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During a negotiation, an agentmustmake several key decisions in order to achieve a profitable agreement.When
the negotiation is carried out in a social context, agents can use persuasion, besides the traditional exchange
of concessions. To carry out the persuasion and make concessions, the agents must employ resources that are
usually scarce. For this reason, the agents should carefully decide which opponent they should persuade to
maximise their profit, especially when the negotiation involves multiple parties. To make this decision, we
propose that the agents should persuade the opponents with a high influence on the other agents involved in
the negotiation. Therefore, we represent a negotiation context as a social influence maximization problem and
solve it under a model that learns how influence flows in a network by analyzing historical information. This
allows an agent to determinewhat opponents exert the highest influence. Finally, the agent uses this information
to decide which opponent to persuade during the negotiation. Experimental results showed that the agreement
rate increased when agents applied this approach.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Inmulti-agent systems, negotiation is a fundamental tool to reach an
agreement among agents with conflicting goals. Negotiation is a form of
interaction in which a group of agents, with conflicting interests and a
desire to cooperate, try to come to a mutually acceptable agreement
on the division of scarce resources [1]. The essence of the negotiation
process is the exchange of proposals. Agentsmake proposals and respond
to proposals in order to make concessions and converge on a mutually
acceptable agreement. However, not all approaches are restricted to an
exchange of proposals. In argumentation-based approaches [2–4,1,5,6],
agents are allowed to exchange some additional information as argu-
ments, besides the information uttered on the proposals, where social
factors play an important role. Thus, in the context of the negotiation,
an argument is seen as a piece of information that supports a proposal
and allows an agent (a) to justify its position of negotiation, or (b) to
influence the position of negotiation of other agents [7].

In some scenarios, the negotiation includes multiple parties (for
example, a group of personal agents that should negotiate date, place
and topics of a meeting on behalf of users). In these scenarios, agents
make proposals, present arguments to persuade other agents, and
accept or reject other proposals. In general, when an agent persuades
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another agent, some scarce resources are affected by the succeeding
concessions that it must carry out during this process. Particularly, this
fact is further reinforced when agents exchange rewards and threats
as a form of rhetorical arguments [8,9]. In other words, persuading an
opponent and making concessions have additional costs to the act of
simply uttering an argument or a proposal [8,10]. In this context, it is
necessary for the agent to manage the concessions that it can offer, in
order to ensure maximum influence on the rest of the participants. For
example, once an agent is persuaded to accept a proposal, this agent is
expected to continue participating in the negotiation in favour of such
proposal. Thus, if the agent succeeds in persuading an influential partic-
ipant, then this participant is expected to be able to persuade a great
number of participants on its own account. In contrast, if the agent per-
suades a participant with little influence, the possibility of propagating
the proposal will be smaller. For this reason, deciding which participant
to persuade is a key task, due to the fact that the proposal spreadwill be
higher if the influence of the persuadee is also higher.

Moreover, the agents of a multilateral negotiation usually form
(implicitly or explicitly) a social network in which several social factors
affect the negotiation result directly or indirectly. For example, these
factors are the trust among participants [4], their reputation [11], and
authority roles [3], among others. Additionally, these factors are related
to the spread of influence through a social network. The study of the
spread of influence exerted by users of a social network on other users
has received great attention in the last years. A key problem in this
area is the influence maximization problem. The influence maximiza-
tion problem involves finding a set of users in a social network, such
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that by targeting this set, one maximises the expected spread of influ-
ence in the network [12,13].

In this context, we propose an approach that allows an agent to de-
cide which opponent to persuade by observing the degree of influence
that the agents exert during the negotiations, and assuming that the re-
sources available during the negotiation are scarce. To do this, we adapt
the traditional influencemaximization problem to the negotiation con-
text and apply a data-based approach to social influence maximization
that learns how influence flows in a network by directly leveraging
available propagation traces, named Credit Distribution Model [12].

On the other hand, the feasibility and benefits of using autonomous
agents in negotiations with humans have been shown in several works
[14–16]. For this reason, although we present our approach from a per-
spective of autonomous agents, we claim that our approach can also be
applied to assist human negotiators by guiding them tomake decisions,
which increases their benefits, during a negotiation.

The experiments were carried out under several configurations,
taking into account the number of agents involved in the negotiation,
the number of previous negotiation traces used to train the model, the
social network density (graph density), the average trust level among
the agents, and the trust update rate (we took into account that trust
among agents can change during the negotiations). Experimental re-
sults showed that the agreement rate increases when an agent decide,
and is able, to persuade the opponent that maximises the expected in-
fluence spread according to the Credit Distribution model. Moreover,
the results showed that the increase of the agreement rate is high in
some configuration (e.g., when the social network density is low and
the trust level is high) and low in others (e.g., when both the social net-
work density and the trust level is high).

In short, we highlight twomain contributions of this work. First, this
work presents an approach that allows an agent to improve the agree-
ment rate during multilateral negotiations by indicating which oppo-
nent to persuade. Moreover, we present an experimental analysis that
shows in which scenarios the social influence plays an important role
during the selection of an opponent to persuade.

The article is organised as follows. Section 2 introduces basic concepts
about negotiation and social influence maximization. Section 3 presents
the approach to decide which opponent to persuade according to its in-
fluence. Section 4 shows the results obtained from the experiments.
Finally, Section 5, states our conclusions and suggests future work.

2. Backgrounds

In this section, we review two relevant fields for our work, namely,
negotiation among intelligent agents and social influencemaximization.
Thus, in the next section, we review some concepts about negotiation.
Next, we introduce themain concepts on social influencemaximization,
propagation models and algorithms.

2.1. Negotiation among intelligent agents

Negotiation is a form of interaction in which a group of agents, with
conflicting interests and a desire to cooperate, try to come to amutually
acceptable agreement on the division of scarce resources [1]. Much
work on negotiation is either concernedwith bilateral (one-to-one) ne-
gotiation [17] or with auctions [18]. However, in many real negotiation
scenarios groups of more than just two agents can freely come together
and agree on a deal [19]. For this reason, severalmultilateral negotiation
protocols have been proposed. In these protocols, a multilateral agree-
ment is defined as an agreement that is reached iff one agent makes a
proposal that is at least as good for each other agent as their own current
proposal [19]. Obviously, as the number of agents increases, reaching a
multilateral agreement is more difficult than reaching a bilateral one.
Despite the fact that the multilateral negotiation protocols define the
rules to guide the agents to an agreement, the agents must usually
take some key decisions to reach a profitable agreement.
As stated previously, the agents can exchange proposals and argu-
ments during a negotiation. To carry out this exchange, the agent
must possess a set of resources over which the concessions are made.
For example, from the point of view of the proposal exchange, when a
seller reduces the price of a good in order to reach a deal with a buyer,
the seller is also reducingher/his revenue in exchange for an agreement.
Moreover, when the agents exchange rhetorical arguments, the use of a
reward to persuade an opponent to accept a deal implies that the agent
must concede some resources as a reward in exchange for the accep-
tance [8,9]. As a result, it is important that the agent carefully select
the target of its concessions.

On the other hand, in addition to the utility of a proposal, there
are other factors that determine whether an agreement will be
reached or not. These factors participate actively during the persua-
sion process.

Mainly, the trust among the agents is a crucial factor. In the most
abstract manner, trust is a relation between a trustor and a trustee in
a context [20]. There are several kinds of trust. For example, we can
distinguish between human trust and computational trust. Human trust
refers to a mental state of humans. However, computational trust
describes representations of trust used in trust management systems.
Moreover, computational trust is usually processed in a manner that
aims to replicate how humans reason about human trust. In addition,
without explicitlymaking the distinction betweenhuman and computa-
tional trust, we can found more detailed definitions of trust. Expectancy
trust is a subjective, context-dependent expectation that the trustee
will choose a specific action in an encounter. Furthermore, dependency
trust can be defined as the subjective, context-dependent extent to
which the trustor is willing to depend on the trustee in a situation of
uncertainty [20].

Particularly, in our work, we understand trust as expectancy trust,
since this definition is widely adopted in the field of negotiation
among intelligence agents [21]. Thus, trust is seen as a relation between
two entities such that one entity (trustor) believes, expects and accepts
that a trusted entity (trustee) will act or intend to act beneficially [22].
Trust is an especially important issue from the perspective of autono-
mous agents and multi-agent systems [21]. Agents usually maintain
a trust network of their acquaintances, which includes ratings of
how much those acquaintances are trusted, and how much those
acquaintances trust their acquaintances, and so on [23]. Agents compute
this trust from different information sources. Direct experiences (the
experience based on the direct interaction with the acquaintance) and
witness information (the information that comes from other members
of the community) are the traditional information sources used by
computational trust [21].

When agents use argumentation to persuade other agents during a
negotiation, trust is used to determine which kind of argument they
should utter as well as to evaluate the proposals and arguments that
they receive. In agreement with this idea, Ramchurn et al. [4] proposed
an approach for persuasive negotiation and defined rules for argument
selection by observing the trust in the opponent and the expected utility
of the proposal. For example, if the trust is low and the utility is high
then the agent should send a strong argument, but if the trust is high
and the utility low, then it should utter a weak one. The authors also
proposed specific evaluation functions that agents can use whenever
a proposal, whether or not supported by an argument, is received.
These functions incorporate the notion of trust as the confidence in
the opponent to fully carry out a proposed action (be it a proposal or
an argument). For example, the agent evaluates a received proposal
by calculating the expected utility of moving into the proposed state
weighted by the trust in the sender, added to the expected utility of
remaining in the present state weighted by the amount of distrust
in the other party. Similarly, trust is applied in several negotiation-
related scenarios: auctions [24,25], argumentation [23], multi-agent
cooperation [26], and e-commerce [27], among others. Moreover, other
social factors, such as authority roles, have been taken into account to
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generate and evaluate arguments during argumentation-based
negotiations [3].

Taking decisions early during the planning stage of the negotiation
allows the agent to reach better agreements [28]. Some works [28,29]
have shown the importance of making negotiation decisions in a plan-
ning stage, though these approaches did not take into account the social
influence to make decisions. Additionally, the design of negotiation
strategies has been studied from several perspectives [30–33]. Particu-
larly, Rahwan et al. [34] determine that a negotiation strategy may be
defined as a rule or algorithm which specifies what the agent should
utter andwhen, in a particular negotiation interaction. In that direction,
Rahwan et al. identify some factors thatmay influence the design of the
strategy. These factors include goals (what goals the agent wants to
achieve by undertaking a negotiation), opponents (the nature of the
other participants), and resources (the time and the resources available
for the agent), among others. In this context, decidingwhich opponents
to persuade can be seen as the first step of the negotiation strategy. As
mentioned above, making this decision includes taking into account
the characteristics of the opponents (in this work, the social influence
exerted by the opponent) and the resources with which the agent can
make concessions.

2.2. Social influence maximization

Social influence is defined as change in an individual's thoughts, feel-
ings, attitudes, or behaviours that results from interaction with another
individual or a group [35]. Social influence occurs when one's actions
are affected by others and can be seen in conformity, socialization,
peer pressure, obedience, leadership, persuasion, sales, and marketing
[36]. Many applications exploit the social influence. In the field of data
mining, some applications include viral marketing [37], recommender
systems [38], analysis of information diffusion in Facebook and Twitter
[39], expert finding [40], link prediction [41] and ranking of feeds [42].
In this context, the propagation of influence that users of a social net-
work exert onother users has beenwidely studied in recent years. How-
ever, it has not been applied to support decisions during a negotiation
process.

One of the key problems in this area is the identification of influen-
tial users [12]. Kempe et al. [13] formalized this as the influencemaximi-
zation problem: given a directed graph G = (V, E, p), where nodes are
users and edges are labelled with influence probabilities among users,
the influence maximization problem looks for a set of seeds (users) that
maximises the expected spread of influence in the social network under a
given propagation model. A propagation model indicates how influence
propagates through the network. Two propagation models were pro-
posed by Kempe et al.: the Independent Cascade (IC) and the Linear
Threshold (LT) models. In both models, each node can be either active
or inactive at a given moment. Moreover, the tendency of each node
to become active increases monotonically as more of its neighbours
become active.

Given a propagation model m (for example, IC or LT) and an initial
seed set S ⊆ V, the expected number of active nodes at the endof thepro-
cess is the expected (influence) spread, denoted by σm(S) [12]. Then,
the influence maximization problem is defined as follows: given a
directed and edge-weighted social graph G = (V, E, p), a propagation
model m, and a number k ≤ |V|, find a set S ⊆ V, |S| = k, such that σm(S)
is maximum. Several approaches have been developed to solve this
problem. Despite the fact that this problem is NP-hard under both
the IC and LT propagation models, some characteristics of the func-
tion σm(S) (monotonicity and submodularity, see [13] for further
details) made it possible to develop a greedy algorithm to solve the
problem.

One of the limitations of the IC and LT propagationmodels is that the
edge-weighted social graph is assumed as input to the problem,without
addressing the question of how the probabilities are obtained [43].
For this reason, Goyal et al. [12] proposed the Credit Distribution (CD)
model, which directly estimates influence spread by exploiting histori-
cal data. In this context, the influence maximization problem to be
solved under the CD model is reformulated as follows: given a directed
social graph G = (V, E), an action log L, and a integer k ≤ |V|, find a set
S ⊆ V, |S| = k, such that σcd(S) is maximum. To solve this problem,
Goyal et al. developed an algorithm for influence maximization under
the CD model. This algorithm initially scans the action log L to learn
the influence probabilities in the social network, computing the in-
fluenceability scores for the users. Then, the seed set is selected under
de CD model by using a greedy algorithm with CELF optimization [44].
Finally, the true influence spread is computed. See [12] for further
details on algorithm implementation.

3. Modelling the process of deciding which opponent to persuade as
an influence maximization problem

To carry out concessions and persuasion during a negotiation, the
agent must employ resources that are usually scarce. For this reason,
agents should carefully decide which opponent they should persuade
tomaximise their profit, especiallywhen the number of agents involved
in the negotiation is large. To make this decision, we propose that the
agent persuade the opponents with a high influence on other agents
also involved in the negotiation. This influence is particularly interesting
to observe, since there are several factors related to the social relations
of the agents that influence the acceptance or rejection of a proposal.
Among these factors, we can distinguish the trust in the opponents,
their reputations and authority roles, among others.

As introduced in Section 2.2, an algorithm for influence maximiza-
tion allows us to find the set of users in a social network, such that by
targeting this set, one maximises the expected spread of influence in
the network. For this reason, we propose to model the process of decid-
ingwhich opponent to persuade as an influencemaximization problem.
Particularly, we use the CDmodel [12], since it allows us to use historical
data of past negotiation to estimate the influence spread. To do this, we
adapt the influence maximization problem to the negotiation context
indicating how to define the problem inputs: a directed social graph
G = (V, E), an action log L, and an integer k ≤ |V|.

First, we will define the characteristics of the negotiation context
in which our approach can be applied. Clearly, as we stated previously,
the negotiation contexts must be multilateral. Otherwise, it would be
impossible to analyze any influence spread. As we show in Section 4
below, the number of agents involved in the negotiation affects the
benefits of our approach.

Moreover, the decision functions of the negotiation protocol, espe-
cially the proposal and argument evaluation mechanisms, must con-
sider social factors (e.g., trust), besides the proposal utility. In this
point, the argumentation-based negotiation approaches, such as the
one proposed by Ramchurn et al. [4], meet this requirement. One of
the benefits is that the social factors have a low variation from one
negotiation to another, as occurs with the influence in social networks,
allowing an algorithm to learn patterns that could be applied for deci-
sionmaking. In contrast, the utility rarely bears relation to the influence
exerted by one agent on another one. In addition, the utility can have a
high variation among negotiations. Finally, we assume that agents have
scarce resources to employ during the negotiations.

In this context, we define the directed social graph Gneg = (Vneg,
Eneg), where Vneg is the set of agents that are participating in the negoti-
ation and Eneg is the set of directed edges corresponding to social
relations among the agents. Each edge is linked to a set of social factors
sf, and each factor is represented by a name and a value (between
0 and 1). For example, given two agents a1 and a2, an edge e1,2,
representing a relation between a1 and a2, is linked to a set of social
factors sf1,2 = {(trust, 0.8)} indicating that a1 has a high trust in a2. It is
worth noticing that the social relations are not reciprocal. Thus, an
edge e2,1, representing a relation between a2 and a1, can be linked to
sf2,1 = {(trust, 0.2)}. That is, although a1 has a high trust in a2, a2 has a



Fig. 1. Graphical representation of our approach.
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low trust in a1. Moreover, we assume that not all agents are related to
each other. Therefore, Gneg is not complete. However, the graph can be
dense (in which the number of edges is close to the maximal number
of edges) or sparse (a graph with only a few edges). The experiments
(Section 4) show how this fact has a repercussion on the agreement
rate obtained by the agents.

Moreover, we define a negotiation log Lneg where the proposals
accepted by the agents are recorded. That is, a tuple a;p; tð Þ∈Lneg indi-
cates that agent a accepts proposal p at time t. It is worth noticing that
we need to record only the acceptance of the proposal, allowing the
agents to keep any other interaction private. Finally, we define an inte-
ger kneg ≤ |Vneg| depending on thenumber of resources that the agent has
to make concessions and persuade opponents. From a pragmatic point
of view, kneg represents the number of concessions or persuasions that
the agent managed to achieve during the negotiation.

Then, we adapt the influence maximization problem to the negotia-
tion context as follows: given a directed social graph Gneg = (Vneg, Eneg),
a negotiation log Lneg , and a integer kneg ≤ |Vneg|, find a set Sneg ⊆ Vneg,
|Sneg| = kneg, such that σcd(Sneg) is maximum. Finally, we run the
algorithm1 for influence maximization defined in [12] and obtain Sneg.
Notice that, intuitively, set Sneg contains the opponents that the agent
should persuade during the negotiation. Fig. 1 shows a graphical repre-
sentation of our approach.

4. Experimental evaluations

4.1. Experimental settings

To evaluate our approach, we ran experiments in several negotiation
scenarios. The experimentswere implemented by using themulti-agent
platform JADE [45]. Moreover, each negotiation scenario was described
by the following dimensions:

• Number of agents involved in the negotiation (n): since the negotia-
tion is multilateral, several agents were involved in each negotiation.
We ran experiments with a small group of agents (|Vneg| = 10) and
a large one (|Vneg| = 100).
1 It is worth noticing that any algorithm that solves the influence maximization prob-
lem under de CDmodel can be applied in our approach.
• Graph density (gd): the graph density represents the rate between the
real number of edges of a graph and the maximal number of edges
that the graph could have. As stated previously, we assume that not
all agents are socially related to each other. Thus, each agent is related
to a set of agents (acquaintances). That is, for each agent ai ∈ Vneg,
there exists a set Q i = {qi

j ∈ Vneg|ei, j ∈ Eneg ∧ qi
j ≠ ai}. Moreover, we as-

sume that agent ai can only persuade agent aj iff aj∈Q i. This is because
if aj ∉ Q i there is not a social relation between the agents, which is
equivalent, for example, to saying that sfi,j = sfj,i = {(trust, 0.0)}. In
such a case, we assume that any proposal of ai will be rejected by aj
(see function EVa(p, b) below). For the scenarios where |Vneg| = 10,
we defined a graph density of 0.2, 0.5 and 0.8, and for the scenarios
where |Vneg| = 100, we defined a density of 0.02, 0.05 and 0.08.
Thus, the average number of acquaintances for each agent is 2, 5 and
8. Experiments showed that when the number of acquaintances
exceeded 8 the results did not change. In short, we use random net-
works, in which the structure of the social network in each scenario
was determined by the number of agents involved in the negotiation
(Vneg) and the number of social relations (Eneg) of each agent given
by the graph density value (gd) using a uniform distribution (see
Section 4.2 for further details).

• Trust level among agents: we selected the trust as social factor among
the agents, since this is a crucial factor in most of the negotiation ap-
proaches. Depending on how the trust level it is initialized,we defined
four scenarios. In the first three scenarios, we applied a normal distri-
bution with a mean of 0.2, 0.5 and 0.8, taking into account that a trust
level is between 0 and 1, and the standard deviation is 0.2. We chose
this distribution and these mean values to model scenarios in which
the overall trust of the agents is low (mean = 0.2), intermediate
(mean = 0.5) and high (mean = 0.8). Experiments showed that the
behaviour of our approach is different in these scenarios. In addition,
we applied a uniform distribution in the fourth scenario.

• Trust update: since the trust among agents can be influenced during
the course of the negotiations, we modelled in the experiments the
updates of the trust levels during the training stage. We based these
updates on the direct experience of the agents, since it is the most
relevant and reliable information source for a trust model [21,46].
Thus, during a negotiation, an agent aj can break a deal and refuses a
proposal of agent ai. In such a case, agent ai reduces the trust in
agent aj, otherwise, the trust is increased. For this reason, we included
two dimensions in order to model different grades of change in the
trust levels. These dimensions are the break rate (br) and the value
of trust update (δ). The break rate indicates how often an agent breaks
a deal. We adopted three values for this dimension: 0.05 (a low value
that indicates that agents rarely break a deal); 0.2 (an intermediate
value); and 0.5 (a high value, taking into account that breaking deals
should not be frequent in negotiation contexts). These values have
two different effects in the overall trust of the agents. When br is
low the overall trust tends to increase, since there are less deals
break. In contrast, when br is high the overall trust tends to decrease.
In addition, δ represents how much the trust in an agent is modified
after each direct experience. Thus, the trust in the opponent is in-
creased or decreased according to δ after a positive (the opponent
did not break the deal) or negative (the opponent broke the deal)
experience, respectively. We also adopted three values for this
dimension: 0.01 (a low value, indicating that the trust varies slightly
after each direct experience), 0.05 (an intermediate value); and 0.1
(a high value, taking into account that the level of trust varies from
0 to 1).

During a negotiation, each agent makes proposals that can be
observed for all agents but persuades only its acquaintances. When
the agents receive a proposal p, they evaluate it. To carry out this eval-
uation, an agent takes into account the utility of the proposal and
the trust in its sender, where both values are between 0 and 1. In
these experiments, we defined an evaluation function, inspired by the
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evaluation function defined in [4], where the agent evaluates the
received proposal by calculating the expected utility of accepting the
proposal weighted by the trust in the sender. Thus, the evaluation
function is: EVa(p, b) = Ua(p) ⋅ Trust(a, b), where Ua(p) is the utility of
proposal p for agent a and Trust(a, b) represents the trust level that a
has about b. Then, if the evaluation of the received proposal is higher
than the evaluation of the ownproposal, the agent accepts it; otherwise,
the agent rejects it. To simplify the experiments, the agents did not
exchange arguments. However, the persuasion was exerted through
the trust among the agents. Finally, if the agent accepts a proposal of
an acquaintance, the agentwill continue participating in the negotiation
in favour of such a proposal, since this proposal obtained a better eval-
uation (EV value) that its own alternative.

Let's see an example. Fig. 2 shows a graph Gneg = (Vneg, Eneg), where
Vneg = {a1, a2, a3, a4, a5} and Eneg = {e1,2,e2,1,e3,2,e2,3,e3,5,e5,3,
e2,5,e5,2,e4,2,e2,4}. Moreover, each edge has an associated trust value.
For example, the set of social factor associated with e1,2 is sf1,2 =
{(trust, 0.7)} representing the trust level that a1 has about a2. In addition,
we assume that each agent ai has a proposal pi to utter during the nego-
tiation. Table 1 shows the agents' utility given each proposal. In this
example, agent a3 must support proposal p3 and Qa3 ¼ a2; a5f g. If a3
tries to persuade a2 to accept p3, a2 will reject it since EVa2 p3; a3ð Þ ¼
Ua2 p3ð Þ � Trust a2; a3ð Þ ¼ 0:7 � 0:2 ¼ 0:14 is smaller than Ua2 p2ð Þ ¼ 0:6.
In contrast, if a3 tries to persuade a5 to accept p3, a5 will accept it since
EVa5 p3; a3ð Þ ¼ 0:65 � 0:8 ¼ 0:52 is higher than Ua5 p5ð Þ ¼ 0:5 . Then,
since a5 accepted p3, it will, expectably, try to persuade a2 to accept p3.
Now, EVa2 p3; a5ð Þ ¼ 0:7 � 0:9 ¼ 0:63. Therefore, a2 accepts p3. Finally,
a2 tries to persuade a1 and a3. In that case, a1 will accept p3 since
EVa1 p3; a2ð Þ ¼ 0:7 � 0:7 ¼ 0:49 is higher than Ua1 p1ð Þ ¼ 0:45. However,
a4 will reject p3 since EVa4 p3; a2ð Þ ¼ 0:6 � 0:4 ¼ 0:24 is smaller than
Ua4 p4ð Þ ¼ 0:4.
Table 1
Example of agents' utilities by proposal.

Agents Proposals

p1 p2 p3 p4 p5

a1 0.45 0.5 0.7 0.2 0.8
a2 0.35 0.6 0.7 0.8 0.7
a3 0.3 0.7 0.8 0.7 0.4
a4 0.2 0.4 0.6 0.4 0.55
a5 0.2 0.2 0.65 0.2 0.5
4.2. Procedure

We ran experiments in several negotiation scenarios, described as
ns = (n, gd, t, br, δ), taking into account five dimensions: agents (N =
{10, 100}); graph density (GD = {0.2, 0.5, 0.8} for n = 10 and GD =
{0.02, 0.05, 0.08} for n = 100); trust (T = {0.2, 0.5, 0.8, u}, where the
first three values represent a normal distribution with mean 0.2, 0.5
and 0.8, and u represents a uniform distribution); break rate (BR =
{0.01, 0.2, 0.5}); value of trust update (Δ = {0.01, 0.05, 0.1}); where
n ∈ N, dg ∈ DG, t ∈ T, br ∈ BR, and δ ∈ Δ. Each experiment consisted of
three stages: setup, training and testing. The setup stage consisted
in generating the negotiation scenarios according to the dimensions
described above. Basically, during this stage, we built the directed
social graph Gneg. To do this, we first generated n agents. Then, for
each pair of agents ai and aj, we randomly determined if a social re-
lation existed between them according to the gd dimension. To do
this, we generated a random number r using a uniform distribution
between 0 and 1, then if r ≤ gd we added the edges ei,j and ej,i to
Eneg. In addition, for each edge, we simulated a trust level using a nor-
mal distribution with mean t and standard deviation 0.2 or an uniform
distribution when t = u.

The training part consisted in generating the negotiation traces
stored in the negotiation log Lneg . To do this, we randomly selected an
agent aini ∈ Vneg to make an initial proposal, which started the negotia-
tion. A proposal consists of an action that can be accepted or rejected
by an agent. For example, in the context of agents that are scheduling
a meeting, a proposal could be to arrange to meet in a given place.
Once agent aini has been selected, this agent tried to persuade the agents
with which it had a social relation (i.e., there was an edge that linked
them). Then, each agent that accepted the proposal continued propagat-
ing it. Each time that the proposal was accepted, a new tuple (a, p, t) was
added to Lneg, where awas the agent that accepted proposal p at time t.
Finally, when all agents uttered an opinion about the initial proposal, the
negotiation finished. This process was carried out ntrain times. The vari-
able ntrain determined how much historical information (negotiation
traces) was processed to determine the set Sneg. Then, for each scenario,
we ran experiments with three values of ntrain: 10, 50 and 100. Since our
goal is minimise the amount of information needed for train the model,
we set amaximum ntrain of 100. Thus, we added a new dimension to the
negotiation scenario: ns′= (n, gd, t, br, δ, ntrain). As a result, we actually
carried out experiments in 648 scenarios. Last, for each scenario, we ran
the algorithm for influencemaximization under the CDmodel with Gneg,
Lneg , and kneg = 1 assuming that during the testing stage an agent had
resources to persuade only one opponent.

The testing stage consisted in comparing the agreement rate reached
by an agent aim, which is using our approach to decide whom to per-
suade, and the agreement rate reached by a base agent ar, which
decides randomly whom to persuade. As the goal of an agent, which is
participating of a multilateral negotiation, is to maximise the number
of acceptances of its proposals [19], we define the agreement rate ar
as follow:

arx ¼ Agxj j
Vneg
�
�

�
�
:100 ð1Þ

where Agx is the set of agents participating in the negotiation that
accepted the proposal of agent ax ∈ {aim, ar}. Following the example
presented in Section 4.1, the agreement rate of a3 is ara3 ¼ 4=5ð Þ�
100 ¼ 80% . Taking into account Eq. (1), we define two metrics,
named real improvement (RI) and improvement rate (IR), which
allow us to compare the agreement rate of both aim and ar. Metric
RI is defined as follows:

RI ¼ arim−arr : ð2Þ
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Intuitively, this metric indicates the rate of agents that were per-
suaded by aim but not by ar. On the other hand, metric IR is defined as
follows:

IR ¼ arim−arr
arr

: ð3Þ

The rationale behind this metric is to indicate the rate of improve-
ment of the agreement rate obtained by aim in relation to ar. For
instance, if |Vneg| = 10, |Agim| = 6, and |Agr| = 3, RI = (6/10).100 −
(3/10).100 ≅ 33.33 % and IR = ((6/10).100 − (3/10).100)/(3/
10).100 = 100 %. Notice that both metrics are calculated comparing
the agreement rate of agents ar (arr) and aim (arim). Thus, if arim is higher
than arr, IR and RI are positive, otherwise, they are negative.

4.3. Results

The experiments showed that the agreement rate achieved by agent
aim was higher than that achieved by agent ar in most of the scenarios.
Tables A.2–A.10 show the agreement rate (ar) obtained by agents aim
and ar in each scenario. Notice that each table represents a different
combination of δ and br. To obtain these values, we ran the testing
stage 10,000 times in each scenario and then we computed the average
of the agreement rate and its standard deviation. Once we obtained the
average agreement rate, we calculated metrics RI and IR. Figs. A.3–A.8
compare the results of metrics IR and RI in each scenario. Particularly,
Figs. A.3–A.5 represent the results of metric IR in scenarios with differ-
ent br values. Similarly, Figs. A.6–A.8 represent the results of metric RI.
Notice that we zoom in the scale of the charts between 0 and 1 to im-
prove the readability of small values. To make easy the discussion of
the results, we divide it in subsections according to the dimensions to
analyze.

4.3.1. Number of agents involved in the negotiation
Comparing the results obtained with n=10 and n=100 (i.e., |Vneg|

value), we can observe some similarities and differences. First, the IR
values obtained when n = 100 were considerably higher than the
same obtained when n = 10. Whereas IR values did not exceed 40%
when n = 10, the same value in scenarios where n = 100 reached
120% (Figs. A.3–A.5). However, the tendency ofmetric IRwhen other di-
mensions changed seemed to be the same when n = 10 and n = 100.
For example, as ntrain increased, metric IR also increased when t = 0.2,
br = 0.05 and gd was low, and decreased when t = 0.8 in scenarios
where n=10 aswell as in scenarios where n=100. However, last ten-
dency reversed in both scenarios of nwhen brwas 0.2. Similar situations
occurred when δ increased, despite some exceptions can be seen when
ntrainwas high, t=0.2 and gdwas low. In these scenarios, if brwas low,
metric IR decreased as δ increased when n = 10, but it increased when
n=100 (Fig. A.3). In contrast, if brwas high,metric IR keep almost con-
stant as δ increased when n = 10, but it decreased when n = 100
(Fig. A.3). The first cause of this fact was that the agreement rate in
such scenarios when n = 100 was considerably lower than when n =
10. The second cause was that when δ increased the changes of the
trust levels among the agents was more significant, then a low br and
a high ntrain produced a strong increase in the overall trust of the agents
during the training stage. However, when n = 10 the increases were
focused on 10 agents instead of 100. This fact produced that when δ in-
creased, the increases of the agreement rate when n = 10 were higher
(given the increase in the overall trust) than when n = 100. However,
the difference between arim and arr kept constant, consequently, metric
IR decreased. In regard to metric RI, the values obtained in scenarios
with n = 100 were generally higher than with n = 10 (Figs. A.6–A.8).
We think that it is because when n increased the decision alternatives
also increased. For these reason, our approach, applied by aim, obtained
better agreement rates. An exception can be seen when dg and t is low.
In these scenarios, metric RI when n = 100 was lower than when n =
10, because the agreement rates obtained by aim and ar were very low
(around 3% and 1.5% respectively).
4.3.2. Graph density
In general, the best results (in bothmetrics) were obtained when gd

was low. Thiswas becausewhen gd increased the number of good alter-
natives to achieve agreements also increased. In consequence, agent ar
could also obtain a high agreement rate, especially, in scenarios when
trust was high. However, when trust was low, metric RI increased as
gd also increased, mainly in scenarios where n = 100 and δ is low.
This was because, although gd increased, a low value in the overall
trust maintained low the number of good alternatives to achieve
agreements.
4.3.3. Trust level among agents
Since the effects of this dimensions on the values of metrics IR and RI

depended on the other dimensions, it is not possible to do an isolate
analysis of the trust dimension. For example, when gd was low the
best value of metric IR was mostly obtained when t = 0.5 or t = u
and the best value ofmetric RI, when t=0.8. However, when gdwas in-
termediate and high the best value ofmetric IRwas obtainedwhen trust
was low. In contrast, the analysis of metric RI in such scenarios is not so
simple. In these scenarios, when n=10, the best value of metric RIwas
also obtained when trust was low.

Nevertheless, when n=100, others dimensions affected the results.
For example, when δwas low and brwas low or intermediate (Figs. A.6
and A.7), the best value of metric RIwhen ntrain=10was obtainedwith
a intermediate value of trust, but as ntrain increased, the best value was
obtained with a low trust. Moreover, in the scenarios with δ = 0.05
and δ=0.1 the best RI,when gdwas intermediate andhigh,was obtain-
ed when trust was low. This was because, as ntrain and δ increased, the
changes in the overall trust of the agents produced that the agreement
rate also increased in scenarios with intermediate or high values of t.
As a consequence, the difference between arim and arr was reduced.

In contrast, when brwas high the changes in the overall trust of the
agents were balanced (Fig. A.8). That was, the number of broken and
fulfilled deals was similar. In consequence, after the training stage, the
overall trust of the agents did not suffer drastic changes. In these scenar-
ios, the best value ofmetric RIwasobtainedwhen t=0.5 or t= u in sce-
narios with a intermediate value of gd, and when t = 0.8 in scenarios
with a high gd.

Moreover, Fig. A.8 clearly shows the relationship between dg and t
dimensions when n and br were high (independently of δ value). In
these scenarios, as gd increased, metric IR increased in scenarios with
low trust and decreased in scenarios with high trust.

Finally, it is worth noticing that the results obtained with the trust
initiated with a normal distribution with mean 0.5 (t = 0.5) and a uni-
form distribution (t = u) were equivalent in all the scenarios.
4.3.4. Trust update
In previous subsections, we have been discussing the role of δ and br

in the performance of our approach. As stated above, the combination of
δ and br determines how much the overall trust of the agents changes
during the training stage. In this context, when δ was high and br was
low the overall trust tended to increase, also increasing the agreement
rates. For these reason, for example,metric RI decreasemarkedly as δ in-
creased when br and t was low and gd was high (Fig. A.6). It is also
worth noticing that this decrease was more significant when ntrain was
high. Intuitively, this was because an increase in ntrain emphasized the
changes in the overall trust.

In general, the best values of metric IR and RIwere obtainedwhen br
was high, due to the fact that in these scenarios the changes in the over-
all trust of the agents were balanced.
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4.3.5. Training/historical information
Intuitively, we could think that when ntrain increased, metrics IR

and RI also should increase, since our approach should havemore infor-
mation to train the model. However, as stated above, since δ and br
determine the level of change in the overall trust of the agent, increasing
ntrain does not assure an improvement of such metrics. For this reason,
when gd was low and as ntrain increased, both metrics increased when
t was low, but decrease when t was high. Other example of this effect
could be seen in scenarios where gd was low and trust was high. In
these scenarios, metric RI increased as ntrain increased when br was
low (Fig. A.6), but metric RI decreased as ntrain increased when br was
high (Fig. A.8).

4.3.6. General discussion
The experimental results showed in which scenarios our approach

(aim) exhibited the best improvements regarding to the agreement
rate obtained by a base agent (ar). In general, our approach considerably
improved the agreement rate in scenarios where the number of deci-
sion alternatives was high, but only a reduced number of such alterna-
tives allowed the agent to achieve wide agreements. For example, this
fact could be seen in scenarios where graph density was low and trust
was high, and vice versa. Intuitively, this effect was more relevant
when the number of agents involved in the negotiation (n) was high.
In contrast, in scenarios where there were no alternatives to achieve
wide agreements (low graph density and trust) or there were multiple
alternatives (high graph density and trust) the improvements of our
approach was minimum.

The experiments also showed how the trust update affected the per-
formance of our approach. Particularly, the performance of our ap-
proach decreased in the scenarios where the overall trust tended to
increase markedly (low break rate and high δ). In such scenarios, the
role of ntrain was also important. Since the trust update was carried out
during the training stage, the effect of this process was more significant
in scenarios where ntrain was high. In contrast, in scenarios where the
overall trust did not change drastically (br = 0.5 and low δ), metrics
IR and RI increased as ntrain increased. However, it is worth noticing
that our approach performedwell when the number of actions for train-
ingwas low. This is a good aspect of our approach, since in some scenar-
ios it could be hard to find a great amount of historical information to
train the model. Moreover, since a little information is needed to train
n
1

5

1

the model, the computational cost of running the influence maximiza-
tion algorithm is minimum. For example, in the scenarios with most
volume of information (n = 100 and ntrain = 100) the average time to
find the seed set was 1309 ms (± 86.6 ms).

5. Conclusions and future work

In this work, we have proposed a novel approach to assist a negoti-
ator (an autonomous agent or a human negotiator) to decide which
opponent to persuade during a negotiation by taking into account
the social influence of the negotiation participants. To do this, we
reformulated the influence maximization problem to be solved under
the CD model in negotiation contexts. Moreover, we have defined
some characteristics of the negotiation context in which our approach
can be applied and we have tested our approach in several scenarios.
From these experiments, we observed that the agreement rate increases
when an agent decides and is able to persuade the opponent that max-
imises the expected influence spread according to the CD model.

Moreover, the results showed that the increase of the agreement
rate is high in some scenarios and low in others. These variations are
directly related to the dimensions of each negotiation scenario (i.e.,
ns=(n, gd, t, br, δ, ntrain)). As stated above, our approach allows a nego-
tiator to improve the agreement rate, especially in scenarios where the
number of decisions is high but not all alternatives lead to good agree-
ments. In addition, a little historical information is needed to train the
model and obtain good results. This fact is also important since a high
variation in the overall trust of the agents during the training stage
can reduce the performance of our approach. It is also worth noticing
that this information is easily accessible, since the proposals accepted
by the agents during a multilateral negotiation are public. On the
other hand, a limitation of our approach is that in scenarios where
there are no alternatives to achieve wide agreements or there are mul-
tiple alternatives the improvements of our approach are minimum.

Futureworkwill focus on exploring other negotiation configurations
and other social factors such as reputation and authority roles. More-
over, we will analyze the effects of social influence in other key deci-
sions that agents must make during a negotiation. Particularly, we will
explore how social influence maximization can be applied to improve
the process of coalition formation. Further future research may also
focus on doing additional experiments with human negotiators.
Appendix A. Experimental results: tables and figures
Table A.2

Agreement rates in the negotiation scenarios when δ = 0.01 and br= 0.05.
ntrain
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 19.41% ± 5.63
 40.62% ± 13.35
 64.48% ± 20.64
 41.15% ± 15.77
r
 15.78% ± 2.58
 32.03% ± 11.79
 53.20% ± 21.78
 31.32% ± 12.64

0.5
 im
 39.83% ± 11.22
 85.82% ± 9.19
 98.50% ± 3.01
 87.50% ± 11.32
r
 32.88% ± 8.62
 82.67% ± 9.73
 97.82% ± 4.00
 84.46% ± 11.63

0.8
 im
 62.65% ± 10.40
 98.51% ± 1.59
 99.99% ± 0.03
 98.50% ± 1.54
r
 59.72% ± 9.25
 98.37% ± 1.45
 99.99% ± 0.04
 98.12% ± 2.14

0
 0.2
 im
 22.72% ± 5.70
 43.11% ± 15.28
 66.07% ± 20.52
 47.17% ± 14.38
r
 17.03% ± 3.82
 33.70% ± 13.80
 56.99% ± 23.17
 35.60% ± 12.88

0.5
 im
 43.30% ± 11.45
 91.74% ± 6.66
 98.92% ± 2.64
 90.64% ± 7.37
r
 36.56% ± 9.14
 90.13% ± 7.83
 98.54% ± 4.06
 87.64% ± 9.23

0.8
 im
 70.57% ± 9.26
 99.18% ± 1.16
 99.99% ± 0.04
 99.32% ± 0.95
r
 67.15% ± 9.41
 99.16% ± 1.20
 100.00% ± 0.01
 99.21% ± 1.14

00
 0.2
 im
 22.48% ± 5.82
 47.73% ± 15.98
 71.76% ± 18.28
 48.88% ± 16.11
r
 16.61% ± 3.33
 38.28% ± 16.25
 62.64% ± 22.90
 38.34% ± 17.06

0.5
 im
 48.22% ± 12.52
 95.35% ± 4.38
 99.54% ± 0.87
 94.38% ± 5.66
r
 40.86% ± 12.13
 94.73% ± 5.15
 99.50% ± 1.04
 93.13% ± 7.03

0.8
 im
 79.45% ± 7.57
 99.69% ± 0.46
 100.00% ± 0.01
 99.65% ± 0.58
r
 76.64% ± 7.33
 99.59% ± 0.54
 100.00% ± 0.01
 99.66% ± 0.51
(continued on next page)
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able A.2 (continued)
n

n
1

5

1

n
1

5

1

n
1

5

1

train
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 100

0
 0.02
 im
 2.46% ± 0.80
 15.25% ± 6.92
 57.62% ± 11.32
 15.63% ± 7.26
r
 1.75% ± 0.20
 7.77% ± 3.39
 38.28% ± 10.75
 7.64% ± 3.45

0.05
 im
 16.12% ± 5.56
 88.31% ± 3.55
 98.02% ± 1.10
 88.38% ± 4.03
r
 10.39% ± 2.87
 80.80% ± 4.96
 96.52% ± 2.15
 80.52% ± 5.02

0.08
 im
 62.27% ± 8.34
 97.83% ± 1.46
 99.77% ± 0.34
 98.03% ± 1.01
r
 51.97% ± 7.48
 96.78% ± 1.85
 99.56% ± 0.81
 96.65% ± 1.70

0
 0.02
 im
 2.93% ± 0.96
 17.74% ± 6.77
 61.23% ± 10.82
 17.97% ± 7.75
r
 1.72% ± 0.22
 8.36% ± 3.43
 45.26% ± 12.42
 8.73% ± 4.34

0.05
 im
 19.17% ± 6.56
 91.60% ± 2.16
 98.21% ± 0.95
 91.12% ± 2.39
r
 11.24% ± 4.10
 87.50% ± 3.84
 97.41% ± 2.06
 86.57% ± 4.24

0.08
 im
 70.94% ± 6.35
 98.60% ± 0.61
 99.87% ± 0.18
 98.46% ± 0.70
r
 60.18% ± 6.66
 97.99% ± 1.09
 99.85% ± 0.25
 97.84% ± 1.12

00
 0.02
 im
 3.05% ± 0.82
 20.95% ± 8.85
 65.92% ± 10.52
 19.49% ± 7.75
r
 1.74% ± 0.20
 10.26% ± 5.88
 52.18% ± 13.37
 9.09% ± 4.65

0.05
 im
 22.80% ± 7.89
 93.60% ± 1.69
 98.30% ± 1.05
 92.60% ± 2.38
r
 13.69% ± 5.40
 91.65% ± 2.61
 97.55% ± 2.04
 89.99% ± 3.95

0.08
 im
 79.65% ± 5.22
 98.99% ± 0.45
 99.81% ± 0.28
 98.85% ± 0.67
r
 69.99% ± 6.86
 98.69% ± 0.84
 99.75% ± 0.48
 98.63% ± 0.94
Table A.3

Agreement rates in the negotiation scenarios when δ = 0.01 and br= 0.2.
ntrain
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 19.21% ± 5.12
 41.20% ± 13.12
 64.33% ± 18.15
 42.27% ± 15.05
r
 15.70% ± 2.43
 31.21% ± 10.51
 52.89% ± 18.95
 31.82% ± 13.08

0.5
 im
 39.02% ± 9.69
 87.63% ± 7.11
 98.84% ± 1.79
 87.16% ± 10.50
r
 34.22% ± 7.81
 84.28% ± 8.47
 98.23% ± 2.55
 83.90% ± 10.73

0.8
 im
 61.35% ± 9.29
 98.32% ± 1.61
 99.98% ± 0.10
 98.56% ± 2.03
r
 58.01% ± 8.67
 98.24% ± 1.53
 99.97% ± 0.15
 98.32% ± 1.79

0
 0.2
 im
 20.78% ± 6.32
 42.08% ± 13.50
 65.09% ± 19.96
 42.85% ± 15.23
r
 15.75% ± 3.18
 31.56% ± 11.89
 54.75% ± 22.78
 32.44% ± 14.07

0.5
 im
 43.10% ± 10.40
 89.38% ± 8.33
 98.94% ± 2.00
 90.39% ± 8.29
r
 35.71% ± 9.10
 86.67% ± 9.33
 98.52% ± 3.08
 87.57% ± 9.79

0.8
 im
 68.63% ± 9.77
 98.73% ± 1.35
 100.00% ± 0.02
 99.09% ± 1.05
r
 64.68% ± 9.28
 98.54% ± 1.62
 99.98% ± 0.13
 98.88% ± 1.21

00
 0.2
 im
 21.15% ± 5.13
 44.86% ± 13.49
 71.41% ± 20.03
 45.39% ± 17.46
r
 16.07% ± 3.30
 35.49% ± 13.67
 63.06% ± 24.16
 34.27% ± 16.56

0.5
 im
 47.26% ± 10.08
 92.61% ± 7.09
 98.93% ± 2.03
 91.69% ± 7.94
r
 39.59% ± 10.27
 90.87% ± 8.10
 98.70% ± 3.01
 90.03% ± 8.28

0.8
 im
 72.83% ± 9.21
 99.48% ± 0.52
 99.99% ± 0.04
 99.43% ± 0.70
r
 70.64% ± 9.15
 99.35% ± 0.70
 99.99% ± 0.03
 99.19% ± 0.90
= 100

0
 0.02
 im
 2.70% ± 1.06
 13.89% ± 5.94
 60.34% ± 12.87
 15.87% ± 8.05
r
 1.73% ± 0.23
 7.08% ± 2.64
 41.66% ± 13.44
 7.87% ± 3.78

0.05
 im
 16.10% ± 5.74
 88.03% ± 3.36
 97.80% ± 1.15
 89.02% ± 3.17
r
 10.41% ± 3.17
 79.92% ± 5.29
 95.87% ± 2.56
 81.21% ± 4.96

0.08
 im
 59.75% ± 8.76
 97.86% ± 1.17
 99.81% ± 0.27
 97.98% ± 1.45
r
 50.13% ± 8.08
 96.76% ± 1.52
 99.69% ± 0.68
 96.60% ± 1.58

0
 0.02
 im
 2.95% ± 0.91
 17.16% ± 7.48
 59.92% ± 10.64
 17.87% ± 7.83
r
 1.72% ± 0.20
 8.03% ± 4.07
 42.55% ± 11.88
 8.56% ± 4.77

0.05
 im
 16.83% ± 5.98
 90.75% ± 2.49
 98.10% ± 1.00
 90.33% ± 2.96
r
 10.48% ± 3.93
 84.76% ± 4.64
 97.00% ± 2.04
 84.02% ± 4.26

0.08
 im
 67.67% ± 7.64
 98.36% ± 0.64
 99.83% ± 0.26
 98.35% ± 0.75
r
 56.36% ± 7.21
 97.39% ± 1.32
 99.78% ± 0.46
 97.20% ± 1.36

00
 0.02
 im
 3.06% ± 0.92
 18.18% ± 6.95
 64.65% ± 10.91
 19.36% ± 8.08
r
 1.77% ± 0.22
 8.22% ± 4.01
 50.00% ± 12.98
 8.98% ± 5.25

0.05
 im
 19.94% ± 6.51
 92.13% ± 2.16
 98.27% ± 0.96
 92.00% ± 2.32
r
 11.47% ± 4.73
 88.43% ± 3.38
 97.50% ± 1.92
 88.09% ± 4.17

0.08
 im
 76.36% ± 5.71
 98.61% ± 0.55
 99.86% ± 0.26
 98.69% ± 0.66
r
 66.00% ± 6.88
 98.09% ± 1.02
 99.84% ± 0.41
 98.13% ± 1.20



Table A.4
Agreement rates in the negotiation scenarios when δ = 0.01 and br= 0.5.

ntrain gd ax t

0.2 0.5 0.8 u

n = 10
10 0.2 im 19.27% ± 5.59 39.11% ± 13.42 63.50% ± 17.90 40.44% ± 14.59

r 15.41% ± 2.73 29.40% ± 11.45 52.38% ± 19.47 29.54% ± 10.57
0.5 im 38.46% ± 10.23 85.31% ± 9.61 98.68% ± 2.94 86.86% ± 10.43

r 32.71% ± 7.02 81.75% ± 10.50 98.07% ± 4.71 81.88% ± 11.99
0.8 im 60.18% ± 9.74 98.37% ± 1.66 99.99% ± 0.02 98.58% ± 1.51

r 57.93% ± 8.59 98.09% ± 1.65 99.97% ± 0.16 97.87% ± 2.46
50 0.2 im 20.70% ± 5.64 41.32% ± 13.70 64.34% ± 19.29 41.56% ± 14.40

r 15.82% ± 3.39 30.63% ± 11.16 52.57% ± 20.24 29.10% ± 11.38
0.5 im 41.88% ± 8.91 87.08% ± 8.60 98.79% ± 1.98 86.93% ± 8.78

r 33.83% ± 7.33 83.16% ± 9.64 98.26% ± 3.17 81.68% ± 10.34
0.8 im 63.08% ± 10.89 98.31% ± 1.47 99.98% ± 0.06 98.46% ± 1.65

r 58.79% ± 8.35 97.73% ± 1.89 99.98% ± 0.10 97.89% ± 2.06
100 0.2 im 22.08% ± 6.06 40.32% ± 12.75 65.49% ± 18.65 41.04% ± 14.42

r 16.17% ± 2.92 28.92% ± 10.28 53.97% ± 20.50 29.77% ± 11.84
0.5 im 43.50% ± 10.07 87.65% ± 8.06 98.55% ± 2.59 88.20% ± 8.91

r 34.74% ± 8.63 82.91% ± 9.31 97.62% ± 4.00 83.13% ± 11.00
0.8 im 63.10% ± 8.67 98.44% ± 1.19 99.99% ± 0.08 98.81% ± 1.19

r 58.09% ± 8.70 97.90% ± 1.65 99.97% ± 0.25 98.19% ± 1.50

n = 100
10 0.02 im 2.42% ± 0.89 13.53% ± 5.95 55.77% ± 12.14 15.74% ± 7.34

r 1.73% ± 0.23 7.01% ± 2.77 36.45% ± 11.29 7.48% ± 2.97
0.05 im 16.65% ± 6.56 87.80% ± 4.50 97.75% ± 1.78 88.02% ± 4.54

r 10.56% ± 3.57 80.31% ± 4.59 95.99% ± 2.90 79.79% ± 5.83
0.08 im 58.35% ± 8.32 97.58% ± 1.72 99.81% ± 0.31 97.86% ± 1.06

r 48.84% ± 6.59 96.61% ± 2.01 99.67% ± 0.57 96.37% ± 1.75
50 0.02 im 2.92% ± 0.96 15.96% ± 6.86 57.18% ± 10.64 16.52% ± 7.34

r 1.74% ± 0.24 7.38% ± 3.22 36.64% ± 10.59 7.19% ± 3.51
0.05 im 16.75% ± 5.55 88.75% ± 3.11 97.81% ± 1.06 88.56% ± 3.35

r 9.90% ± 2.76 79.33% ± 5.28 95.60% ± 2.46 79.51% ± 5.39
0.08 im 60.64% ± 7.33 97.88% ± 0.86 99.84% ± 0.23 97.84% ± 1.00

r 48.48% ± 6.58 96.14% ± 1.85 99.64% ± 0.69 95.95% ± 2.16
100 0.02 im 3.17% ± 0.96 16.45% ± 6.02 59.97% ± 12.08 17.31% ± 6.71

r 1.71% ± 0.20 7.28% ± 3.05 39.20% ± 11.27 7.36% ± 3.29
0.05 im 17.97% ± 5.73 88.55% ± 2.92 97.88% ± 1.10 89.23% ± 3.02

r 10.07% ± 2.79 78.49% ± 6.03 95.64% ± 2.44 79.68% ± 5.57
0.08 im 62.05% ± 6.47 98.13% ± 0.59 99.84% ± 0.20 97.97% ± 0.85

r 49.42% ± 6.92 96.28% ± 1.79 99.70% ± 0.44 95.95% ± 1.98
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Table A.5

Agreement rates in the negotiation scenarios when δ = 0.05 and br= 0.05.
ntrain
n
1

5

1

gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 19.86% ± 5.64
 44.62% ± 15.73
 66.88% ± 19.85
 41.65% ± 16.83
r
 15.82% ± 2.89
 36.11% ± 14.92
 57.62% ± 23.02
 33.67% ± 13.71

0.5
 im
 40.88% ± 10.57
 90.82% ± 6.26
 99.14% ± 1.79
 90.05% ± 8.28
r
 36.90% ± 8.50
 89.21% ± 7.30
 99.05% ± 1.74
 87.00% ± 10.41

0.8
 im
 69.23% ± 9.01
 99.09% ± 0.95
 100.00% ± 0.02
 99.05% ± 1.18
r
 67.20% ± 8.59
 98.88% ± 1.04
 100.00% ± 0.02
 98.78% ± 1.37

0
 0.2
 im
 24.56% ± 8.13
 61.02% ± 20.08
 74.48% ± 18.40
 59.40% ± 19.89
r
 18.60% ± 6.51
 53.25% ± 22.49
 63.96% ± 22.60
 50.83% ± 22.96

0.5
 im
 70.13% ± 14.04
 98.39% ± 3.06
 99.67% ± 1.46
 97.68% ± 3.38
r
 66.65% ± 15.37
 98.24% ± 4.33
 99.51% ± 2.64
 97.58% ± 4.14

0.8
 im
 93.59% ± 4.46
 99.94% ± 0.15
 100.00% ± 0.00
 99.89% ± 0.53
r
 93.47% ± 4.98
 99.95% ± 0.14
 100.00% ± 0.00
 99.90% ± 0.50

00
 0.2
 im
 35.94% ± 15.74
 71.87% ± 21.42
 78.14% ± 18.83
 67.35% ± 21.94
r
 27.77% ± 15.18
 63.83% ± 24.86
 68.27% ± 24.21
 58.82% ± 24.90

0.5
 im
 90.47% ± 10.56
 99.53% ± 1.52
 99.85% ± 1.04
 98.29% ± 3.92
r
 89.64% ± 12.16
 99.52% ± 1.94
 99.81% ± 1.49
 97.89% ± 5.89

0.8
 im
 99.39% ± 0.96
 100.00% ± 0.01
 100.00% ± 0.00
 99.99% ± 0.08
r
 99.42% ± 1.06
 100.00% ± 0.02
 100.00% ± 0.00
 99.99% ± 0.05
(continued on next page)
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able A.5 (continued)
n

n
1

5

1

n
1

5

1

n
1

5

1

train
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 100

0
 0.02
 im
 2.60% ± 0.90
 17.01% ± 7.23
 61.42% ± 13.26
 15.84% ± 9.11
r
 1.73% ± 0.20
 8.69% ± 3.70
 45.88% ± 14.01
 8.24% ± 4.35

0.05
 im
 17.04% ± 6.45
 91.29% ± 2.35
 98.14% ± 1.03
 90.74% ± 2.68
r
 11.23% ± 3.78
 87.65% ± 3.30
 97.48% ± 1.87
 86.77% ± 4.20

0.08
 im
 68.37% ± 8.71
 98.33% ± 1.00
 99.86% ± 0.22
 98.13% ± 2.28
r
 60.06% ± 7.41
 97.76% ± 1.04
 99.83% ± 0.33
 97.63% ± 1.35

0
 0.02
 im
 3.28% ± 1.05
 31.28% ± 15.19
 68.50% ± 9.30
 27.03% ± 13.78
r
 1.78% ± 0.21
 19.96% ± 13.47
 54.06% ± 11.90
 15.98% ± 11.14

0.05
 im
 34.56% ± 15.80
 95.96% ± 1.52
 98.60% ± 0.78
 94.93% ± 1.82
r
 24.27% ± 13.26
 95.19% ± 2.30
 98.08% ± 1.51
 94.07% ± 2.41

0.08
 im
 91.90% ± 2.23
 99.45% ± 0.43
 99.93% ± 0.15
 99.30% ± 0.48
r
 90.43% ± 3.03
 99.47% ± 0.42
 99.92% ± 0.23
 99.27% ± 0.58

00
 0.02
 im
 3.81% ± 1.22
 43.24% ± 16.24
 71.44% ± 7.82
 43.68% ± 14.40
r
 1.88% ± 0.25
 31.76% ± 16.22
 57.41% ± 10.36
 30.93% ± 13.30

0.05
 im
 71.44% ± 14.48
 96.98% ± 1.53
 98.72% ± 0.92
 96.26% ± 1.85
r
 64.40% ± 17.36
 96.26% ± 2.52
 98.35% ± 1.49
 95.43% ± 2.49

0.08
 im
 96.71% ± 1.37
 99.70% ± 0.35
 99.89% ± 0.26
 99.49% ± 0.49
r
 96.49% ± 1.75
 99.68% ± 0.42
 99.84% ± 0.53
 99.49% ± 0.53
Table A.6

Agreement rates in the negotiation scenarios when δ = 0.05 and br= 0.2.
ntrain
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 19.34% ± 5.71
 43.43% ± 14.73
 67.08% ± 18.56
 41.85% ± 15.54
r
 15.74% ± 3.17
 34.83% ± 13.04
 58.46% ± 21.09
 32.37% ± 13.32

0.5
 im
 42.34% ± 10.81
 90.31% ± 7.02
 98.98% ± 2.50
 90.40% ± 8.15
r
 38.14% ± 9.90
 87.75% ± 8.30
 98.64% ± 3.96
 88.33% ± 9.62

0.8
 im
 67.11% ± 10.67
 98.53% ± 2.11
 99.97% ± 0.20
 99.03% ± 1.40
r
 64.63% ± 8.82
 98.48% ± 1.39
 99.97% ± 0.17
 99.07% ± 1.06

0
 0.2
 im
 23.11% ± 7.61
 55.51% ± 18.38
 74.37% ± 20.70
 50.67% ± 17.23
r
 17.67% ± 4.96
 46.75% ± 20.47
 66.55% ± 24.78
 40.18% ± 17.59

0.5
 im
 56.25% ± 14.62
 97.63% ± 2.56
 99.53% ± 1.76
 96.22% ± 5.97
r
 50.66% ± 14.94
 97.54% ± 3.22
 99.30% ± 3.28
 95.94% ± 6.43

0.8
 im
 87.66% ± ± 7.73
 99.88% ± 0.23
 100.00% ± 0.03
 99.76% ± 0.43
r
 86.80% ± 7.78
 99.90% ± 0.19
 100.00% ± 0.03
 99.74% ± 0.46

00
 0.2
 im
 27.47% ± 9.98
 64.14% ± 20.71
 73.52% ± 17.93
 63.62% ± 19.55
r
 21.16% ± 9.22
 57.61% ± 23.29
 63.04% ± 22.04
 55.04% ± 22.65

0.5
 im
 77.62% ± 15.33
 98.52% ± 2.74
 99.98% ± 0.09
 98.43% ± 2.89
r
 73.62% ± 18.70
 98.22% ± 4.12
 99.98% ± 0.08
 98.43% ± 3.06

0.8
 im
 97.77% ± 2.45
 99.99% ± 0.05
 100.00% ± 0.00
 99.97% ± 0.12
r
 97.71% ± 2.77
 99.99% ± 0.05
 100.00% ± 0.00
 99.96% ± 0.14
= 100

0
 0.02
 im
 2.51% ± 0.90
 15.67% ± 7.83
 62.32% ± 9.72
 15.58% ± 8.45
r
 1.77% ± 0.22
 8.08% ± 3.93
 45.12% ± 11.40
 7.86% ± 4.08

0.05
 im
 14.99% ± 6.66
 90.23% ± 3.73
 97.99% ± 1.08
 89.97% ± 4.49
r
 10.01% ± 3.98
 85.43% ± 4.25
 96.70% ± 2.38
 84.79% ± 4.42

0.08
 im
 66.17% ± 7.48
 98.00% ± 2.11
 99.89% ± 0.16
 98.32% ± 0.78
r
 56.60% ± 6.55
 97.27% ± 1.50
 99.85% ± 0.27
 97.48% ± 1.50

0
 0.02
 im
 3.18% ± 0.97
 24.51% ± 11.84
 65.17% ± 9.45
 21.67% ± 10.45
r
 1.75% ± 0.22
 13.71% ± 8.97
 50.10% ± 11.08
 11.23% ± 8.02

0.05
 im
 27.86% ± 10.53
 94.94% ± 1.96
 98.42% ± 0.91
 94.12% ± 1.81
r
 17.95% ± 8.45
 93.89% ± 2.84
 97.71% ± 1.79
 92.61% ± 2.66

0.08
 im
 87.36% ± 3.80
 99.24% ± 0.40
 99.90% ± 0.17
 99.15% ± 0.52
r
 82.96% ± 6.03
 99.15% ± 0.56
 99.87% ± 0.43
 99.05% ± 0.76

00
 0.02
 im
 3.29% ± 0.93
 32.54% ± 15.91
 68.22% ± 9.45
 31.69% ± 14.81
r
 1.80% ± 0.23
 21.36% ± 14.19
 53.68% ± 11.65
 19.57% ± 12.57

0.05
 im
 51.81% ± 17.42
 96.61% ± 1.39
 98.48% ± 1.05
 95.67% ± 2.02
r
 40.60% ± 17.92
 96.05% ± 2.08
 97.69% ± 2.05
 94.74% ± 2.82

0.08
 im
 94.74% ± 1.73
 99.54% ± 0.42
 99.92% ± 0.21
 99.40% ± 0.51
r
 94.06% ± 2.18
 99.52% ± 0.48
 99.88% ± 0.42
 99.35% ± 0.67



Table A.7
Agreement rates in the negotiation scenarios when δ = 0.05 and br= 0.5.

ntrain gd ax t

0.2 0.5 0.8 u

n = 10
10 0.2 im 19.29% ± 5.45 36.67% ± 13.39 65.86% ± 18.10 42.26% ± 15.86

r 15.68% ± 2.69 28.17% ± 10.53 54.27% ± 18.80 31.22% ± 11.39
0.5 im 38.10% ± 10.56 85.19% ± 9.38 98.59% ± 2.54 85.69% ± 10.05

r 32.87% ± 8.13 82.30% ± 9.55 97.51% ± 4.73 80.73% ± 11.42
0.8 im 59.50% ± 12.15 98.43% ± 1.63 99.99% ± 0.04 98.72% ± 1.02

r 56.51% ± 10.03 98.04% ± 1.45 99.96% ± 0.15 98.28% ± 1.45
50 0.2 im 20.59% ± 5.35 42.10% ± 13.13 63.76% ± 17.03 40.36% ± 13.77

r 15.66% ± 2.78 32.10% ± 12.77 50.21% ± 18.47 29.75% ± 10.50
0.5 im 41.18% ± 11.43 86.61% ± 9.69 98.79% ± 1.69 87.98% ± 8.33

r 32.68% ± 8.49 81.49% ± 10.95 97.74% ± 3.19 82.30% ± 11.86
0.8 im 65.46% ± 11.00 98.56% ± 1.42 99.99% ± 0.03 98.39% ± 1.76

r 60.88% ± 9.42 98.00% ± 1.67 99.97% ± 0.11 97.99% ± 1.93
100 0.2 im 22.17% ± 7.61 42.05% ± 12.26 61.25% ± 18.19 40.76% ± 13.09

r 15.87% ± 4.45 31.36% ± 10.22 46.68% ± 18.09 28.79% ± 10.73
0.5 im 44.79% ± 10.96 85.80% ± 9.69 97.97% ± 3.10 85.00% ± 12.00

r 36.35% ± 8.95 81.10% ± 11.79 96.15% ± 5.64 79.40% ± 13.76
0.8 im 68.92% ± 9.71 98.61% ± 1.31 99.97% ± 0.08 98.63% ± 1.53

r 64.32% ± 10.01 98.33% ± 1.36 99.87% ± 0.35 98.07% ± 2.01

n = 100
10 0.02 im 2.63% ± 0.88 14.41% ± 6.71 58.31% ± 12.22 16.29% ± 7.97

r 1.76% ± 0.23 7.39% ± 3.06 38.78% ± 12.40 7.78% ± 3.79
0.05 im 15.04% ± 5.43 88.00% ± 4.41 97.63% ± 1.05 88.00% ± 3.66

r 9.42% ± 2.77 79.76% ± 4.83 95.47% ± 2.63 79.19% ± 4.92
0.08 im 58.47% ± 9.96 97.50% ± 2.23 99.84% ± 0.21 97.91% ± 0.87

r 48.90% ± 7.35 96.44% ± 1.47 99.67% ± 0.53 96.58% ± 1.57
50 0.02 im 2.86% ± 0.97 16.54% ± 6.14 56.63% ± 11.13 16.47% ± 7.50

r 1.74% ± 0.18 7.44% ± 2.81 33.98% ± 10.00 7.42% ± 3.67
0.05 im 17.82% ± 6.45 88.46% ± 3.21 97.68% ± 1.04 88.84% ± 2.76

r 10.17% ± 3.28 79.50% ± 5.44 94.43% ± 3.00 79.36% ± 4.88
0.08 im 64.73% ± 6.49 97.96% ± 0.72 99.77% ± 0.30 98.03% ± 0.67

r 51.65% ± 6.41 96.18% ± 1.79 99.61% ± 0.58 96.27% ± 1.69
100 0.02 im 3.00% ± 0.87 17.31% ± 6.36 50.94% ± 12.38 17.51% ± 6.87

r 1.71% ± 0.23 7.57% ± 3.11 28.81% ± 10.53 7.65% ± 3.75
0.05 im 18.74% ± 5.49 88.41% ± 3.23 97.39% ± 1.26 88.97% ± 2.82

r 10.38% ± 3.02 79.48% ± 5.32 93.73% ± 3.53 80.23% ± 5.14
0.08 im 69.84% ± 6.43 98.01% ± 0.74 99.79% ± 0.24 98.01% ± 0.83

r 58.14% ± 7.49 96.07% ± 2.01 99.54% ± 0.59 96.10% ± 1.89
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Table A.8

Agreement rates in the negotiation scenarios when δ = 0.1 and br= 0.05.
ntrain
n
1

5

1

gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 19.82% ± 5.30
 43.20% ± 17.15
 72.03% ± 18.88
 46.85% ± 18.63
r
 16.76% ± 3.18
 35.97% ± 16.53
 65.51% ± 22.11
 38.83% ± 17.92

0.5
 im
 45.84% ± 12.59
 94.94% ± 4.98
 99.33% ± 1.15
 93.32% ± 6.50
r
 42.16% ± 11.56
 94.44% ± 6.33
 99.46% ± 0.96
 93.17% ± 7.13

0.8
 im
 76.80% ± 10.21
 99.38% ± 1.04
 99.99% ± 0.06
 99.44% ± 0.92
r
 76.78% ± 8.26
 99.43% ± 0.97
 99.99% ± 0.03
 99.44% ± 0.81

0
 0.2
 im
 36.18% ± 18.08
 67.20% ± 21.93
 75.72% ± 19.70
 66.23% ± 22.15
r
 29.14% ± 18.42
 58.59% ± 24.38
 66.04% ± 23.73
 57.71% ± 24.87

0.5
 im
 89.09% ± 12.12
 99.36% ± 1.61
 99.86% ± 1.04
 98.83% ± 2.42
r
 88.32% ± 13.69
 99.36% ± 1.84
 99.77% ± 1.96
 98.69% ± 3.12

0.8
 im
 98.94% ± 1.64
 100.00% ± 0.04
 100.00% ± 0.00
 99.99% ± 0.06
r
 98.92% ± 1.79
 100.00% ± 0.01
 100.00% ± 0.00
 99.99% ± 0.04

00
 0.2
 im
 54.46% ± 21.20
 72.95% ± 21.41
 72.56% ± 22.46
 77.07% ± 20.82
r
 44.78% ± 22.63
 63.46% ± 25.34
 62.33% ± 26.19
 68.41% ± 24.92

0.5
 im
 98.09% ± 3.80
 99.68% ± 2.98
 99.90% ± 0.99
 99.54% ± 2.65
r
 97.62% ± 5.21
 99.49% ± 4.36
 99.82% ± 1.71
 99.38% ± 3.59

0.8
 im
 99.90% ± 0.64
 100.00% ± 0.00
 100.00% ± 0.00
 100.00% ± 0.00
r
 99.91% ± 0.58
 100.00% ± 0.00
 100.00% ± 0.00
 100.00% ± 0.00
(continued on next page)
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able A.8 (continued)
n

n
1

5

1

n
1

5

1

n
1

5

1

train
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 100

0
 0.02
 im
 2.75% ± 0.91
 18.83% ± 9.79
 62.80% ± 13.08
 18.90% ± 10.35
r
 1.77% ± 0.23
 10.35% ± 5.97
 48.89% ± 13.92
 10.44% ± 6.09

0.05
 im
 20.66% ± 9.88
 93.28% ± 2.14
 98.43% ± 1.05
 92.55% ± 2.33
r
 14.12% ± 6.56
 91.06% ± 3.41
 97.79% ± 2.09
 89.82% ± 3.58

0.08
 im
 78.56% ± 5.31
 98.93% ± 0.52
 99.88% ± 0.21
 98.70% ± 0.73
r
 70.88% ± 6.72
 98.73% ± 0.69
 99.85% ± 0.32
 98.52% ± 0.92

0
 0.02
 im
 3.26% ± 0.98
 41.69% ± 15.83
 72.04% ± 7.42
 35.15% ± 14.76
r
 1.82% ± 0.27
 30.08% ± 14.61
 58.22% ± 10.46
 23.23% ± 13.19

0.05
 im
 69.14% ± 14.37
 97.17% ± 1.22
 98.67% ± 1.06
 96.37% ± 1.65
r
 61.51% ± 17.51
 96.67% ± 1.70
 97.95% ± 1.98
 95.61% ± 2.35

0.08
 im
 96.47% ± 1.21
 99.60% ± 0.46
 99.90% ± 0.19
 99.55% ± 0.48
r
 96.23% ± 1.51
 99.58% ± 0.51
 99.89% ± 0.25
 99.51% ± 0.65

00
 0.02
 im
 4.12% ± 2.11
 56.66% ± 12.80
 73.41% ± 8.43
 53.25% ± 13.98
r
 2.05% ± 0.63
 44.23% ± 13.94
 59.67% ± 11.48
 40.39% ± 14.49

0.05
 im
 87.98% ± 6.48
 97.59% ± 1.21
 98.69% ± 1.05
 97.28% ± 1.37
r
 85.84% ± 8.48
 96.98% ± 1.92
 97.93% ± 2.10
 96.45% ± 2.26

0.08
 im
 98.11% ± 1.07
 99.77% ± 0.38
 99.94% ± 0.17
 99.74% ± 0.40
r
 97.92% ± 1.29
 99.71% ± 0.64
 99.94% ± 0.24
 99.71% ± 0.52
Table A.9

Agreement rates in the negotiation scenarios when δ = 0.1 and br= 0.2.
ntrain
 gd
 ax
 t
0.2
 0.5
 0.8
 u
= 10

0
 0.2
 im
 20.29% ± 6.73
 44.55% ± 17.04
 66.75% ± 20.61
 43.14% ± 16.98
r
 16.67% ± 5.17
 38.28% ± 17.12
 58.28% ± 22.94
 34.81% ± 16.01

0.5
 im
 45.40% ± 12.15
 92.09% ± 6.54
 99.43% ± 1.28
 93.10% ± 7.32
r
 40.20% ± 12.10
 90.53% ± 7.20
 99.33% ± 1.95
 91.61% ± 7.33

0.8
 im
 68.80% ± 9.82
 99.35% ± 0.66
 99.99% ± 0.03
 99.38% ± 0.80
r
 67.49% ± 8.79
 99.19% ± 0.81
 100.00% ± 0.02
 99.30% ± 0.80

0
 0.2
 im
 26.52% ± 11.05
 61.86% ± 19.80
 74.60% ± 18.60
 60.47% ± 22.39
r
 21.42% ± 9.51
 53.78% ± 22.05
 65.31% ± 22.23
 52.94% ± 24.00

0.5
 im
 77.62% ± 15.33
 98.68% ± 2.19
 99.73% ± 1.12
 98.26% ± 2.73
r
 75.44% ± 17.08
 98.48% ± 3.06
 99.65% ± 1.51
 97.88% ± 3.78

0.8
 im
 97.57% ± 2.68
 99.92% ± 0.36
 100.00% ± 0.01
 99.95% ± 0.15
r
 97.50% ± 2.79
 99.93% ± 0.35
 100.00% ± 0.00
 99.94% ± 0.23

00
 0.2
 im
 42.00% ± 19.87
 70.77% ± 20.96
 75.61% ± 19.84
 66.41% ± 23.10
r
 33.41% ± 19.83
 61.42% ± 25.17
 65.39% ± 23.70
 57.74% ± 25.41

0.5
 im
 94.59% ± 7.82
 99.52% ± 2.30
 99.53% ± 2.40
 99.54% ± 1.21
r
 94.21% ± 8.81
 99.35% ± 3.32
 99.28% ± 3.71
 99.49% ± 1.26

0.8
 im
 99.67% ± 0.80
 100.00% ± 0.01
 100.00% ± 0.00
 100.00% ± 0.02
r
 99.68% ± 0.76
 100.00% ± 0.00
 100.00% ± 0.00
 99.99% ± 0.10
= 100

0
 0.02
 im
 2.55% ± 0.91
 16.69% ± 7.63
 62.64% ± 11.68
 15.53% ± 8.30
r
 1.73% ± 0.19
 8.94% ± 3.77
 46.53% ± 12.77
 7.83% ± 4.38

0.05
 im
 18.42% ± 8.24
 92.04% ± 2.77
 98.03% ± 1.13
 91.39% ± 2.71
r
 12.01% ± 4.85
 88.98% ± 3.71
 96.89% ± 2.12
 87.16% ± 4.36

0.08
 im
 72.65% ± 7.39
 98.70% ± 0.64
 99.85% ± 0.26
 98.37% ± 1.15
r
 65.02% ± 7.11
 98.26% ± 1.07
 99.81% ± 0.37
 97.99% ± 0.99

0
 0.02
 im
 3.08% ± 1.10
 34.42% ± 15.59
 68.42% ± 7.71
 30.21% ± 14.43
r
 1.81% ± ± 0.28
 22.45% ± 13.76
 54.27% ± 10.55
 18.61% ± 12.01

0.05
 im
 50.25% ± 19.24
 96.30% ± 1.53
 98.36% ± 1.06
 95.30% ± 1.84
r
 39.82% ± 19.27
 95.41% ± 2.46
 97.56% ± 1.85
 94.05% ± 2.76

0.08
 im
 94.44% ± 1.95
 99.50% ± 0.41
 99.90% ± 0.15
 99.27% ± 0.60
r
 93.64% ± 2.55
 99.49% ± 0.50
 99.90% ± 0.18
 99.21% ± 0.76

00
 0.02
 im
 3.44% ± 1.27
 48.60% ± 15.25
 69.85% ± 9.63
 46.23% ± 15.83
r
 1.86% ± 0.31
 35.28% ± 14.58
 54.25% ± 11.60
 33.26% ± 15.47

0.05
 im
 77.84% ± 10.57
 96.97% ± 1.32
 98.76% ± 0.98
 96.54% ± 1.74
r
 72.17% ± 13.76
 96.15% ± 2.19
 98.14% ± 1.85
 95.86% ± 2.37

0.08
 im
 97.26% ± 1.27
 99.71% ± 0.33
 99.90% ± 0.20
 99.69% ± 0.36
r
 97.10% ± 1.39
 99.71% ± 0.35
 99.88% ± 0.28
 99.65% ± 0.49



Table A.10
Agreement rates in the negotiation scenarios when δ = 0.1 and br= 0.5.

ntrain gd ax t

0.2 0.5 0.8 u

n = 10
10 0.2 im 19.54% ± 5.22 38.81% ± 12.05 59.97% ± 21.05 39.78% ± 15.42

r 15.67% ± 2.66 29.53% ± 9.86 48.16% ± 21.13 30.37% ± 12.09
0.5 im 39.50% ± 11.09 86.84% ± 8.08 98.70% ± 2.14 87.69% ± 8.99

r 33.67% ± 8.57 82.88% ± 9.10 97.72% ± 3.63 82.43% ± 10.95
0.8 im 63.60% ± 10.98 98.27% ± 1.85 99.97% ± 0.14 98.56% ± 1.81

r 61.67% ± 9.43 97.93% ± 1.54 99.96% ± 0.15 98.18% ± 1.92
50 0.2 im 21.70% ± 6.00 39.30% ± 12.02 59.19% ± 16.28 40.85% ± 14.73

r 16.30% ± 3.87 29.11% ± 9.67 44.79% ± 15.15 29.95% ± 12.50
0.5 im 43.41% ± 11.25 86.92% ± 9.43 97.60% ± 3.42 85.23% ± 11.94

r 36.30% ± 10.14 81.87% ± 11.46 95.24% ± 5.49 80.61% ± 11.69
0.8 im 71.22% ± 10.49 98.33% ± 2.20 99.97% ± 0.13 98.05% ± 3.93

r 66.87% ± 10.36 98.24% ± 1.70 99.91% ± 0.26 98.12% ± 2.01
100 0.2 im 22.23% ± 5.53 40.71% ± 12.49 59.17% ± 19.42 40.87% ± 13.62

r 16.17% ± 3.77 30.02% ± 10.38 43.29% ± 17.55 29.43% ± 9.65
0.5 im 50.73% ± 11.98 87.43% ± 8.69 96.10% ± 4.89 87.24% ± 10.65

r 43.17% ± 11.38 81.57% ± 11.66 92.82% ± 7.52 81.86% ± 12.98
0.8 im 78.31% ± 9.10 98.23% ± 2.42 99.93% ± 0.20 98.36% ± 2.10

r 74.59% ± 9.72 97.40% ± 2.95 99.80% ± 0.51 97.74% ± 2.34

n = 100
10 0.02 im 2.68% ± 0.90 15.37% ± 7.06 55.71% ± 12.98 14.82% ± 7.17

r 1.77% ± 0.25 7.76% ± 3.33 35.22% ± 11.14 7.16% ± 2.90
0.05 im 16.31% ± 5.13 87.29% ± 4.12 97.69% ± 1.20 87.98% ± 4.28

r 10.24% ± 3.08 79.66% ± 5.69 95.22% ± 2.63 79.94% ± 5.50
0.08 im 59.90% ± 9.10 97.77% ± 1.28 99.81% ± 0.27 97.69% ± 1.70

r 51.06% ± 7.22 96.29% ± 1.72 99.56% ± 0.88 96.59% ± 1.78
50 0.02 im 3.16% ± 0.88 16.47% ± 6.79 51.65% ± 10.62 16.93% ± 6.81

r 1.79% ± 0.22 7.53% ± 3.14 28.35% ± 8.63 7.35% ± 3.81
0.05 im 18.66% ± 6.22 88.56% ± 2.58 97.49% ± 1.04 88.27% ± 3.18

r 11.23% ± 3.91 79.60% ± 5.54 93.10% ± 2.93 79.10% ± 5.37
0.08 im 71.82% ± 5.72 98.03% ± 0.70 99.81% ± 0.22 97.91% ± 0.89

r 60.36% ± 6.64 96.18% ± 1.84 99.35% ± 0.84 96.21% ± 1.80
100 0.02 im 3.02% ± 0.95 16.31% ± 5.85 46.33% ± 12.50 17.17% ± 6.72

r 1.74% ± 0.21 7.48% ± 3.08 23.56% ± 8.45 7.48% ± 3.44
0.05 im 21.80% ± 7.06 88.93% ± 2.69 96.92% ± 1.28 88.39% ± 2.96

r 12.77% ± 4.52 79.64% ± 5.05 91.68% ± 3.74 79.35% ± 4.96
0.08 im 78.99% ± 4.88 98.02% ± 0.75 99.75% ± 0.23 98.07% ± 0.91

r 69.14% ± 5.93 96.16% ± 1.90 99.06% ± 1.07 96.26% ± 1.91
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metric IR − br = 0.05
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Fig. A.3. Comparison of metric IRwith br= 0.05.
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metric IR − br = 0.2
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Fig. A.4. Comparison of metric IRwith br= 0.2.
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metric IR − br = 0.5
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Fig. A.5. Comparison of metric IRwith br= 0.5.
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metric RI − br = 0.05
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Fig. A.6. Comparison of metric RIwith br= 0.05.
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metric RI − br = 0.2
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Fig. A.7. Comparison of metric RIwith br= 0.2.
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metric RI − br = 0.5
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Fig. A.8. Comparison of metric RIwith br= 0.5.
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