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A predictive Quantitative Structure–Property Relationship (QSPR) for the refractive indices
of 370 solvents commonly used in the processing and analysis of polymers is presented,
using as chemical information descriptors the simplified molecular input line entry system
(SMILES). The model employs a flexible molecular descriptor and a conformation-
independent approach. Various well-known techniques, such as the use of an external test
set of compounds, the cross-validation method, and Y-randomization were used to test and
validate the established equations. The predicted values were finally compared with
published results from the literature. The simple model proposed correlates the refractive
index values with good accuracy, and it is not dependent on 3D-molecular geometries.
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1. Introduction

It is well known that the solvent plays an important role in polymer synthesis, processing,
and characterization. The structure and dynamics, as well as the physical and optical attri-
butes, of polymers are partly determined by the solvent [1]. Some important properties of a
polymer, such as average molecular weight and refractive index, needed to evaluate its poten-
tial usefulness in applications such as manufacture of waveguides, solar cells, semiconductors,
optical and packaging materials, can be modulated by changing the solvent used during pro-
cessing [2–5]. Light-scattering experiments in dilute solutions are often used to determine
average molecular weights of polymers [6]. The method is based on the fact that a polymer
dissolved in a solvent is an optical inhomogeneity that scatters light, and the scattering
depends on the solution concentration and the refractive index of both solvent and polymer.
The rate of change of the refractive index (n) of a dilute solution for different concentrations
of the polymer (c) is key in the interpretation of light-scattering experiments. For such dilute
solutions, the specific refractive index increment (∂n/∂c) is a useful constant whose value only
depends on the solution components and temperature. The specific refractive index increment
is proportional to the difference between the refractive indices of the polymer and the solvent.
Therefore, the accuracy of the method can be improved if the refractive index increment
between polymer and solvent is increased.
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The measurement of the refractive index of a polymer also involves a solution. The n of
organic polymers ranging from 1.3 to 1.7 can be measured with an accuracy of four decimal
places at 23°C through ASTM D 542 - 00 and ISO 489:1999 standard methods, using a
V-prism refractometer. A contact liquid is required to produce a planar contact between the
sample and the instrument′’s prism. Because alterations in n due to chemical interaction
between the solvent and the polymer must be avoided, the number of solvents that can be
used is limited. Moreover, the solvent’s n must be higher but not below one unit to the
second decimal place when compared with the index of the polymer being measured.

It is clear that the refractive index of solvents used in the processing and analysis of
polymers should be carefully considered when evaluating if a solvent is suitable for a given
purpose. Moreover, the possibility of having a simple theoretical methodology to quickly and
accurately predict the refractive indices of commonly used solvents, which constitute a large
set of very diverse compounds, can have uses in many others areas. During recent decades,
the application of Quantitative Structure–Property Relationship (QSPR) theory [7–9] has
proved to provide excellent prediction of properties in a fast and inexpensive way.

In QSPR theory, the property of a chemical compound is determined solely by its molecu-
lar structure, which is quantified through a set of adequate molecular descriptors. The descrip-
tors are numbers containing specific information on the constitutional, topological,
geometrical, hydrophobic, and/or electronic attributes of the chemical structure [10–12]. The
statistical correlation of an experimental property with a set of descriptors results in a model
which can be used to discover practical relationships and trends. Within the QSPR framework
there are several factors that are crucial; among them, the most important are: (a) the com-
position of the training and test sets; (b) the choice of representative molecular descriptors
with low collinearities between them; (c) the amount of descriptors included in the model; (d)
the use of suitable modelling methods; and (e) the employment of validation techniques to
verify the predictive performance of the developed models [13–16].

Although many QSPR models have been developed for homologous series of com-
pounds [17–19], general QSPR studies modelling the refractive index of an unrelated set
of organic solvents with their chemical structure are scarce. Katritzky et al. [20] devel-
oped a five-parameter correlation equation for 125 different organic compounds using the
Comprehensive Descriptors for Structural and Statistical Analysis (CODESSA) software.
Using quantum chemical, topological, and constitutional descriptors, a good correlation
with r2 = 0.945 and r = 0.0155 was obtained. Models involving quantum-chemical
descriptors usually imply a relatively difficult calculation of the optimum molecular
geometry, involving high computational costs and much time. In this context, conforma-
tion-independent 0D, 1D and 2D-QSPR methods emerge as an alternative approach for
developing models based on the constitutional and topological molecular features of com-
pounds [21,22]. The exclusion of 3D structural aspects also avoids problems associated
with ambiguities resulting from an incorrect computational geometry optimization due to
the existence of compounds in various conformational states. These kinds of problems
may also lead to the loss of predictive capability of the QSPR when applied to the pre-
diction of an external test set of compounds. In this work, we propose a flexible descrip-
tor-based QSPR model [23] for the prediction of refractive index values, in a molecular
set composed of 370 organic solvents used for the synthesis and characterization of poly-
mers. In the realms of the approach used, the calculated flexible descriptor is a molecular
descriptor which depends both on the molecular structure and the property under analysis
(n), but does not explicitly depend on the 3D-molecular geometry.

2 S.E. Fioressi et al.
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2. Materials and methods

2.1 The flexible molecular descriptor definition

The high-quality experimental refractive indices measured at 298 K on 370 common solvents
were collected from a published compilation [24]. The n values range in the interval [1.280,
1.750], and the complete list of solvents studied here are included in Table S1 as Supplemen-
tary Material (available via the Supplementary Content tab on the article’s online page at
http://dx.doi.org/10.1080/1062936X.2015.1064472]. Several kinds of flexible molecular
descriptors can be readily calculated with CORAL freeware for Windows [25]. This software
has been successfully applied previously in several QSPR studies, and also for Quantitative
Structure–Activity Relationship (QSAR) analyses [18].

Solvents were represented with Simplified Molecular Input Line Entry System (SMILES)
notation, the chemical format used by CORAL. Three different structural representation (SR)
approaches are available in the CORAL program: (i) a chemical graph, such as a hydrogen-
suppressed graph (HSG), hydrogen-filled graph (HFG) and graph of atomic orbitals (GAO);
(ii) SMILES; and (iii) a hybrid representation which includes both graph and SMILES [23].
The most appropriate combination of structural attributes should be chosen for a modelling
process, because the selected SR defines the number and types of local descriptors that
participate in the QSPR analysis.

In the graph approach, the Morgan’s extended connectivity indices of kth order for vertex
(atom) number j (kECj, k = 0–3) can be used as structural attributes. It should be noted that
the index of zero-th order 0ECj represents the vertex degree for j (number of neighbour atoms
to j), while the higher order indices kECj are obtained through a recursive formula based on
0ECj (see in Table S2, available online).

In the SMILES approach, the one-, two-, and three-elements SMILES attributes1sk,
2sk,

3sk,
respectively, can be calculated. If a SMILES is a sequence of elements such as ‘ABCDE’,
then such structural attributes can be represented with Equations (1)–(3):

‘ABCDE’ ! ‘A’; ‘B’; ‘C’; ‘D’; ‘E’ 1sk
� �

(1)

‘ABCDE’ ! ‘AB’; ‘BC’; ‘CD’; ‘DA’; 2sk
� �

(2)

‘ABCDE’ ! ‘ABC’; ‘BCD’; ‘CDE’ 3sk
� �

(3)

In addition, the NOSP attribute represents an index calculated according to the presence or
absence of the chemical elements nitrogen, oxygen, sulphur, and phosphorus; the HALO attri-
bute represents the presence or absence of fluorine, chlorine, and bromine; BOND is a mathe-
matical function representing the presence or absence of double (=), triple (#), or stereo
chemical bonds (@ or @@), and the ATOMPAIR is a mathematical function for the presence
of the seven chemical elements: F, Cl, Br, N, O, S, and P.

Within the CORAL framework, a QSPR model is obtained through a one-variable linear
correlation between n and a properly defined flexible descriptor (DCW). The DCW descriptor
is a linear combination of special coefficients, the so-called correlation weights (CW). A CW
value is calculated for each type of structural attribute of the training set. The method for
obtaining the CW values for all the structural attributes is based on the Monte Carlo (MC)
simulation method, by searching for the highest correlation coefficient (r) between n and the
DCW descriptor.

The DCW flexible descriptor depends upon the threshold value (T) and the number of
epochs or iterations (Nepochs) used. These parameters are positive integers from the MC

SAR and QSAR in Environmental Research 3
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method that should be correctly specified in order to calculate the DCW values. The T defines
rare (noise) SMILES attributes that do not contribute to the predicted n, so that all SMILES
attributes that take place in less than T SMILES notations of the training set are classified as
rare instead of as active. Nepochs is the number of iterations used during the numerical opti-
mization procedure [26]. In current study, T ranges from 0 to 5 and the maximum number of
iterations used is 50.

2.2 Model validation

The validation of the QSPR consists of testing its ability to predict the property for molecular
structures not considered during the model development. The theoretical validation of the lin-
ear regression models is based on the popular validation criteria based on Cross Validation
using Leave-One-Out (loo) and Leave-More-Out (ln%o, with n% being the percentile of
molecules removed from the training set). The statistical parameters rln%o and sln%o (correla-
tion coefficient and standard deviation of Leave-More-Out) measure the stability of the QSPR
upon inclusion/exclusion of molecules. The number of cases for random data removal anal-
ysed in this study is 100,000. According to the specialized literature, the loo-explained vari-
ance (r2loo) should be greater than 0.5 for a validated model, although this is a necessary but
not sufficient condition for its predictive power [13].

A more reliable validation is applied that consists of using an external test set of struc-
tures. The 370 solvents are ranked according to their n values, and every alternate compound
is assigned to the training set (train), validation set (val) and test set (test). Each set thus
includes 124, 123, and 123 compounds, respectively.

We use Y-Randomization [27] as a way of checking that the model does not result from
happenstance and to avoid the development of fortuitous correlations. This technique consists
of scrambling the experimental property values in such a way that they do not correspond to
the respective compounds. After analysing 10,000 cases of Y-Randomization, the smallest
standard deviation value obtained using this procedure (srand) has to be a higher (poorer)
value than the one found by considering the true calibration (s).

3. Results and discussion

The QSPR analysis was performed by searching the best linear regression models on the
training set of 370 compounds; in order to decide which structural attributes are the most effi-
cient for each SR during the flexible descriptor design, the DCW flexible descriptor was opti-
mized by increasing r2train, until the model started to lose predictive capability in the
validation and test sets. This is the same situation that appears when the most predictive
model must be selected among several multivariable linear regressions, descriptors having
being searched in a pool containing thousands of them [28]. Table 1 contains a summary of
the statistical quality of the best QSPR models found by trying different possible CORAL
methods. It reveals that the best choice of SR for each solvent structure is a hybrid approach
that includes both graph and SMILES representations.

The statistics for the stepwise evolution of the solvent model are presented in Table 1,
where the first selected structural attribute is 1Sk, then the following ones are 1ECj, and

2Sk in
that order. The common practice of keeping the model’s size as small as possible (Ockham’s
razor) was followed; in order to avoid any fortuitous correlation, no more than three attributes
in the DCW calculation were considered because no further improvement can be obtained

4 S.E. Fioressi et al.
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beyond that value [29]. The model with two attributes was chosen due to its good perfor-
mance and simplicity. More complete details for the QSPR model established are as follows:

n ¼ 1:3611 � 0:0002995ð Þ þ 0:0120 � 0:0000352ð Þ � DCW (4)

Ntrain = 124, r2train = 0.93, strain = 0.017, F = 1554
Nval = 123, r2val = 0.93, sval = 0.015
Ntest = 123, r2test = 0.83, stest = 0.023, o(3s) = 4

Here, F is the Fisher parameter and o(3s) [30] indicate the number of outlier compounds hav-
ing a residual (difference between experimental and calculated n) greater than three times
strain and lower than three times strain. Equation (4) (see Figure 1) presents only one outlier
compound in the training set that has a residual higher than three standard deviations, com-
pound 1. We assume that this abnormal behaviour results from the fact that this compound
has the lowest refractive index value in the set (extreme sample). The compounds in the
validation and test sets that exceed the o(3s) have similar residuals to compound 1. After an
exhaustive analysis of these compounds, we are confident that their molecular structures and

Table 1. The stepwise search for the best QSPR model in the hybrid approach as structure
representation.

Structural attributes r2train strain r2val sval r2test stest

1Sk 0.68 0.035 0.75 0.028 0.77 0.028
1ECj,

2Sk 0.93 0.017 0.93 0.015 0.83 0.023
1ECj,

1Sk,
2Sk 0.93 0.017 0.94 0.014 0.87 0.021

Figure 1. Calculated versus experimental refractive indices for Equation (4) (N = 370).

SAR and QSAR in Environmental Research 5
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experimental refractive values are correct. Hence, we can assume that this irregular behaviour
may be attributed to the wide structural diversity of the 370 molecules considered in this
study. On the other hand, the dispersion plot of the residuals, presented in Figure 2, shows
that the points follow a random pattern around the zero line in such a way that a linear
regression model is fulfilled.

Table S3 (on the article’s online page) includes the predicted refraction index values and
the DCW descriptor, which considers mixed graph and SMILES approaches for the SR. We
apply Y-randomization, demonstrating that strain\srand and thus a valid structure–property
relationship is achieved. Equation (4) also satisfies the external validation conditions reported
in [31] (Table S4, available online):

- 1� r20
�
r2test\0:1 (0.02) and 1� r020

�
r2test\0:1 (0.00) and,

- 0.85 ≤ k ≤ 1.15 (1.00) and 0.85 ≤ k′ ≤ 1.15 (1.00)
- r2m [ 0:5 (0.76)
The parameters used during model building were T = 5 and Nepochs ¼ 50. The correlation

weights produced by the MC simulation appear listed in Table S5, while Table S6 includes
an example for calculating the DCW for 1. Figure 1 shows that the predicted versus
experimental refractive index obtained with Equation (4) follows a straight line.

The flexible descriptor of Equation (4) considers 1ECj as local graph invariant, and the
structural attributes that contribute to the DCW calculation are listed in Table S5. Further-
more, higher positive CW values tend to predict higher n values. Figure 2 shows the disper-
sion plot of residuals for the solvents studied. The QSPR given by Equation (4) predicts the
refractive index of 370 structurally diverse solvents with a good accuracy, and compares
favourably with previous published results. For instance, Equation (4) analyses a higher num-
ber of solvent compounds than a previous reported study [15], and only involves a single
descriptor as compared with the five descriptors used in that research. Furthermore, the
developed model was properly internally and externally validated.

Figure 2. Dispersion plot of residuals for 370 solvents.
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4. Conclusions

The refractive index is considered a fundamental physical property in the selection of an ade-
quate solvent for processing and characterization of a polymer. In this work, a solvent structure
model was proposed and successfully validated. The refractive index values correlate with good
accuracy, demonstrating that such a model is predictive in the validation process. The calculated
flexible descriptor does not require structural information on the molecular conformation of the
solvents studied, which means that the method is able to model the physical property by
representing the molecular structure aspects with a similar or better degree of detail as when
using a 3D-geometry-dependent approach [15]. The procedure employed here can be readily
applied to other solvent properties, which will be investigated in the near future.

Supplementary material

The Supplementary Material for this paper is available at http://dx.doi.org/10.1080/1062936X.
2015.1064472.
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