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Abstract

In this work we performed a numerical study of an epidemic model
that mimics the endemic state of whooping cough in the pre-vaccine
era. We considered a stochastic SIR model on dynamical networks
that involve local and global contacts among individuals and ana-
lyzed the influence of the network properties on the characterization
of the quasi-stationary state. We computed probability density func-
tions (PDF) for infected fraction of individuals and found that they
are well fitted by gamma functions, excepted the tails of the distri-
butions that are q-exponentials. We also computed the fluctuation
power spectra of infective time series for different networks. We found
that network effects can be partially absorbed by rescaling the rate
of infective contacts of the model. An explicit relation between the
effective transmission rate of the disease and the correlation of suscep-
tible individuals with their infective nearest neighbours was obtained.
This relation quantifies the known screening of infective individuals
observed in these networks. We finally discuss the goodness and lim-
itations of the SIR model with homogeneous mixing and parameters
taken from epidemiological data to describe the dynamic behaviour
observed in the networks studied.
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1 Introduction

Mathematical modelling of infectious diseases is an interdisciplinary area of in-
creasing interest. Since the pioneering work of Kermack and McKendrick [1],
mathematical modelling has shown to be a powerful tool to understand infectious
disease transmission [2, 3, 4, 5]. The fact that the simple deterministic SIR model,
where the population is divided into susceptible (S), infective (I) and immune or
recovered (R) individuals, is able to predict quite well the outbreak periods for a
large series of infectious diseases in many countries around the world suggests that
it captures the essentials of transmission dynamics [2]. Lately, models gained an
increasing level of complexity, including age structure and particular features of
the given disease, with the aim of being more realistic and predictive [2, 6, 7, 8].
Due to the complexities of these models, stochastic effects and the network struc-
ture of contacts are rarely considered. However, when considered (in much more
simple models) stochastic effects have shown to play an important role in under-
standing the data of reported cases of measles and pertussis [9]. More recently, the
effect of the network structure of contacts on the disease transmission has been
considered in several publications, always in models with very few epidemiolog-
ical classes [10, 11, 12, 13]. In particular, in Refs. [14, 15] the authors studied
the spatial correlations and stochastic fluctuations using SIR and SEIR models on
two-dimensional Watts-Strogatz-type dynamical networks. Simöes et al. [15] fo-
cussed on the power spectrum of the fraction of infective time series and performed
an extensive study of parameter space for the SIR model. They found that spatial
correlations and the deterministic recovery of infection increase the amplitude and
coherence of the resonant stochastic fluctuations and studied the dependence of
such changes on model parameters.

In the present work, we use the SIR stochastic model on two-dimesional Watts-
Strogatz-type dynamical networks and perform an intensive study of the model for
parameters corresponding to pertussis disease (whooping cough) in the pre-vaccine
era. We carry out simulations for different parameters characterizing the network
properties and study their influence on the behaviour of the quasi-stationary state
of the system corresponding to the endemic disease with periodic outbreaks. The
purpose of our work is twofold. On the one hand, we assume the disease is prop-
agating in a place with a well-mixed population, and then, for some reason, the
network of contacts changes and becomes more local. We analyzed the conse-
quences of this change in disease transmission. On the other hand, we focus on a
methodological point. Suppose the disease is propagating in a city where local con-
tacts are important, but a SIR stochastical model disregarding network structure
is used. How bad is the description of the problem in this case if you parametrize
the model to available epidemiological data?
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2 Model and simulations

We consider a stochastic SIR model on Watts-Strogatz dynamic-type networks as
the ones studied by Verdasca et al. [14] and Simöes et al. [15]. Our setup of the
model is summarized below. First, we describe the underlying SIR deterministic
model with births and deaths.

2.1 Deterministic SIR model

In this model it is assumed that individuals are in one of the following three
epidemiological classes: susceptible, infected or recovered. Individuals are born in
a susceptible class at a rate µ and they remain there until they become infected
by contact with an infected individual. Infected individuals recover from infection
entering the recovered class at a rate γ. The dynamic variables of the model are
the fractions of the population in each epidemiological class, and they obey the
following set of non-linear coupled differential equations:

ds

dt
= −βsi+ µ− µs

di

dt
= βsi− γi− µi (1)

dr

dt
= γi− µr

where s, i and r are the fractions of people in susceptible, infected and recovered
classes respectively. In this model the term βsi represents the incidence per indi-
vidual of the disease (the rate at which susceptible individuals become infected)
and contains the key approximation of the model: uniform mixing. Parameter β
is the rate of infective contacts (which are the contacts such that if one individual
is infected and the other susceptible, the latter will become infected). So, in the
uniform mixing approximation it is assumed that all susceptible individuals be-
come infected at the same rate: βi. In this model the death rate is assumed equal
for people in the three epidemiological classes and also equal to the birth rate, µ,
in order to keep the population constant.

The set of differential equations 1 determines the dynamic evolution of the
system. For any initial conditions different from i=0 (when the system goes to-
wards the fixed point: s = 1, i = 0, r = 0), the system asymptotically reaches the
stationary state: s = s∗ = (γ + µ)/β, i = i∗ = µ/(γ + µ)(1− s∗), r∗ = 1− s∗ − i∗.
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2.2 Stochastic model on the network

We consider N individuals on a squared lattice (LxL=N) with periodic boundary
conditions. At each site there is an individual that may be in one of the 3 epi-
demiological states: S (suscepible), I (infected) or R (recovered). The state of an
individual at site j is a stochastic variable of the model, Xj , that may change
through the following processes:

infection : S → I

recovering : I → R

death and birth : S → S

I → S

R → S

We assume that when an individual dies at a site, another individual is born
at the same time at this site in order to keep every site with one individual during
the simulation. As we suppose Markovian processes, the dynamics of the system
is controlled by the knowledge of probability transition rates at each time. Deaths
and births are independent of the individual state and occur at the same probability
rate µ. To account for infections we consider a dynamic type of Watts-Strogatz
network [16]. We assume that, at a given time, an individual at site j has contact
with a randomly chosen individual in the network with probability rate pβ, and
with one of their k nearest neighbours with probability rate (1 − p)β. If the
individual at site j is susceptible, and the contacted individual is infected, then
the individual at site j will become infected. Local contacts of an individual
represent the contacts with known people (in the circle of their stable relations)
while global random contacts represent people met by chance (for example, on a
bus, shopping, etc). Actually, here the word “contact” is restricted to “infective
contacts”, in the sense discussed above for the SIR model. The model used in the
present work allows changing the degree of “locality” of the network by changing
the value of parameter p. In particular, for p = 0 an individual only has contacts
with their k nearest neighbours while for p = 1 an individual may contact any other
individual in the lattice with the same probability as in the classical stochastic SIR
model (uniform mixing). This is an important difference with the standard (static)
Watts-Strogatz setting [16] where the case p = 1 corresponds to a random network
where an individual has a fixed number k (<<N) of random contacts. Recovery
from infection is the same in every site and occurs at a probability rate γ. This
assumption gives exponentially distributed recovery times, which is a reasonable
approximation for pertussis [17].
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In summary, the probability transition rates for infection, recovery and death-
birth processes at site “j” are

ajinf =



p β i+ (1− p)β
1

k

∑

j′∈νj

δXj′ ,I



 δXj ,S

ajrec = γδXj ,I (2)

ajd−b = µ

where δAB is one if states A and B are the same, and zero if not. Xj is the state
of the individual at site j, and j′ in the sum runs over the k neighbours of site j
(we call this set of sites νj).

The probability rate for infections, recoveries or death-birth processes in the
whole system is obtained summing over j in Eqs. 2 and gives

ainf = p β i s N + (1− p)β nSIνN (3)

arec = γiN (4)

ad−b = µN (5)

where i and s are the fractions of infected and susceptible individuals in the system,
and nSIν is given by

nSIν =
1

N

N
∑

j=1

1

k

∑

j′∈νj

δXj ,S δXj′ ,I
(6)

In the case p = 1 and N → ∞, for i and s the stochastic model gives the same
dynamics as that of the deterministic Eqs. 1. For p < 1 the dynamics will be
affected by the correlation among susceptible and infected neighbours explicitely
included in the term: nSIν .

2.3 Simulation algorithm

The state of the system at a given time tα is specified by the knowledge of the N
variables Xα

j : X
α = (Xα

1 ,X
α
2 , ...,X

α
N ). We perform stochastic simulations using

Gillespie algorithm [18]. This is an exact algorithm that generates a Markov chain
for the master equation that could be constructed from the probability rates given
in Eqs. 2. The algorithm gives a sequence of times t1, t2, ... and the corresponding
states X

1, X2, ..., where two consecutive states differ by a single process that
occurs at a given site. The process and the time when it takes place are generated
from simple rules and two random numbers (see Ref. [18] for details). As the
probabiliy rates are functions of the stochastic variables of the model, they are
changed at each step of the simulation.
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2.4 Average computation

For each system to be studied we generate a set of M Markov chains, from spec-
ified initial conditions, and use different sets of random numbers, checking that
each trajectory survives at least a time trun. We denote the state of the system
corresponding to Markov chain m at time tα: Xα

m
. To compute the average of an

observable A [Xα
m
] over the M samples at a given time, we take into account that

the set of discrete times t1, t2, ..., tα,... will be different for each one of the m=1,
...,M trajectories. So, we define

〈A(t)〉 =
1

M

M
∑

m=1

Am(t), Am(t) =
(

A [Xα
m] +A

[

X
α+1

m

])

/2 (7)

with tα < t < tα+1. As tα+1 − tα is the time interval between 2 single processes, it
is much shorter than the time taken by the whole system to undergo a detectable
change.

Similarly, we define the time correlation of an observable at two diferent times

〈

A(t′)A(t′′)
〉

=
1

M

M
∑

m=1

Am(t)Am(t′) (8)

The main observable studied in the present work is the fraction of infected
individuals

i [Xα
m
] =

1

N

N
∑

j=1

δXα
mj ,I

(9)

3 Results

We perform simulations using the algorithm described in sections 2.2 and 2.3
for L=800 (which corresponds to a city of N=640,000 inhabitants) and consider
diferent networks corresponding to the cases k= 4, 8 and 12, including up to
first, second and third neighbours respectively, and p varying from 1.0 to 0.2. We
take µ = 1/(50 years), γ = 1/(21 days) and β = 0.8 1/day, which are standard
parameters for SIR description of pertussis in pre-vaccine era [19]. When other β
values are used in the simulations, it is mentioned explicitely.

3.1 The quasi-stationary state

3.1.1 Definition and empirical assumption of its existence

The purpose of this work is to simulate the endemic state of a disease that should
be represented by a stationary state of the model. As we mentioned above in the
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case p = 1, N → ∞, the dynamics of the system follows Eqs. 1 and so, for every
initial condition with i 6= 0 the stationary state (s∗, i∗) is reached. However, for
any finite value of N the only stationary state of the system is s = 1, i = 0 because
sooner or later a fluctuation will make the number of infected individuals zero, and
there is no process that produces infected individuals if there is none in the system.
Nevertheless, for N large enough, the system may fluctuate for a long time around
a quasi-stationary state (QSS) before extinction. The definition and properties
of such a state have been addressed in other contexts from a mathematical point
of view [20, 21] or with empirical approaches [22, 23]. In the present work an
empirical strategy is developed. There are two points to be considered in order
that the system reaches a QSS and remains there long enough to be studied. For
p < 1 the system develops correlations and there is a time needed to arrive at this
correlated QSS that depends on the initial conditions. Moreover, the size of the
fluctuations (and thereby the probability of extinctions) as well as N , depend on
the parameters that define network properties: p and k. Then, the time window
where a QSS of the system could be defined has to be determined with some care.

Estimation of extinction times

We first calculate the distribution of living times in order to estimate the typical
time that the system survives until extintion. We proceed as follows: (i) for each
(k, p) network we perform several runs and, from those that survive long enough,
we obtain approximate values for the average number of susceptible, infected and
recovered individuals, (ii) as an initial condition for our study, in the network sites
we randomly distribute a number of S, I and R individuals as obtained in (i), (iii)
we generate M=50,000 different samples as in (ii) (100,000 for p = 0.1) and let
each sample evolve until extinction, (iv) we compute the fraction of the samples
that extinguished in interval (t, t + ∆t). The results are shown in Fig.1. In all
cases considered exponentials fit quite well the results of simulations. For the SIR
stochastic model I. N̊assel [21] has proved that extinction times have an exponential
distribution as we found here numerically for a more complex model and other
initial conditions. The typical time of extinction decreases sharply with p. It is
reduced to 1/20 of its value in going from p = 0.3 to p = 0.1 for k = 8. Extinction
times also decreases when lowering k but the effect is weaker, for example, they
undergo only a 20% reduction when the neighbours are reduced from k = 8 to
k = 4, for p = 0.2.

Estimation of equilibration times

Figure 2 shows the time evolution of 〈i(t)〉 computed averaging over M=20,000
samples that survive at least a time trun = 40, 000 days. The initial conditions
for the simulations are generated as in (ii). After a time that is longer for lower
p, 〈i(t)〉 remains around a constant value that we take as the stationary value
of 〈i(t)〉 and denote it: 〈i〉. For t > 20, 000 days, the curves of Fig.2 verify
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| 〈i(t)〉 − 〈i〉 | < ǫ=0.00001, where 〈i〉 is 0.001, 0.00104 and 0.00106 for p=0.2, 0.4
and 0.6, respectively. As the fraction of infective individuals in the system is the
more fluctuating magnitude we have studied, we assume its constancy in time
is a sufficient condition to define the quasi-stationary state of the system. The
longer time needed to arrive at QSS as p decreases is related to the increasing
time needed for the network to establish local correlations. In particular, for
the case p=1 (not shown in the figure) the system is at QSS from t=0. Taking
the time window (ta, tb), ta=20,000 days, tb =40,000 days, the 20,000 samples that
survive 40,000 days for p=0.2 represent a significant 52% of the generated samples.
Conversely, in the case p=0.1 for t =20,000, when QSS has not been reached yet,
only 8% of the samples survive. As in this work we are interested in the study
and characterization of the endemic state of the disease, we haven’t considered
networks where the probability of establishment and survival of the steady state
is very low. In the present work we consider values of p ≥ 0.2.

In summary, for each network (k, p) considered we obtained a numberM=20,000
of Markov chains generated from independent samples of the system that survive
at least a time tb =40,000 days. In the time window (ta, tb) the magnitudes of in-
terest remain stationary within an acceptable precision (ǫ) when averaged over the
M samples. From this empirical fact we assume the existence of a quasi-stationary
state and that each one of the M trajectories Xα

m
(m=1,..M) represents a possible

time evolution of the disease in the endemic state (ta < tα < tb). The stationary
value of an observable average 〈A(t)〉 will be denoted 〈A〉. In particular, for the
fraction of infected or susceptible individuals in the system

〈i(t)〉 = 〈i〉 , 〈s(t)〉 = 〈s〉 , for t ∈ (ta, tb) (10)

where the equality with the numerical values 〈i〉 and 〈s〉 has to be understood to
be valid within the precision ǫ.

3.1.2 Relation between 〈s〉 and 〈i〉

In a given state X
α, the expected change in the fraction of infected individuals in

the system is governed by the net probabilty rate

(ainf [X
α]− arec[X

α]− i ad−b[X
α]) /N (11)

but stationarity of 〈i(t)〉 implies

〈ainf 〉 − 〈arec〉 − 〈i ad−b〉 = 0 ⇒ 〈ainf 〉 /N = (γ + µ). 〈i〉 (12)

where we have taken arec = γi and ad−b = µ from Eqs. 4 and 5. In the same way,
the stationarity of 〈s(t)〉 gives

− 〈ainf 〉+ 〈ad−b〉 − 〈s ad−b〉 = 0 ⇒ 〈ainf 〉 /N = µ.(1− 〈s〉) (13)
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From Eqs. 12 and 13

〈i〉 =
µ

γ + µ
.(1− 〈s〉) (14)

i.e., 〈s〉 and 〈i〉 should be related by the same relation as that of s∗ and i∗ in the
deterministic model, independently of the average rate of production of infective
individuals in the system, controlled by 〈ainf 〉.

3.2 Stationary behaviour

In Fig. 3 we show the stationary values of susceptible and infected fractions of
individuals for all the networks considered. While 〈s〉 increases as p and k decrease,
〈i〉 remains almost constant. For the case p=0.2, k=4, 〈s〉 is 2.6 times larger than
for p = 1 while 〈i〉 decreases only by 10%. The curves 〈i〉 vs. 〈s〉 (not shown)
satisfy Eq. 14 within the precision of our simulations for the 27 (k, p) networks
considered. Given the 〈s〉 dependence on p and k shown in Fig.3, a much weaker
dependence of 〈i〉 on network parameters is in fact predicted by Eq. 14, since 〈s〉
is always small compared with 1, and 〈i〉 depends on network parameters through
the factor (1− 〈s〉).

The increase of 〈s〉 when the locality of the network increases is a consequence
of the decrease in effective transmission of the disease. To quantify disease trans-
mission in the network, we define the effective transmission rate

βeff =
〈ainf 〉 /N

〈i〉 〈s〉
(15)

as the mean rate of infections per individual in the network, divided by the station-
ary values of fractions of infected and susceptible individuals. With this definition
the average production of infections in the system is connected with 〈s〉 and 〈i〉
by the uniform mixing expression: βeffN〈s〉〈i〉, βeff playing the role of a “global
effective” contact rate in a problem where local and global contacts are present.

In Fig. 4 we show βeff for all the networks considered. Transmission of the
disease in the network decreases with p and k as the network becomes more local.
The drop in transmission with p has been related to the clustering of suscepti-
ble and infected individuals that is produced by local correlations [14, 15]. This
clustering would reduce the probability of finding I − S neighbours and the local
contribution to transmission. In order to make the connection between disease
transmission and local correlations quantitative, we express βeff as

βeff = β + pβ
Csi

〈i〉 〈s〉
+ (1− p)β

CSIν

〈i〉 〈s〉
(16)
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in terms of the correlation coefficients

Csi = 〈si〉 − 〈i〉 〈s〉 , CSIν = 〈nSIν 〉 − 〈i〉 〈s〉 (17)

where we have taken the average of Eq. 3 to replace 〈ainf 〉 in Eq. 15. Correlation
Csi measures the average fluctuation of the product of the fractions of susceptible
and infected individuals in the population, while CSIν is a measure of the local
correlation between S individuals with their I neighbours. In Fig. 5 we plot both
correlations for the case k = 8. While the magnitude of Csi is barely noticeable,
CSIν indicates that there is a strong reduction in the probability of having S-I pairs
of neighbours as p decreases. For p = 1, βeff is almost equal to β (the deterministic
value) because the correction introduced by fluctuations is lower than 0.5%. For
p < 1 local correlations introduced by the network are appreciable and cause the
fall down in βeff . The definition we take for βeff (Eq. 15) and Eq. (12) imply
that

〈s〉 =
γ + µ

βeff
(18)

This relation holds for all the networks independently of p and k. If we take βeff
values from Fig. 4 and compute 〈s〉 through Eq. 18, we obtain a set of curves that
collapse with those in Fig. 3 (upper panel) validating numerically Eq. 18.

In summary, the relations among stationary values and model parameters for
the SIR deterministic model hold exactly the same for the averages at the QSS of
the SIR stochastic model in all the networks considered if the rate of infective con-
tacts, β, is replaced by the effective transmission rate, βeff . That is, it is possible
to account for all the network effects on stationary averages by the rescaling of a
single parameter.

3.3 Dynamic behaviour and fluctations

In this section we focus on the dynamic behaviour of the system in the quasi-
stationary state. We discuss the case k=8 since the other cases considered (k=4
and k=12) present similar qualitative behaviour. In Fig. 6 we show the time
evolution of the fraction of infected individuals for two samples corresponding to
networks k=8, p=1, and k=8, p=0.3. Fluctuations are clearly larger for the case
p=0.3 (Fig. 6b) than for p=1 (6a). But, the amplitude of fluctuations changes
considerably within the time evolution of a given sample. For example, for the
case p=1 (sample m) in the 18 years between t=31,400 days and t=38,000 days
(Fig. 6a, lower panel) the amplitude of fluctuations is larger than for case p=0.3
(sample m) in the 17 years between t=31,000 and t= 37,200 (Fig. 6b, lower panel).

With the aim of characterizing the fluctuations for the networks considered,
we compute the probability density functions (PDF), D(i), that are histograms
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constructed from the instantaneous fractions of infected individuals. In Fig. 7a we
show the PDF for networks with k=8 and different p values. When p decreases,
distributions become more asymmetrical with long tails and maxima shifted to-
wards low i-values. The combination of both features results in the small variation
of 〈i〉 with p that we observed in Fig. 3. The long tails indicate the presence of
large peaks of infected individuals as p decreases. We found that PDF are well
fitted by Γ-distributions

G(x) =
1

Γ(n)λn
xn−1e−x/λ (19)

where λ and n are the only two fitting parameters. The fits are compared with
D(i) histograms in Fig. 7b. The fits are good except for very low and very high
values of i. The fitted Γ-distributions underestimate the D(i) tails that fall more
slowly than exponentials (see inset of Fig. 7b). In fact, the D(i) tails are well
fitted by q-exponentials, Ceq(−λi), where

eq(x) = [1 + (1− q)x]1/(1−q) (20)

is an exponential in the limit q → 1 [24]. In Fig. 7c the D(i) tail for case p = 0.3
is compared with the q-exponential fit (q=1.04) showing an excellent agreement
for three decades of D(i)-values.

In summary, the study of D(i) distributions reveals a complex behaviour of the
instantaneous values of the fraction of infective individuals, i, for different networks
that is masked by the near constancy of 〈i〉 with k and p observed before. The
question that arises at this point is whether this complex behaviour is only due to
a change in βeff . In order to answer this question, we have performed simulations
of the system for different networks (different p and k values) but changing the
value of parameter β in order to obtain the same βeff for all cases. In Fig. 7d we
show the D(i) distributions for different networks with k = 8 and the same value
of βeff=0.8. The collapse of the curves for different p values points out that the
change in βeff was responsible for the main effects of the network on D(i) that we
observed in Fig. 7a. However, the collapse of the curves in Fig. 7d is not complete,
they are a bit broader for lower p indicating that for the same βeff , a decrease in p
produces slightly larger fluctuations. The change in the mean squared deviation, σ,
and the related change in the peak height are the only relevant differences among
these curves that don’t show the large asymmetry of those of Fig. 7a.

To study the dynamical behaviour of the fraction of infective individuals, we
compute the self-correlation function

c(t) =
〈

i(t′)i(t′ + t)
〉

− 〈i〉2 (21)
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which results independent of t′ in the (ta, tb) interval. By Fourier transforming c(t),
we obtain the power spectrum P (ω) =

∫

cos(ωt)c(t)dt for the different networks
considered (Fig. 8a). As p decreases, the peak of P (ω) shifts towards lower values
of ω and becomes more pronounced. The area under P (ω) is proportional to σ2

[25], indicating that the amplitude of fluctuations increases as p decreases, as could
also be inferred from the increasing width of D(i)s (Fig. 7a). This large increase
in P (ω) peaks when p is reduced, as well as the presence of a secondary harmonic
peak have already been observed in a previous study of this system for other model
parameters [15]. For the case p = 1 an analytical expression that approximates
very well P (ω) has been derived [26]. In order to sense how many of the network
effects on dynamic correlations can be accounted for by the effective transmission
rate, we compute P (ω) for different networks having the same βeff . The curves,
shown in Fig. 8b, present a slight increase of the peak height as p decreases. The
resulting increase in the area under P (ω) is consistent with the slight increase in
width (σ) of D(i) observed in Fig. 7d. It can be seen that even when βeff is
kept fixed, there is a shift of the peaks towards greater frequencies as p decreases.
These effects depend on the specific set of parameters taken for the SIR model.
For example, in Ref. [15] the authors found (for other values of model parameters)
that when keeping βeff fixed, the height of P (ω) peak is highly increased when
p is lowered, while the shift in frequency is barely noticeable (see Fig. 1c of Ref.
[15]).

4 Discussion

Our study of the SIR model on a Watts-Strogatz-type network, for parameters
corresponding to pertussis in the pre-vaccine era, shows that network structure
strongly influences the disease dynamics. The increasing locality of the network
(obtained by lowering p) decreases the disease transmission. This effect has al-
ready been observed by other authors [14, 15] who attributed it to the clustering
of infected individuals produced by local correlations. In the present work we
quantified this concept obtaining an explicit relation between the effective trans-
mission rate, βeff , and correlation coefficients between S and I individuals (Eqs.
16 and 17). An increase in locality also drastically increases fluctuations and the
period between outbreaks, which have been analyzed characterizing the probability
density functions of fraction of infected individuals, D(i), and the power spectrum
of the i-time series, P (ω).

We analyzed whether the network plays another role in the behaviour of the
system at the quasi-stationary state besides the change in the effective transmission
rate of the disease. Our findings are summarized below:
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- The average fractions of susceptible, infected and recovered individuals at
the QSS have the same values as in the SIR deterministic model if β param-
eter is replaced by βeff of the corresponding network. Therefore, for 〈s〉 and
〈i〉, the network structure may be ignored if a single parameter is changed
properly.

- Concerning fluctuations and the time-correlated behaviour of the system,
the situation is highly dependent on the SIR-model parameters taken. In
particular, if we consider different networks taking the appropiate value for
β in order to obtain βeff=0.8, fluctuations in the fraction of infected indi-
viduals and their time correlations are very similar as those of the stochastic
SIR model (p = 1) for all the networks considered (Fig. 7d and Fig. 8b).
However, network effects are not completely absorbed by βeff in this case.

From these remarks we are able to answer the question we raised in the introduc-
tion: If we want to describe pertussis transmission in the pre-vaccine era, what is
lost if we use a SIR stochastic model with homogenous mixing instead of a SIR
stochastic model on the network with determined values of k, p and β? The an-
swer is: very little. In order to parametrize both models, what can be taken from
epidemiological data is the basic reproductive ratio R0 that, for pertussis in the
prevaccine era, is between 16 and 18 [2, 27] and may be obtained from the aver-
age fraction of susceptibles, 〈s〉, through the relation: R0=1/〈s〉 [28]. As for the
studied systems 〈s〉=βeff/(γ + µ), epidemiological data fixes βeff (not β) around
0.8. If the SIR stochastic model (p=1) is used, the frequency of outbreaks would
be a bit underestimated with respect to the prediction of a network with p < 1
(Fig. 8b). But it would be very difficult to infer the proper k− p−β combination
from measurable quantities. For example, it is very unlikely that with a power
spectrum constructed from a time series of 20 or 30 years it will be possible to
choose among one of the curves of Fig. 8b. In fact, given the high heterogeneity
in the time series obtained as output of the model (Fig. 6) care should be taken
when analyzing real data. If the SIR stochastic model is proposed to describe the
dynamics of pertussis in the pre-vaccine era and in cities of the size considered in
the present work, the differences observed in the incidence time series in different
countries might be due to the heterogeneity of the time profile itself and not to
differences in the epidemiological conditions at each place [29]. It would be of
great interest to know whether these conclusions may be extended to more com-
plicated and realistic models. In particular, epidemiological and laboratory studies
suggest that immunity acquired by pertussis infection is not lifelong (see ref. [30]
and references therein) and more realistic models of pertussis transmission include
compartments that account for waning immunity [6, 7, 8].

We find it appropriate to emphasize that the results and conclusions obtained
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in this work hold: a) for the SIR stochastic model in the dynamical networks with
local and global contacts as described in section 2.2, b) for the set of parameters
used that corresponds to pertussis disease in the pre-vaccine era and c) for the
quasi-stationary state of the system, as empirically defined in section 3.1. Extrap-
olations to other problems that share only some features with the ones treated
in the present work are not straightforward and require caution. We expect re-
lations (14), (16) and (18) concerning stationary values to hold independently
of the parameters used provided that the quasi-stationary state has been estab-
lished. But concerning fluctuations we have not obtained general relations and
we do not expect that conclusions from the results presented here will be valid
for systems with parameters representing other infectious diseases. There are sev-
eral open questions related to the present work that could be addressed in future
research. In particular, it would be interesting to know whether our description
of the system at the quasi-stationary state with a beta-rescaled stochastic SIR
model could be extended to other model parameters. Moreover, it would be inter-
esting to study whether our description also holds in the approach to the steady
state. The problem of constructing mean field approximations to describe the ap-
proach and behavior of epidemic systems in the steady state has been studied for
the SIRS model on static two-dimensional Watts Strogatz networks by Roy et al.
[13]. Concerning the comparison between static and dynamical networks, in ref.
[31] Zanette studied the dynamics of rumor propagation with an SIR-type model
(without mortality) in standard (1D) Watts Strogatz network and in its dynamical
version defined as in the present work. They found that the qualitative behavior of
propagation is the same in both networks but that the effectiveness of propagation
is considerably higher in the dynamical one. This sort of comparison would be
interesting for infectious disease transmission modeling because both effects of the
p-parameter (randomness and globality) could be analyzed separately. While in
static networks p defines the average fraction of fixed random contacts, in dynam-
ical networks p also measures the degree of globality of social contacts (contacts
with any individual in the population).

Finally, it has to be mentioned, that our definition of βeff (Eq. 15) differs from
that of Refs. [14] and [15] where βeff= 〈ainf/(isN)〉. In any case, both definitions
throw very similar results for all the networks considered in this work (the relative
difference is always below 0.3%).
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Figure 1: Distribution of living times for different networks. The points
indicate the fraction of the samples considered extinguished at a given time
per unit of time. The continuous lines are exponential fits C exp(−t/τ) to
the data. The fitted value of τ is shown in each figure.
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for networks with k = 8 and different p-values. The average is performed
over M=20,000 samples for each case.
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Figure 6: Time evolution of the fraction of infected individuals in the QSS
for two different samples with p=1 (a) and p=0.3 (b).
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Figure 7: PDF of the fraction of infected individuals, D(i), for networks
with k = 8. (a) D(i) for different values of p parameter. To construct the
histograms we use the M trajectories keeping an i value every 10 days. This
gives more than 2.107 i−values per histogram. (b) Γ-distribution fits (solid
lines) to the D(i) of (a) (points). Inset: detail for case p=0.3 showing the
fit underestimation of the D(i) tail. (c) q-exponential fit (q=1.04) to the
D(i) tail for case p=0.3. (d) D(i) for networks with different p-values and
taking different β-values in order to obtain the same effective transmission
rate: βeff=0.8.
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Figure 8: (a) Fluctuation power spectra of infective time series, P (ω), for
networks with k = 8 and different p-values, (b) P (ω) for the same networks
considered in (a) but taking different β-values in order to obtain the same
effective transmission rate: βeff=0.8.
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