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ABSTRACT: Progressive lung function decline and, ultimately, respiratory
failure are the most common cause of death in patients with cystic fibrosis
(CF). This decline is punctuated by acute pulmonary exacerbations (APEs),
and in many cases, there is a failure to return to baseline lung function.
Ultraperformance liquid chromatography quadrupole-time-of-flight mass
spectrometry was used to profile metabolites in exhaled breath condensate
(EBC) samples from 17 clinically stable CF patients, 9 CF patients with an
APE severe enough to require hospitalization (termed APE), 5 CF patients
during recovery from a severe APE (termed post-APE), and 4 CF patients
who were clinically stable at the time of collection but in the subsequent 1−3
months developed a severe APE (termed pre-APE). A panel containing two
metabolic discriminant features, 4-hydroxycyclohexylcarboxylic acid and
pyroglutamic acid, differentiated the APE samples from the stable CF samples
with 84.6% accuracy. Pre-APE samples were distinguished from stable CF samples by lactic acid and pyroglutamic acid with
90.5% accuracy and in general matched the APE signature when projected onto the APE vs stable CF model. Post-APE samples
were on average more similar to stable CF samples in terms of their metabolomic signature. These results show the feasibility of
detecting and predicting an oncoming APE or monitoring APE treatment using EBC metabolites.

KEYWORDS: cystic fibrosis, acute pulmonary exacerbations, metabolomics,
ultraperformance liquid chromatography mass spectrometry

■ INTRODUCTION

Cystic fibrosis (CF) is a genetic disease caused by mutations in
the gene encoding the cystic fibrosis transmembrane con-
ductance regulator (CFTR) protein, leading to abnormal ion and
water transport across epithelial cells.1,2 Although multiple
organs are affected by CF, over 90% of patients die from
progressive pulmonary disease and subsequent respiratory
failure.3 CF lung disease is characterized by the triad of impaired
mucociliary clearance, chronic polymicrobial bacterial infection,
and neutrophil-dominated inflammation. This triad results in
progressive decline in lung function that is punctuated by acute
episodes of increased respiratory symptoms and often declines in
lung function that can be marked. These episodes are termed
acute pulmonary exacerbations (APEs). Therapies are intensified
and hospitalization is often required in an attempt to restore lung
function to baseline. For example, the CF Foundation Registry
shows that 26% of CF patients younger than 18 years of age and
44% of those 18 years and older required hospitalization for an

APE in 2014.4 It is known that the frequency of APEs severe
enough to require hospitalization adversely impacts quality of
life, survival,5 and associated health care costs.6 Despite the
clinical importance of APEs, there is still a general lack of
knowledge regarding their pathophysiology,7−10 resulting in
nonuniform treatment decisions.11

Unlike asthma, the triggers for APEs in CF are still poorly
defined. Viral infections, particularly RSV, rhinovirus, and
influenza, are thought to be important initiating factors in CF
APEs.12,13 In addition, exposure to cigarette smoke or other
pollutants14 as well as nonadherence to daily maintenance
therapy that has been shown to prevent APEs15 may also be
important. Controversy exists on the role of bacteria, with some
evidence suggesting that an increased bacterial load of resident
organisms is associated with APEs versus infection with new
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bacteria. Regardless of the trigger, a generally held notion is that
intensification of bacterial infection and inflammation drives the
clinical manifestations of APEs, so the mainstay of therapy is
intensive antibiotic treatment and physically clearing the airways
of debris.16 However, there is a flaw with this approach, as 25% of
CF patients with APEs severe enough to require hospitalization
do not recover to their baseline lung function.17 A discovery-
based, untargeted approach is needed to identify pathways that
are aberrant in CF with APEs compared to clinically stable CF in
order to develop mechanistic hypotheses on their pathophysi-
ology that can then be translated to improvements in early
detection, preventative strategies, and new therapeutic ap-
proaches. The difficulty with targeted approaches can be seen
in studies on inflammatory biomarkers. For example, a
comparison of sputum from clinically stable CF patients and
patients during exacerbations has suggested that there is a
correlation between APEs and inflammatory mediators such as
interleukin (IL)-1β, IL-8, and myeloperoxidase.18−21 Other
studies, however, failed to differentiate CF patients based on IL-8
alone, finding instead other potential protein biomarkers, such as
soluble intercellular adhesion molecule-1, calprotectin, and
calgranulin A and B.22,23

Metabolomics has become a valuable tool in studying
biochemical processes,24 with various studies having shown
CF-induced alterations at the metabolome level in different
biofluids. For example, the relative plasma linoleic acid and
docosohexanoic acid concentration product, as determined by
gas chromatography−mass spectrometry (GC−MS),25 suggests
abnormal essential fatty acid metabolism in CF patients.
Investigation of bronchoalveolar lavage fluid (BALF) metabolite
profiles in pediatric CF patients via nuclear magnetic resonance
spectroscopy (NMR) has shown amino acids and lactate as
markers of airway inflammation.26 Increased concentrations of
regulatory lipid mediators have been found in sputum from CF
patients using liquid chromatography−tandem mass spectrom-
etry (LC−MS/MS).27 More recently, 92 differential metabolites
discriminating between CF and non-CF subjects have been
identified in serum with a discovery-based metabolomics
approach, showing changes in lipid metabolism in addition to
abnormalities in bile acid processing and decreased fatty acid β-
oxidation.28

Due to its ease of collection, exhaled breath condensate (EBC)
has been one of the preferred biofluids to study biochemical
changes in the lung environment. EBC consists of aerosolized
epithelial lining fluid containing volatile and nonvolatile
compounds trapped and diluted by water vapor condensa-
tion.29,30 EBC has distinct advantages over sputum to investigate
the early phases of CF lung disease at a time where intervention
could prevent organ damage, as EBC can be collected at all ages,
whereas expectorated sputum can be collected only in older
patients who have established disease. However, the disadvant-
age of EBC is that its components may be present in trace levels
(nano- to micromolar concentration range), necessitating
sensitive techniques for its analysis.
On the basis of the above, we hypothesize that, regardless of

the initiating trigger, CF exacerbations severe enough to require
hospitalization will be associated with a specific metabolic
signature in EBC that would allow potential pathways that are
linked to the pathophysiology of APEs to be identified. We
further hypothesize that this metabolic fingerprint could precede
any symptoms or signs of an APE, that is, it will signal an
impending exacerbation. Finally, we hypothesize that this
chemical signature would return to the clinically stable signature

following treatment for the APE. Therefore, in this study, we
utilize a discovery-based metabolomics approach to analyze EBC
samples collected from CF patients who are clinically stable
compared to those with APE severe enough to require
hospitalization, using ultraperformance liquid chromatography
coupled to high-resolution mass spectrometry (UPLC−MS), in
combination with supervised multivariate classification models.
Once a discriminant metabolite profile was identified, we
investigated its presence in the presymptomatic phase of an
APE event and also its persistence following treatment for the
APE.

■ MATERIALS AND METHODS

Chemicals

LC−MS grade methanol, purchased from J.T. Baker Avantor
Performance Materials, Inc. (Center Valley, PA, USA), and
ultrapure water with 18.2 MΩ·cm resistivity (Barnstead
Nanopure UV ultrapure water system, USA) were used to
prepare mobile phases and solutions. DL-Lactic acid lithium salt
(∼99%) and myristoleic acid (≥99%) were purchased from MP
Biomedicals, LLC (Solon, OH, USA), pyroglutamic acid (5-
oxoproline) was from Anaspec, Inc. (San Jose, CA, USA),
hydroxyacetone (96.4%) was from TCI America (Portland, OR,
USA), 2-methylbutyric acid (98%), 3,3-dimethylglutaric acid
(≥98%), and pimelic acid (≥98%) were from Alfa Aesar (Ward
Hill, MA, USA), 4-methylvaleric acid (98.5%) was from Acros
Organics (Morris, NJ, USA), 4-hydroxycyclohexanecarboxylic
acid, D-lactaldehyde solution (1 M in H2O), 3-hydroxybenzoic
acid (99%), 4-hydroxybenzoic acid (99%), propionic acid (99%),
isovaleric acid (99%), valeric acid (99%), adenosine (≥99%),
trans-4-hydroxy-L-proline (≥99%), L-proline (≥99%), sucrose
(≥99%), L-glutathione reduced (≥98.0%), D-tyrosine (99%), D-
(+)-glucose monohydrate (≥99%), and D-(−)-fructose (≥99%)
were from Sigma-Aldrich (St. Louis, MO, USA), and 8-
isoprostane-d4 (1050 mg/L), 5S,6R-lipoxin A4 (100 mg/L),
and 5S,6S-lipoxin A4 (100 mg/L) were from Cayman Chemical
Company (Ann Arbor, MI, USA).
Cohort Description

CF patients are usually seen in CF clinic every 3 months when
stable and more frequently with exacerbations. EBC was
collected during these regular clinic visits to the Emory
+Children’s CF Care Center in Atlanta, Georgia, after obtaining
informed consent. The patient’s clinical course was then followed
over the subsequent months so that they could be grouped
according to their APE status. Clinically stable CF was defined as
CF subjects whose symptoms were at baseline, physical
examination of the lungs was at baseline, lung function (FEV1,
i.e., forced expiratory volume in 1 s) was within 10% of the yearly
baseline, and no new therapies (particularly antibiotics) were
added at that clinic visit, plus the patient was seen at the next
clinic visit 3 months later and was again classified as clinically
stable. EBC was collected on 17 CF subjects meeting this
definition of clinically stable (age range 14−39, mean (SD) age
28(7) years, 29.4% female). A severe APE was defined as an
increase in respiratory symptoms (cough, sputum production)
and/or changes in physical examination of the lungs (increase in
crackles, decrease in airflow), at least a 10% decrease in FEV1, and
in the opinion of the clinician required hospitalization for
treatment of the APE. EBCwas collected in 9 such subjects with a
severe APE at the time of hospitalization (age range 15−39,
mean age 26(7) years, 55.6% female). In 5 subjects, EBC was
collected 1−3 months after an APE event requiring hospital-
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ization, addressed as post-APE (age range 19−30, mean age
26(5) years, 40% female). Finally, EBC was collected in 4
subjects who were clinically stable as defined above but in the
subsequent 1 to 3 months developed APEs severe enough to
require hospitalization, addressed as pre-APE (age range 15−39,
mean age 27(10) years, 50% female). Table S2 describes the
details of the cohort. At the 0.05 level, the means of the age
populations were not significantly different with the two-sample
t-test for all possible pairs of sample classes. Among the 26
patients from whom all 35 EBC samples were collected, 6
patients had multiple samples collected at different stages of
disease severity. In most cases, the samples were not drawn from
the same APE episode, so they did not meet the criteria of paired
samples. Due to the small number of samples available, we
included all samples to maximize the sample size.

EBC Sample Collection and Preparation

EBC sample collection followed the guidelines approved by the
Georgia Institute of Technology and the Emory University
Institutional Review Boards (approval number IRB00000372).
An R-Tube collector (Respiratory Research, Inc., Austin, TX,
USA) was used to collect EBC samples, which were immediately
frozen at −80 °C until processed. Prior to analysis, EBC samples
were thawed and lyophilized at −40 °C and 100 mTorr for 24 h
using a VirTis benchtop freeze-dryer (SP Industries, Stone
Ridge, NY, USA). Sample residues were reconstituted in water/
methanol (90:10 v/v) with a concentration factor of 20 and
analyzed by UPLC−MS. Blank samples containing ultrapure
water also went through the same sample preparation procedure.
Prior to UPLC−MS, samples were randomly separated into two
batches and analyzed on consecutive days together with solvent
and sample preparation blanks. Quality control (QC) samples
(5.50 μM L-glutathione (reduced), trans-4-hydroxy-L-proline,
adenosine, D-(+)-glucose monohydrate, D-(−)-fructose, sucrose,
5S,6R-lipoxin A4 and 5S,6S-lipoxin A4, 8.85 μM D-tyrosine, 5.49
μM L-proline, and 5.51 μM 8-isoprostane-d4 solution) were
analyzed every 5 h to verify the stability of the retention times,
peak shapes, and areas during the analysis. Chemical standards
for metabolite identity validation were prepared in ultrapure
water or methanol (or a mixture of those solvents), depending on
their solubility.

Ultraperformance Liquid Chromatography−Mass
Spectrometry

Ultraperformance liquid chromatography−mass spectrometry
(UPLC−MS) analyses were performed using a Waters Acquity
UPLC H class system fitted with a Waters Acquity UPLC BEH
C18 column (2.1 × 50 mm, 1.7 μm particle size, Waters
Corporation, Milford, MA, USA) and coupled to a Xevo G2
QTOF mass spectrometer (Waters Corporation, Manchester,
UK) with an electrospray ionization (ESI) source. The typical
resolving power and mass accuracy of the Xevo G2 QTOF mass
spectrometer were 25 000 fwhm and 1.8 ppm at m/z 554.2615,
respectively. Gradient elution was employed in the chromato-
graphic separation method using water (mobile phase A) and
methanol (mobile phase B), with the following program: 0−1
min, 90−80% A; 1−3 min, 80−60% A; 3−5 min, 60−50% A; 5−
10 min, 50−40% A; 10−15 min, 40−10% A; and 15−20 min,
10% A. The flow rate was constant at 0.3 mL min−1. After each
sample run, the column was re-equilibrated to the initial
conditions in 6 min. The injection volume was 5 μL. The
column and autosampler tray temperatures were set at 60 and 5
°C, respectively. The mass spectrometer was operated in
negative ion mode with a probe capillary voltage of 2.0 kV and

a sampling cone voltage of 12.0 V. The source and desolvation
gas temperatures were set to 120 and 350 °C, respectively. The
nitrogen gas desolvation flow rate was 650 L h−1. The mass
spectrometer was calibrated across the range of m/z 50−1500
using a 0.5 mM sodium formate solution prepared in 2-
propanol/water (90:10 v/v). Data were drift corrected during
acquisition using a leucine encephalin (m/z 554.2615) reference
spray (LockSpray) infused at 4 μL min−1. Data were acquired in
the range of m/z 50−1500, and the scan time was set to 1 s.
Technical duplicates were acquired in all cases, except for 3
samples with too little volume for replicates. For UPLC−MS/
MS experiments, the product ion mass spectra were acquired
with collision cell voltages between 7 and 35 V and sampling
cone voltages of 12 or 30 V, depending on the analyte. Ultra-
high-purity argon (≥99.999%) was used as the collision gas in
UPLC−MS/MS experiments. Data acquisition and processing
were carried out using MassLynx, version 4.1 (Waters Corp.,
Milford, MA, USA).

Data Analysis

Spectral features [retention time (tR), m/z pairs] were extracted
from UPLC−MS data using Progenesis QI, version 2.0
(Nonlinear Dynamics, Waters Corp.). The procedure included
retention time alignment, peak picking, integration, and
deconvolution to group together adducts derived from the
same compound (Figure 1). Subsequently, m/z values of all
extracted features were input into the Metlin database31 to
perform a broad search for chemical compound candidates with
an error window of 20 ppm, and 16.7% features with no
candidates in the database were removed from the list. The
remaining features were normalized after blank subtraction.
Furthermore, only features that were present in at least 50% of
one group class were retained. These were subject to a more
stringent search against the Human Metabolome Database
(HMDB)32 using the elemental formula of the compound
candidates in Metlin, and only those that had candidates with
endogenous human or microbial origins were retained. The
remaining features were further confirmed by MS/MS experi-
ments.
The feature matrix obtained after this procedure was utilized to

build models for sample discrimination via orthogonal partial
least-squares-discriminant analysis (oPLS-DA33,34) by compar-
ing the sample classes pairwise (MATLAB, R2015a, The
MathWorks, Natick, MA with PLS-Toolbox, version 8.0,
Eigenvector Research, Inc., Manson, WA). Reverse interval
PLS-DA (iPLS-DA) was applied to autoscaled feature
abundances to find the optimum number of latent variables
(LVs) and a feature panel that maximized classification accuracy.
The iPLS-DA interval size was set to 1, and the maximum
number of LVs was set to 6. Leave-one-out cross-validation
(LOOCV) and contiguous block cross-validation (three data
splits) were used for oPLS-DA model building.

Metabolite Identification Procedure

Spectral features with tentative candidates in HMDB were
targeted for identification based on (i) the accurate mass and
isotopic pattern, (ii) tandem MS experiments where the
respective precursor ions were quadrupole selected, and (iii)
further validation against chemical standards (when available).
For those cases in which MS/MS spectra were not available in
the Metlin database, fragmentation patterns were manually
interpreted for metabolite annotation. Commercially available
standards were analyzed under identical conditions as EBC
samples to validate putative metabolite identities by chromato-
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graphic retention time matching and MS/MS fragmentation
pattern matching.

■ RESULTS AND DISCUSSION

A total of 491 features were extracted from UPLC−MS negative
ion mode data of the entire sample cohort by Progenesis
software. Following Metlin filtering, 409 spectral features were
kept (Figure 1). After deleting contaminant compounds such as
known surfactants or plasticizers, background subtraction was
applied to remove features in EBC samples that were also present
in the sample blanks. If a feature had a maximum peak area in the
blank runs that was one-third or more of the peak area of the
same feature in EBC samples, then it was considered a
contaminant35 and its peak area in the corresponding EBC
sample was set to 0. Otherwise, the maximum peak area in the
blank samples was deducted from the feature peak areas in the
EBC samples. Following background subtraction, features that
had zero peak areas in 70% or more of the EBC samples from the
studied class pairs were removed, resulting in 176 features that
remained in the APE/stable CF class pair and 185 features in the
pre-APE/stable CF class pair. This step was aimed at pruning out
less significant groups of features. Of these, only features present
in at least half of any group class were selected to increase the
robustness of the final marker panel, leaving 144 features for the
APE/stable CF classes and 159 features for the pre-APE/stable
CF classes, when considered pairwise. As described in Figure 1,
the feature data sets were further filtered to keep only those that
also had tentative identities based on elemental formula searches
in the HMDB database. Following this filtering, 20 features
remained in the APE/stable CF class pair and 21 features in the
pre-APE/stable CF class pair, and of these, only 9 and 10,
respectively, could be confirmed by MS/MS experiments (Table
S1) and were then subject to iPLS-DA feature selection process,

as described in the next section. This rather stringent filtering
approach was chosen to ensure that the features used for
multivariate classification had a high certainty in terms of
biochemical identity, therefore improving the chances of
understanding their significance in the context of CF APE
pathophysiology.
Classification Performance

Table 1 and Figure 2A describe results for the discrimination of 9
EBC samples collected from patients during an APE vs 17 EBC
samples corresponding to stable CF patients. An optimum panel
of 2 discriminant features (panel #1) was selected through the
iterative iPLS-DA process. Following a three-block cross-
validation approach, the corresponding oPLS-DA model yielded
a classification accuracy of 84.6%, a sensitivity of 77.8%, and a
specificity of 88.2%. One latent variable was used to build the
oPLS-DA model that interpreted 44.7 and 36.3% variance from
theX (feature peak areas) and Y (EBC class membership) blocks,
respectively. Two EBC samples from the stable CF patient class
and two samples from the APE class were systematically
misclassified. Figure 2B,C shows box plots of peak areas for
each discriminant feature in panel #1 and denotes fold changes
obtained between the compared sample classes. The median
instead of the mean peak area values were used to calculate fold
changes to account for sample variability resulting from the
relatively small sample size used in this class comparison.
Interestingly, when the 4 pre-APE samples were used as an
unknown sample set and input into this classification model, 3
out of 4 pre-APE samples were predicted as being similar to APE
samples (Figure 2A), foreshadowing a metabolic fingerprint of
APEs in the pre-APE EBC samples. Conversely, when the 5 post-
APE samples were input into the APE vs stable CF PLS-DA
model, 4 out of 5 post-APE samples were predicted as being like
stable CF samples (Figure 2B), possibly suggesting that

Figure 1. Data analysis workflow.

Table 1. Comparison of Discriminant Feature Panels

model/
panel # classes compared

type of cross-
validation

no. of features in
initial set

no. of discriminant features in
oPLS-DA model

discriminant
feature codes

model
accuracy

model
specificity

model
sensitivity

1 APE (9);
stable CF (17)

3-block 9 2 397, 407 84.6 88.2 77.8

2 pre-APE (4);
stable CF (17)

LOOCV 10 2 40, 407 90.5 94.1 75.0
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following APE treatment the EBC metabolic profiles of the
discriminant features of most post-APE patients resembled those
of the stable CF patients.
With the aim of investigating if it was possible to discriminate

the 4 EBC samples collected from patients in a pre-APE state
from the 17 EBC samples from stable CF patients, a new oPLS-
DA model was developed using a LOOCV approach. This
approach was chosen due to the small number of pre-APE
samples. Table 1 shows that classification was indeed possible
with an accuracy of 90.5%, a sensitivity of 75.0%, and a specificity
of 94.1% using a two-feature discriminant metabolite panel
(panel #2) selected by iPLS-DA (Figure 3A). One EBC sample
from a pre-APE patient and one sample from a stable CF patient
were misclassified with this model, which used 1 latent variable
and interpreted 87.2 and 44.6% variance from the X and Y blocks,
respectively. Figures 3B,C show box plots for each discriminant
feature in panel #2, with the respective median fold changes

obtained for the compared sample classes. Interestingly, feature
#407 was common to panels #1 and #2, but feature #40 was
selected only in panel #2, suggesting that biomarkers of the
asymptomatic phase preceding an APE event may be somewhat
different from those associated with biochemical processes
occurring during an exacerbation. Overall, these results highlight
the feasibility of early indication of an oncoming APE event using
these small metabolite panels (Tables 1 and 2), a possibility that
could have significant implications in terms of pre-emptive APE
diagnostics, enabling detection and treatment before irreversible
damage to lung function occurs.
The cross-validation of classification models prevented

overfitting to some extent. In addition, permutation tests were
also performed to further validate the models. A pairwise
Wilcoxon signed rank test was chosen for the cross-validated
residuals since the population could not be assumed to be
normally distributed due to the small sample size. For the model
classifying pre-APE/stable CF class pair, the probability that the
unpermuted model was not significantly different from the
permuted models was 0.024, indicating that the original model
was significant and not overfitted at the 95% confidence level. For
the model classifying the APE/stable CF class pair, the
probability that the unpermuted and permuted models were

Figure 2. (A) oPLS-DA cross-validated classification plot and (B) box
plots of peak areas of each discriminant feature in panel #1. (A) The x-
axis represents sample number, and y-axis represents the cross-validated
predicted scores of the oPLS-DA classification model. APE and stable
CF samples are represented by red circles and black squares,
respectively. The pre- and post-APE samples projected into the model
are represented by blue triangles and magenta diamonds, respectively.
The threshold for sample classification is represented by the green
dashed line. Pre-APE samples are collected within 3 months before an
APE event; APE samples are collected during an APE event; post-APE
samples are collected within 3 months after an APE event; stable CF
samples are collected for stable CF patients (3 months before or after
collection there were no APE events). (B, C) Box plots for pyroglutamic
acid and 4-hydroxycyclohexylcarboxylic acid, respectively, in EBC
samples from stable CF and APE patient groups. Mean values are
represented by a filled circle in the box; median values are represented by
a line in the box; the edges of the box are 25th and 75th percentiles; the
whisker extends to the most extreme values in data not including
outliers, with a 99.3% coverage; outliers are represented by asterisks.
The positive fold change is calculated as the ratio of median peak areas
between APE and stable CF samples. The negative fold change is
calculated as the negative ratio of median peak areas between stable CF
and APE samples. p values are calculated from aWilcoxon rank-sum test.

Figure 3. (A) oPLS-DA cross-validated classification plot and (B) box
plots of peak areas of each discriminant feature in panel #2. (A) The x-
axis represents sample number, and y-axis represents the cross-validated
predicted scores by the oPLS-DA classification model. Pre-APE and
stable CF samples are represented by red circles and black squares,
respectively. The threshold for sample classification is represented by a
green dashed line. (B, C) Box plots for lactic acid and pyroglutamic acid,
respectively, in EBC samples from stable CF and pre-APE patient
groups. Mean values are represented by a filled circle in the box; median
values are represented by a line in the box; the edges of the box are the
25th and 75th percentiles; the whisker extends to the most extreme
values in data not including outliers, with a 99.3% coverage; outliers are
represented by asterisks. Fold changes are calculated as the ratio of
median peak areas between pre-APE and stable CF samples. p values are
calculated from a Wilcoxon rank-sum test.
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indistinguishable was 0.087, indicating that the model was
significant at least at the 90% confidence level.

Identification of Discriminant Metabolites and Their
Biological Roles

Figure 4 describes the procedure used for unambiguous chemical
identification of the discriminant features used in the oPLS-DA
panels, using feature #40 as an example. Metabolic fingerprints
from the same patient at three different CF states, pre-APE,
stable, and during an APE event, are illustrated with the
corresponding base peak intensity chromatograms (BPI)
displayed in Figure 4, panels A−C, respectively. Extracted ion

chromatograms (EICs) (Figure 4D) and corresponding mass
spectra (Figure 4E, top) were obtained for features selected by
iPLS-DA. According to the experimental monoisotopic mass of
each feature, a series of possible candidates were generated from
database searches in Metlin followed by HMDB and selected
after matching of the observed and theoretical isotopic patterns
(Figure 4E). Next, fragmentation patterns obtained from MS/
MS experiments were compared to MS/MS spectra in Metlin, if
available, or interpreted manually. Finally, the tentatively
identified metabolites were confirmed by matching retention

Table 2. Chemical Identification of Discriminant Features in EBC

feature
code

used in
model/
panel

retention
time (min)

experimental
m/z ion type

elemental
formula

Δm
(mDa) tentative annotation

method for
tentative
annotation

metabolite ID
validation (with

standard)

40 2 0.48 89.0231 [M − H]− C3H6O3 −0.8 lactic acid (a), MS/MS (b) tR, MS/MS match
407 1, 2 0.48 128.0343 [M − H]− C5H7NO3 −0.5 pyroglutamic acid (5-

oxoproline)
(a), MS/MS (b) tR, MS/MS match

397 1 0.82 143.0701 [M − H]− C7H12O3 −0.7 4-hydroxycyclohexyl-
carboxylic acid

(a) tR, MS/MS match

aAccurate mass and isotopic pattern matched. bMetlin database matched.

Figure 4. Base peak intensity (BPI) chromatograms obtained for EBC samples from the same patient at three different CF states: (A) pre-APE, (B)
stable CF, and (C) during an APE event. (D) Extracted ion chromatogram for the discriminant feature withm/z 89.0239± 0.005 (lactic acid) generated
from data in (A−C) and lithium lactate standard. (E) Experimental (top) and theoretical (bottom) mass spectra for the discriminant feature with m/z
89.0239 and tR = 0.48 min. (F)MS/MS spectrum form/z 89.0239 precursor ion using a collision cell voltage of 8 V and a sampling cone voltage of 30 V.
The matching of MS/MS fragmentation between the experimental spectrum (top) and the chemical standard (bottom) is shown.

Figure 5. Box plots for three discriminant metabolites, (A) lactic acid, (B) pyroglutamic acid, and (C) 4-hydroxycyclohexylcarboxylic acid, in different
subgroups of the sample cohort. Mean values are represented by a filled circle in the box; median values are represented by a line in the box; the edges of
the box are the 25th and 75th percentiles; the whisker extends to the most extreme values in data not including outliers, with a 99.3% coverage; outliers
are represented by asterisks.
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times and fragmentation patterns with chemical standards,
whenever possible (Figure 4D,F).
Lactic acid (feature #40), which was selected by iPLS-DA for

the model comparing pre-APE patient samples with stable CF
ones, had a significant median fold increase of 3.2 from stable CF
to pre-APE patient samples (p < 0.05, Figure 3B). Interestingly, a
previous study using NMR reported increased levels of lactate in
BALF from CF patients with high inflammation compared to
those with low inflammation,26 confirming that increased
inflammation both prior to and during an APE event could be
also detected in EBC by LC−MS. Increased lactate production
has also been reported in patients with respiratory distress
syndrome, finding it proportional to lung injury severity.36 Lactic
acid levels in the studied cohort possibly reflect the status of
different stages preceding and following an APE event (Figure
5A). The higher levels of lactic acid in the pre-APE and APE
patients compared to stable CF patients could possibly result
from the increasingly hypoxic environment in CF lungs due to
poorly cleared thick mucus developing on epithelial surfaces,37

known to lead to an increased lactate conversion from pyruvate
in anaerobic glycolysis. Lactate is also a glucose precursor in
gluconeogenesis, and elevated gluconeogenesis has been found
in CF-related diabetes (CFRD), possibly contributing to
abnormal glucose tolerance in CF.38 The decreasing trend of
lactic acid from the pre-APE to the APE group in the studied
cohort might be understood by considering that APE patients
were treated with intravenous antibiotic therapy, so their
inflammatory phenotype might be different from pre-APE
patients, who had not yet been aggressively treated.
Interestingly, feature #407, identified as pyroglutamic acid (5-

oxoproline), was present in both marker panels, suggesting that
its relative alterations may reflect processes occurring both
during APE as well as during the 3month time window preceding
the APE episode. Pyroglutamic acid had median fold increases
from stable CF to APE and to pre-APE samples of 2.5 and 3.8,
respectively (Figures 2B and 3C). Interestingly, in a recent serum
metabolomics study of 31 CF vs 31 non-CF children reported by
Joseloff et al., pyroglutamic acid was also identified as an
important metabolite responsible for discrimination between CF
and non-CF subjects.28 This metabolite is a known intermediate
in the gamma glutamyl cycle, a pathway for the biosynthesis and
degradation of glutathione, and is thus related to redox
imbalance. CF mutations cause a primary dysfunction in the
glutathione system, leading to a systematic glutathione deficiency
in the respiratory epithelial lining fluid, which is aggravated by
oxidative burden.39,40 Interestingly, decreased levels of gluta-
thione have also been detected during exacerbations in EBC of
children with asthma, hinting at some common mechanisms.41

Figure 5B illustrates the relative concentrations of pyroglutamic
acid in the different sample classes.
Feature #397 was selected by iPLS-DA for the model

classifying APE from stable CF EBC samples, with a median
fold decrease of 1.8 from stable CF to APE samples (Figure 2C).
This feature was identified by both UPLC−MS and MS/MS and
validated using a standard to be 4-hydroxycyclohexylcarboxylic
acid, which is a relatively rare organic acid involved in gut
microbial mammalian cometabolism, and it is a metabolite
typically found in urine.42,43 However, it has never before been
reported in EBC to our knowledge. Interestingly, this type of
metabolic gut−lung crosstalk has also been found to be
associated with inflammatory bowel disease, in which the
pulmonary inflammation is reported to accompany the main
inflammatory processes in the bowel.44 It is yet unclear, however,

if these inflammatory processes are manifested through similar
alterations in the respective lung and bowel metabolomes, as
suggested by this finding. Figure 5C illustrates the relative
concentrations of 4-hydroxycyclohexylcarboxylic acid in the
different sample classes.

■ CONCLUSIONS
In our study, an untargeted UPLC−MS metabolomics method
coupled to multivariate statistical analysis allowed identification
of EBC metabolites related to APE events in CF patients.
Orthogonal PLS-DA multivariate classification yielded accept-
able accuracies (84.6%, 90.5%), sensitivities (77.8%, 75.0%), and
specificities (88.2%, 94.1%) in distinguishing the 9 APE or 4 pre-
APE EBC samples from the 17 stable CF samples, respectively.
The discriminant metabolites included lactic acid, pyroglutamic
acid, and 4-hydroxycyclohexylcarboxylic acid. Specifically, lactic
acid was identified as a key biomarker for predicting an oncoming
APE event. Since the limitation of this study is the relatively small
sample size, a larger patient cohort will be needed to fully validate
the present findings. Despite this limitation, these results show
promise for new avenues that will allow for the detection of APEs
and even the prediction of an oncoming APE event using EBC
metabolites.
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