenario
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for the breeding programme of a pig nucleus. The sim-

ulated genome consisted of 5 autosomal chromo-

somes of 160 cM each. Bi-allelic markers (35 000)

were distributed randomly across the genome, with

equal allele frequency in the first historical genera-

tion. A mutation rate of 2 9 10�4 per locus per gener-

ation was applied, assuming a recurrent model. The

historical population was simulated by considering an

equal number of males and females, discrete genera-

tions, random mating, no selection and no migration.

Offspring were produced by the union of gametes ran-

domly sampled from the male and female gametic

pools. Recombination was modelled at a rate of 1

cM/Mb assuming a Poisson distribution. After 2500

generations with a constant size of 500, followed by a

severe bottleneck during 30 generations with a con-

stant size of 75, a historical population at mutation-

drift equilibrium that produced realistic level of linkage

disequilibrium was established. Sex ratio was constant

across historical generations, except for the last genera-

tion, in which 20 males and 200 females were gener-

ated by random choice of two gametes from the male

and female gametic pools. These animals constituted

the founders for the recent population (G0). Among

the marker loci with MAF >0.01 in G0, 16 000 SNPs

(spaced on average every 0.05 cM) were randomly

chosen. A polygenic trait with heritability (h2) of 0.25

and phenotypic variance of 1 was simulated by assign-

ing to each founder an additive effect sampled from a

normal distribution with mean 0 and variance 0.25.

Then, the following selection scheme was followed for

five generations. In each generation, 20 boars were

mated with 200 sows to produce 2000 offspring (half

of them males). Mating design was optimized to mini-

mize inbreeding (Sonesson & Meuwissen 2000) using

the ‘minf’ option in QMSim. For the next generation,

the 20 boars with the highest estimated BV were

selected based on best linear unbiased prediction

(BLUP) via an animal model, whereas 200 sows were

randomly selected. Pedigree was available for all 5 gen-

erations (10 220 animals). For estimation purposes, it

was assumed that 140 animals (i.e. G0 boars, the 20

selected boars from generations 1 to 4, and 40 boars

randomly chosen from the selection candidates from

generation 5) were genotyped. The rest of animals in

the pedigree were assumed non-genotyped. The whole

simulation process was replicated 50 times.

Real data set

Pedigree and genotypic data used in our analyses

were collected on 411 animals from an outbred

resource pig population Duroc 9 Pietrain elapsing

three generations (F0, F1 and F2) that was raised at

Michigan State University Swine Teaching and

Research Farm (Edwards et al. 2008). Animal proto-

cols were approved by the Michigan State University

All-University Committee on Animal Use and Care.

The population was established from 4 F0 Duroc sires

and 15 F0 Pietrain dams. From the F1 progeny, 50

females and 6 males were selected as parents of the F2
generation while avoiding full- or half-sib matings. A

total of 1259 F2 pigs were born alive in 141 litters

across 11 farrowing groups. All animals were pro-

duced through the artificial insemination. From the

F2 animals, 336 pigs were selected for genotyping to

represent all full-sib families (Gualdr�on Duarte et al.

2013). A total of 411 pigs (19 F0, 56 F1 and 336 F2)

out of 1334 were genotyped with the Illumina Porci-

neSNP60 chip (Ramos et al. 2009). Genotyping was

performed at a commercial laboratory (GeneSeek, a

Neogen Company, Lincoln, NE, USA). Of 62 163

SNPs, 38 263 were employed for all analyses after

quality-control procedures, which involved removing

non-autosomal SNPs (15 298), SNPs with MAF <0.01,
call rate <90% or Mendelian inconsistencies >2%.

Computation of Pairwise identical-by-descent (IBD)

genome sharing in simulated data

Following Hill & Weir (2011)’s notation, let �Rij be the

‘true’ realized relationship or proportion of the total

genome individuals i and j share IBD, with respect to

the specified founders of a pedigree (i.e. starting from

G0 in the simulated data and from F0 in the real data).

We will call �Rij shortly hereafter the pedigree IBD gen-

ome sharing. Assume initially that, at any genome

location, it can be determined which of the 2n alleles

from the founder set an individual inherited (this is

not possible with real data). Furthermore, let

Sl l ¼ 1; . . .; 9ð Þ be an indicator variable for the event

of observing the condensed identity state l (Jacquard

1974). Thus, Sl is equal to 0 or 1, depending on the

observed IBD pattern among the four alleles present

in two individuals. Then, the realized coancestry or

kinship coefficient between a pair of individuals i and

j at location t is �hijðtÞ ¼ S1 þ 1
2
S3 þ S5 þ S7ð Þ þ 1

4
S8. This

directly provides that the realized additive relation-

ship coefficient at location t is �hijðtÞ and that the actual

relationship �Rij, considering a genome of length L, is

as follows (Guo 1995)

�Rij ¼ 1

L

ðL
0

2�hijðtÞ dt ð1Þ

For simulated data, we used equation (1) to com-

pute �Rij for each pair of animals and also computed
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the overall mean and variance of �Rij across the whole

set of analysed pairs (10 220) for each replicate. For

the real data set, we cannot compute the value of �Rij

as we cannot observe �hijðtÞ, but we can compute theo-

retically its mean and variance. All pairs of animals in

the real data set (1334 animals) were classified into 14

different pedigree relationships (e.g. half-sibs, full-

sibs, see Fig. 1). For each relationship, the mean of
�Rij, E(�Rijk) (k = 1, . . ., 14), was obtained from the pedi-

gree, and the variance, Var(�Rijk), was computed using

the theoretical formulae derived by Hill & Weir

(2011) (formulae are for non-inbred individuals, as is

the case for the real data set), which depends only on

the number of chromosomes and their map length.

Sex-averaged map length (cM) was taken from

recombination rates reported by Tortereau et al.

(2012). The overall mean and variance of �Rij across

the whole real set of analysed pairs can be derived

from the theory of finite mixture distributions

(Fr€uhwirth-Schnatter 2006). Let �Rij denotes the IBD

genome sharing for a pair of animals from a mixture

distribution whose probability density function is as

follows:

f �Rij

� � ¼ XK
k¼1

gk p �Rijk

� � ð2Þ

In (2), p(�Rijk) denotes the conditional probability den-

sity function of �Rij given relationship class k (k = 1,

. . ., 14) (Fig. 1), and gk is the mixture coefficient for

class k such that
PK

k¼1 gk ¼ 1. Then,

E �Rij

� � ¼ XK
k¼1

gkE �Rijk

� � ð3Þ

Var �Rij

� � ¼ XK
k¼1

gk E �Rijk

� �þ Var �Rijk

� �� �
E �Rij

� �� �2 ð4Þ

Estimated IBD genome sharing between genotyped

animals

Two approaches to estimate pairwise relationships

based on markers, using or not pedigree information,

were compared. These estimates will constitute the

elements of the genomic relationship matrix for geno-

typed animals, G, of order 140 (411) for the simulated

(real) data set.

The first one is an identity-by-state (IBS)-based

approach, which is widely employed in genomic BLUP

(GBLUP) methods (VanRaden 2008), and uses centred

genotypes to measure the number of alleles shared

between individuals, sums over SNPs and divides by

the total heterozigosity at the markers. Thus, the fol-

lowing estimated pairwise relationship between ani-

mals i and j, GVRij
is equal to the following:

GVRij
¼

PM
m¼1 ðxim � lmÞðxjm � lmÞ
2
PM

m¼1 pmð1� pmÞ
; ð5Þ

where xm is coded as �1, 0 and 1 for homozygote,

heterozygote and other homozygotes, respectively,

lm = 2(pm – 0.5) is the population mean of the geno-

typic values, and pm is the population frequency of

the second allele at locus m. Relationships were calcu-

lated with PREGSF90 (Aguilar et al. 2011) using

either the observed allele frequency of each SNP

(GVR-O) or the frequencies from all base population

animals (GVR-B). The observed allele frequencies refer

to all the genotyped animals (140 in simulated data

and 411 in real data). The base allele frequencies refer

to the 20 G0 boars and the 200 G0 sows in the simu-

lated data and to the 4 F0 boars and 15 F0 dams in real

data. In either case, for each SNP, we counted the

number of ‘2’ alleles across individuals and divided by

the total number of alleles (two times the number of

individuals used for the computation). To avoid singu-

larity issues, matrix GVR was calculated as G = w

G* + (1 � w) A22, where w = 0.95, G* is the genomic

matrix before weighting and A22 is the matrix of rela-

tionships across genotyped animals, that is a subma-

trix (of dimension 140 and 411 for simulated and realFigure 1 Examples of relationships on the real dataset.
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data, respectively) of the whole pedigree-based rela-

tionship matrix A (of dimension 10 220 and 411,

respectively). In real data, the 411 genotyped individ-

uals constituted the pedigree, as non-genotyped indi-

viduals were F2 individuals with no descendants.

Matrix GVR-O was also scaled based on A22 to control

bias as G* = 11’a + bG, where parameters a and b are

estimated by equating means of diagonal elements

and all elements in the two matrices (A22 and G)

(Vitezica et al. 2011).

The second approach infers relationships tracing

transmission of markers throughout the known pedi-

gree (linkage analysis, GIBD-L). We used the hidden

Markov model (HMM) proposed by Li et al. (2010).

For this, the forward–backward algorithm imple-

mented in the software PEDIBD (Li et al. 2010) was

used. This algorithm can deal with a pedigree com-

posed of individuals with and without genotypes, as is

the case here. For any given pair of genotyped indi-

viduals, the hidden state (qm) of the HMM is the num-

ber (0, 1 or 2) of pairs of IBD alleles at the SNP

position m. The observable state, om, is the number of

pairs of alleles that are IBS at the same position. First,

the HMM is built for a pair of alleles with three possi-

ble hidden states: (i) non-IBD, (ii) IBD within the

known pedigree and (iii) background IBD to fit the

hidden relatedness beyond the relatedness that is

observed through the available pedigree structure.

Separating this background IBD from the IBD within

the pedigree prevents biased inference of true IBD sta-

tus, as we aim at estimating IBD from the founders of

the pedigree but not further back in time. Transition

probabilities between states do not only depend on

the marker interval, but also on all possible inheri-

tance paths within the pedigree linking two marker

alleles. Based on this basic model, the HMM for a pair

of individuals is built by assuming independence

between two homologous chromosomes within an

individual, which is an approximation in a pedigree

with loops. Thus, for two individuals i and j, the esti-

mated genome sharing (GIBD�Lij) can be calculated as

GIBD�Lij ¼
XM
m¼1

wm

"
1

2
P ðqm ¼ 1 o1; . . .; oMj Þ

þP ðqm ¼ 2 o1; . . .; oMj Þ
# ð6Þ

where wm is the weight of the mth SNP and P(qm = 1|
o1,. . .,oM) (P(qm = 2| o1,. . .,oM) is the posterior probabil-

ity of sharing 1(2) pair(pairs) of alleles IBD at position

m, conditional on the information of all marker loci.

Each weight wm was calculated as the mth SNP’s

coverage related to the physical length of the genome.

Our approach differs from that of Fernando and

Grossman (1989) essentially in that IBD probabilities

at each SNP are estimated conditionally not only on

the marker genotype of that locus but on the whole

sequence of observable genotypes throughout the

genome.

Matrix GIBD-L may be indefinite showing (small)

negative eigenvalues. The reason for this is that ele-

ments of GIBD-L (the genomic relationships) are com-

puted on a pairwise basis instead of globally. Thus, the

‘nearPD’ function in the R package ‘Matrix’ was used

to compute the nearest positive definite matrix to the

original GIBD-L (Cheng & Higham 1998; Higham

2002). These estimates were retained for the statistical

analysis.

Statistical analysis

For the real data, the mean and variance of the

estimated genome sharing (GVR-Oij,
GVR-Bij

or

GIBD-Lij
) within each class of relationship (Fig. 1)

and for all the pedigrees were calculated and com-

pared against the theoretical values. Correlations

between the estimated relationship or genome

sharing values and their corresponding additive

relationship coefficients obtained from pedigree

were also calculated.

For each replicate of simulated data, estimators

were evaluated for precision by means of mean square

error (MSE) and the Pearson correlation coefficient,

q, between the estimated (GVR-Oij,
GVR-Bij

or GIBD-Lij
)

and the true values of genome sharing (�Rij). The esti-

mators were also evaluated for empirical bias, which

was calculated by taking the difference Gij – �Rij for

each pair of animals and averaging them across pairs.

Finally, the regression of true values of genome shar-

ing on the estimated values was calculated as a mea-

sure of the closeness between estimators and the true

relationships.

Consequences of using different G on accuracy of

breeding values

The simulated data were used to test whether the

improved estimates to set up G could result in signifi-

cant gains in accuracy of genomic estimated breeding

values (GEBV) for selection candidates. A single trait

animal model y = 1nl + Za + e, with one phenotypic

record per animal, except those from generation five

(2000 selection candidates), was used. Hence, the left-

hand side (LHS) of the mixed-model equations was

equal to the following:
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LHS ¼ 10n1nr
�2
e 10nZr

�2
e

Z01nr�2
e Z0Zr�2

e þH�1r�2
a

� �
ð7Þ

In (7), Z0Z is a diagonal matrix with dii = 1 when

animal i has a record and zero; otherwise, H�1 is the

inverse of the covariance matrix of BV that combines

pedigree and genomic information (Aguilar et al.,

2010), r2a is the additive genetic variance and r2e is the
residual variance. Accuracy of GEBV for each animal

was taken to be equal to the following:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEVi

r2A

s
ð8Þ

where PEVi is the prediction error variance of animal

i. To compare the different genomic relationship

matrices, it was assumed that the correct covariance

matrix of BV was �Rij with elements �Rij obtained using

Equation (1). In the ‘true’ model (i.e. H ¼ �R), PEV

can be computed based on the inverse of LHS. When

the covariance matrix of BV is misspecified, PEV can

be calculated as in Henderson (1975):

PEV ¼ Caa þ Caa H�1r�2
A

�R�H
� �

H�1 Caa ð9Þ
with

H�1 ¼ A�1 þ 0 0

0 G�1 � A22
�1

� �
ð10Þ

where Caa is the inverse of LHS, obtained using (10)

in (7), G�1 is the inverse of the genomic relationship

matrix (GVR-O, GVR-B or GIBD-L) and A22
�1 is the

inverse of the pedigree-based numerator relationship

matrix for genotyped animals (Aguilar et al., 2010).

Accuracies were computed under two heritability sce-

narios: h2 = 0.25 and h2 = 0.15.

Scheff�e’s multiple comparison procedure was used

to test the significance of differences in accuracies

between the covariance matrix estimators. Accuracies

(accijk) of selection candidates (k = 1, . . ., 2000) were

analysed using the mixed model (Proc Mixed SAS

version 9.3.1, SAS Institute, Cary, NC, USA)

accijk = si + rj + eijk, where the relationship matrix

estimator was treated as fixed (si, i = 1, . . ., 4 for A22,

GVR-O, GVR-B and GIBD-L, respectively), and the repli-

cate (rj, j = 1, . . ., 50) was treated as a random effect.

A banded main diagonal covariance matrix was used

for errors eijk, in which all observations having the

same level of the fixed effect (si) have the same vari-

ance parameter or component.

Estimating accuracy using (9), we assume that IBD

relationships are a perfect description of genetic

covariances across individuals (i.e. they correspond to

the ‘true’ model), which in turn implies the hypothe-

sis that all base alleles are different. This is wrong in

the presence of large QTLs, but seems a reasonable

assumption for most cases, as most genomic informa-

tion comes from close relatives (i.e. Habier et al.

2013).

Results

Real data

In the real data, the estimated genome sharing was

computed for a total of 84 254 pairs of genotyped ani-

mals. The mean and standard deviation of the abso-

lute difference between the observed and the base

allele frequency were 0.083 and 0.074, respectively.

The observed pattern for the three estimators of gen-

ome sharing (GVR-O, GVR-B and GIBD-L) within each

pedigree relationship was similar: the estimated mean

decreased as relationships become more distant

(Table 1). However, the mean of GIBD-L was closer to

its theoretical value on nine of fourteen pedigree rela-

tionships; GVR-O was the closest to the theoretical

value for the grandparent–grand offspring and half-

cousin relationships. The latter relationship involves

the former one, as half-cousins have one grandparent

in common. Besides, the mean of the estimated rela-

tionship between half-cousins followed the same pat-

tern as the overall mean, and it was computed with

Table 1 Sample size (N), expectation of actual relationships (R) and

sample mean of estimated genome sharing (G) using three different esti-

mators for a real pig data set for specific types of relatives

Relationship N

Expected
Mean

R GIBD-L GVR-O GVR-B

Parent–offspring 784 0.5000 0.5000 0.4299 0.4824

Full-sibs 639 0.5000 0.5046 0.4286 0.4886

Three-quarter

sibs (horizontal)

816 0.3750 0.3730 0.3126 0.3588

Half-sibs, mothers’

(fathers) half-sibs

2848 0.3125 0.3231 0.2522 0.2997

Grandparent–grand

offspring

1344 0.2500 0.2067 0.2299 0.2709

Half-sibs 7061 0.2500 0.2537 0.2185 0.2811

Uncle–nephew 1716 0.2500 0.2282 0.2279 0.2468

Double first cousins 544 0.2500 0.2343 0.2193 0.3150

Triple half-cousins 2912 0.1875 0.1754 0.1533 0.2197

Double half-cousins 5408 0.1250 0.1313 0.1076 0.1229

Half-uncle–nephew 6800 0.1250 0.1344 0.1216 0.1266

First cousins 6960 0.1250 0.1169 0.1097 0.1780

Half-cousins 22 944 0.0625 0.0735 0.0585 0.1019

Unrelated 23 478 0.0000 0.0000 0.0444 0.0599
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the highest number of pairs. The estimators GVR-B for

uncle–nephew, half-uncle–nephew and double half-

cousins were closest to the true means. Note that

uncle–nephew can be regarded as a two-way

half-uncle–nephew relationship, whereas double

half-cousins can be viewed as descendants of four

half-uncle–nephew pairs.

Table 2 reports the theoretical standard deviations

(SD) of actual relationships and the sampling SD of

the estimated genome sharing for each type of rela-

tives. The IBD-based values of estimated SD were

always smaller than their IBS-based counterparts,

whether the observed or base allele frequencies were

used: on average, GIBD-L, GVR-O and GVR-B were

7.50, 60.37 and 174.07% higher than the theoretical

SD, for each pedigree relationship, respectively. Thus,

the overlapping in the amount of IBD sharing from

quite different pedigree relationships was higher for

the IBS-based estimates.

For the real data set with pig records, the overall

mean and standard deviation (SD) of the estimated

genome sharing were compared against their theoreti-

cal values (Table 3) calculated using Equations (3)

and (4) and based on pedigree and porcine genetic

maps. The mean of genomic relationships was equal

to the theoretical value when GVR-O was used, as this

estimator was scaled based on A so that the means of

diagonals and off-diagonals are the same as in the

pedigree relationship matrix (Vitezica et al. 2011). The

overall mean of GIBD-L was very close to the theoreti-

cal value. The estimator that differed most from the

overall theoretical mean was GVR-B. With respect to

the overall SD of the estimated genome sharing, the

value for GIBD-L was closer to the theoretical value

than GVR-O or GVR-B.

The Pearson correlation coefficients between the

estimated values of genome sharing and their corre-

sponding pedigree-based additive relationship coeffi-

cient were 0.959, 0.797 and 0.702 for GIBD-L, GVR-O

and GVR-B respectively.

Simulation

In the simulated data, the estimated genome sharing

was computed for a total of 9730 pairs of genotyped

animals. For the simulated data set, the mean and

standard deviation of the absolute difference between

the base and the observed allele frequency were 0.072

and 0.068, respectively. Table 4 summarizes the

precision and bias averaged over replicates

that were achieved by the three different estimators

(GVR-Oij
, GVR-Bij

and GIBD-Lij
) of the pairwise pedigree

IBD genome sharing between simulated genotypes

(�Rij). All three estimators had very low empirical bias,

being GVR-O the least unbiased. GIBD-L displayed

lower sampling MSE and higher correlation with true

values of genome sharing than GVR-O. When allele

frequencies in the base population were used, the cor-

relation between GVR-B and the true value approxi-

mated the corresponding correlation for GIBD-L, while

having lower MSE than GVR-O. The GVR-B estimator,

although not always feasible to calculate (as the fre-

quencies from the base population are not always

available), assured a better scenario. The last column

in Table 4 displays the regression of the true genomic

relationships on the estimated genomic relationships.

The regression coefficient was close to 1 for GIBD-L,

being significantly lower for both GVR estimators.

To analyse the consequences of using different G

matrices in the accuracy of prediction of BV, the accu-

racy of GEBV for selection candidates was computed

under two heritability scenarios: h2 = 0.25 and

h2 = 0.15 (Table 5). As expected, the use of any of the

genomic matrices resulted in greater accuracy of

GEBV for selection candidates when compared to the

pedigree-only-based relationship matrix. Accuracy of

Table 2 SD of actual relationships (R) and estimated genome sharing

(G) using three different estimators for a real pig data set for specific

types of relatives

Relationship R GIBD-L GVR-O GVR-B

Parent–offspring 0.0000 0.0000 0.0573 0.1188

Full-sibs 0.0527 0.0578 0.0826 0.1317

Three-quarter sibs (horizontal) 0.0476 0.0478 0.0711 0.1180

Half-sibs, mothers’

(fathers) half-sibs

0.0447 0.0438 0.0641 0.1086

Grandparent–grand offspring 0.0456 0.0465 0.0993 0.1454

Double first cousins 0.0419 0.0472 0.0581 0.1017

Half-sibs 0.0373 0.0344 0.0609 0.0895

Uncle-nephew 0.0348 0.0361 0.0512 0.1204

Triple half-cousins 0.0386 0.0420 0.0560 0.1038

Double half-cousins 0.0350 0.0385 0.0504 0.0862

Half-uncle–nephew 0.0335 0.0375 0.0465 0.1110

First cousins 0.0297 0.0321 0.0535 0.0793

Half-cousins 0.0248 0.0279 0.0495 0.0709

Unrelated 0.0000 0.0000 0.0651 0.0854

Table 3 Overall mean and standard deviation (SD) of actual relation-

ships (R) and estimated genomic relationships (G) across all pairs of

genotyped individuals in a real pig data set

R GIBD-L GVR-O GVR-B

Mean 0.1062 0.1087 0.1062 0.1416

SD 0.1100 0.1090 0.0985 0.1273

© 2016 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2016) 1–11 7

N. S. Forneris et al. Genomic relationships using pedigree and markers



GEBV for selection candidates was statistically higher

when matrix GIBD-L was used. In fact, differences

were larger for genotyped animals. The differences

among the IBS-based estimators were not statistically

significant. The accuracies dropped in the same mag-

nitude when h2 = 0.15 for the three estimators.

Discussion

De los Campos et al. (2013) found that ‘the effective-

ness of GBLUP depends critically on the extent to

which marker-derived genomic relationships reflect

the patterns of realized genetic relationships at causal

loci’. The current research attempted to compare two

approaches to estimate true realized relationships to

be used in the set-up of genomic relationship matri-

ces. One was the widely used VanRaden (2008)

approach, which estimates relationships using only

markers (GVR). The second was an approach that uses

genomic data to estimate realized relationships based

on IBD sharing of marker alleles relative to the known

pedigree (GIBD-L).

The real data set allowed comparing the empirical

variation in genome sharing of relatives with the same

pedigree relationship, from either IBD- or IBS-based

estimators. The SD of the estimated genome sharing

for GIBD-L was notably closer to the theoretical value

than GVR-O or GVR-B. In contrast, it was extremely

difficult to distinguish different pedigree relationships

from the actual fraction of the genome shared esti-

mated by GVR. Although GVR is an estimate of the

realized proportion of genome-shared IBD, it does not

take either the parent–offspring transmission or the

segmental nature of inheritance of DNA into account

(Thompson 2013). Indeed, permutation of the geno-

types for each SNP will result in the same IBS-based G

matrix. The mean of GIBD-L was extremely close to its

theoretical value for most pedigree relationships. GVR-

O was unbiased for the overall mean, yet it did not

behave as well as GIBD-L when comparisons were

made on a relationship basis. The most biased estima-

tor was GVR-B (Table 3), which tended to overesti-

mate pedigree IBD genome sharing. This can be

explained in part by the fact that base allele frequen-

cies were computed from a small number of animals

that belonged to two different breeds (4 Duroc sires

and 15 Pietrain dams) so that estimates of true base

allele frequencies suffered from a lack of precision. In

fact, GVR-B was the most biased for the half-cousins

and unrelated relationships, which account for 27.2

and 27.9% of the pairwise estimated relationships,

respectively, and are expected to have the lowest (or

zero) theoretical mean pedigree IBD genome sharing

(Table 1).

Results from our simulation allowed us to compare

the precision and bias achieved by the different esti-

mators of the true pedigree IBD genome sharing

between genotyped animals. GIBD-L displayed higher

precision than GVR-O. This can be because GVR-O

could not capture the unobserved history of related-

ness within a small livestock population as the one

simulated when dealing with a small number of geno-

typed animals. A better scenario was assured when

allele frequencies in the base population were used,

allowing the precision of GVR-B to approximate that

of GIBD-L. This result also agrees with the fact that

MSE(9100) Pearson correlation Bias b1*

GVR-O 0.9352 � 0.2847 0.678 � 0.048 �0.0086 � 0.0095 0.7483

GVR-B 0.5703 � 0.2059 0.876 � 0.022 0.0180 � 0.0185 0.7285

GIBD-L 0.1886 � 0.0535 0.946 � 0.008 0.0122 � 0.0091 0.9723

*b1 is the regression coefficient of the true genomic relationship on the estimated genomic rela-

tionships.

Table 4 Performance of estimators of pair-

wise genomic relationships with the simulated

data

h2 A GVR-O GVR-B GIBD-L

0.25 Genotyped* 0.498a (0.002) 0.538b (0.002) 0.538b (0.002) 0.559c (0.002)

All* 0.497a (0.001) 0.518b (0.001) 0.518b (0.001) 0.521c (0.001)

0.15 Genotyped* 0.460a (0.003) 0.501b (0.003) 0.501b (0.003) 0.528c (0.003)

All* 0.458a (0.002) 0.481b (0.002) 0.481b (0.002) 0.486c (0.002)

*Different letters in the same row indicate a statistically significant difference between the covari-

ance matrices (p < 0.0001)

A: pedigree-based relationship matrix; GVR: IBS-based genomic relationship matrix constructed

with either the observed allele frequencies (GVR-O) or the frequencies of all base population animals

(GVR-B); GIBD-L: IBD-based genomic relationship matrix.

Table 5 Mean (SE) accuracy of GEBV for selec-

tion candidates under different relationship

matrices over replicates
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GVR-B was nearly unbiased in our simulation, in con-

trast to the results from real data, where base allele

frequencies were not well represented by frequencies

of F0 genotyped animals. A solution, as in VanRaden

(2008), could be to estimate base allele frequencies

with a linear model that solves for gene content of

non-genotyped ancestors and descendants using pedi-

gree (Gengler et al. 2007).

Vela-Avit�ua et al. (2015), in a simulated aquacul-

ture breeding scheme, showed that differences in

accuracies of GEBVs among G estimators depend on

marker density: IBS-based GEBVs were slightly more

accurate than their IBD-based counterparts using

dense markers, but also considerably more sensitive

to a reduction in density. Yet, these authors found

that accuracy of IBD-based GEBV was stable across

marker densities and, in fact, greater at low densities

(≤100 SNP/M) than that achieved using the IBS-based

G matrix. In our simulation using dense markers,

accuracy of GEBV for selection candidates was statisti-

cally higher when matrix GIBD-L was used. This slight

superiority in accuracy could be explained by the fact

that our IBD-based approach differs from that used in

the above-mentioned article in that it models LD

information. This is achieved by adding a background

IBD state to fit the hidden relatedness beyond the

relatedness that is observed through the available

pedigree structure. Yet, this comes at the expense of

using HMM methods that are computationally inten-

sive (~4 hours per chromosome on a computer having

a Quad-core 2.7 GHz AMD Opteron 8384 processor

with 128 GB of memory).

Characterizing actual relationships in animal,

human and agricultural populations is a key aspect in

genetic analysis. QTL detection models in association

analysis generally correct for structure and relatedness

between individuals using a relationship matrix (ei-

ther genomic or pedigree-based) or even using the

methods of estimating genome-wide pairwise IBD

within families (Kennedy et al. 1992; Kang et al. 2010;

Legarra et al. 2015). Legarra et al. (2015) obtained

similar results when comparing methods to detect

QTL in four livestock species using markers, whether

a genomic or a pedigree-based numerator relationship

matrix was used. Yet, no further investigation on the

subject has been carried out so far. A more precise

genomic relationship matrix such as the one proposed

in our research (GIBD-L) may potentially imply higher

power to detect QTL in livestock populations, where

pedigree is (up to some extent) known.

With respect to the differences in accuracy of

GEBVs among the IBS-based estimators, these were

not statistically significant. Strand�en & Christensen

(2011) showed that changes in the numerator of GVR

(as can the allele frequencies used to centre geno-

types) do not change relative differences between the

estimated GEBVs, because they are just shifted by a

constant. However, modifying the denominator that

scales GVR is like dividing or multiplying G by a con-

stant and will, in principle, change results, although

in our case this did not affect the results greatly.

Conclusion

Incorporating pedigree data to trace IBD inheritance

in the calculation of genomic relationships improved

the precision of estimates of actual relationships or

proportion of genome shared between individuals in

livestock populations. Moreover, the IBD-based

method presented here better captures the extent of

the variation in the actual proportion of genome

shared by relatives that have the same kind or degree

of pedigree relationship. When dealing with small

numbers of genotyped animals, marker-only-based

methods could be good estimators of G as well, pro-

vided that accurate inferences of allele frequencies in

the base population were available. Using pedigree

and markers, the gain in accuracy in elements of G

was translated into higher accuracies in genomic

breeding value predictions for selection candidates.
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