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ABSTRACT: A lot of time is spent by researchers in the
identification of metabolites in NMR-based metabolomic
studies. The usual metabolite identification starts employing
public or commercial databases to match chemical shifts thought
to belong to a given compound. Statistical total correlation
spectroscopy (STOCSY), in use for more than a decade, speeds
the process by finding statistical correlations among peaks, being
able to create a better peak list as input for the database query.
However, the (normally not automated) analysis becomes
challenging due to the intrinsic issue of peak overlap, where
correlations of more than one compound appear in the
STOCSY trace. Here we present a fully automated methodology
that analyzes all STOCSY traces at once (every peak is chosen as
driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-
CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and
finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is
gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more
reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY
traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing
similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-
correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it
detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the
metabolite identification process with more successful database queries and searching all tentative compounds in the sample set.
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The identification of metabolites is one of the main goals in
a metabolomics study, for example, in the search of

candidate biomarkers for a given disease.1 Once a sample set is
analyzed, the relevant metabolites to a given class separation are
sought to be identified with the purpose of understanding the
systems biology of the subject of study, identifying the
pathways affected by a disease, etc. In the future, the scientific
community should be able to tackle the disease by designing a
drug targeting the affected pathways, or using that knowledge
of the system for disease diagnostics, prognostics, or disease
evolution.2−5

NMR has been used for over two decades as one of the
preferred analytical platforms for metabolomics studies. It
allows the detection of metabolites in the micromolar range,
and above, as well as presenting the great advantage of being

intrinsically quantitative. It is also highly reproducible, robust,
nondestructive, and needs little or no sample preparation.
STOCSY, standing for statistical total correlation spectros-

copy,6 was published more than a decade ago and its use helps
in the identification metabolites as well as for pathway
connectivity and biological information recovery. Without
employing any correlation analysis, the process of identification
of metabolites would be even much slower, relying only on the
information contained in the set of 2D correlation spectra
(both homo- and heteronuclear), normally acquired in addition
to the standard 1D 1H NMR spectra. After selecting a driver
peak, the STOCSY analysis shows peaks that belong to a given
metabolite (high correlation between them and the selected
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driver peak), and a list of these peaks can be used as input for a
query in any of the publicly available databases such as the
Human Metabolome Database used in the present work
(HMDB)7 or others.8

A related approach aiming to the generation of peak lists for
database search was developed by Raftery and co-workers and
named RANSY, standing for ratio analysis NMR spectroscopy.9

Instead of the correlation among peaks from the same
compound, as in STOCSY, the latter is based on the constant
ratio among peaks from the spectrum of a given molecule,
which depends for each peak on the number of magnetically
nonequivalent spins and is constant across all spectra in the set
(regardless of the concentration in each sample). Further
confirmation with 2D correlation spectra is crucial as well as
final confirmation with spiking experiments. It also helps in
identifying pathway connectivity, as those peaks for other
metabolites can present weaker positive correlations to the
driver peak or even negative correlations to it.
The average usage of STOCSY involves the generation of at

least one pseudo NMR spectrum, or STOCSY trace, for each
metabolite of interest, with the aim of identifying correlations
from all peaks in the spectral set to a chosen driver peak. The
procedure is usually performed in a trace by trace basis, making
it a tedious but necessary work. Several variations or
adaptations of STOCSY where proposed years after its initial
publication, but the objectives of those are mainly focused on
data preprocessing and the assessment of pathway connectiv-
ity.10

Correlation of peaks to a driver peak can be originated not
only by structural (same molecule) correlation, but also by
pathway connectivities. iSTOCSY (iterative STOCSY)11 is an
automated algorithm that aims to distinguish one from the
other, once a driver peak is chosen, and was devised to reveal
pathway connectivities. Overlapping of peaks, which is common
in 1H spectra of biological fluids, could lead to masking of some
peaks by others with more correlation or bigger intensities, thus
showing a reduced correlation in the STOCSY trace.
STORM,12 another algorithm from the group at Imperial
College London, aims to solve the overlap peak issue by
selecting a subset of spectra that do not have peak overlap in a
given region of interest, thus improving the obtained
correlations (now without contribution from the overlapping
resonances). Together with RED-STORM,13 its expanded
version for bidimensional spectra, these are the only algorithms
that work with selected subsets of spectra. Nonetheless,
STORM relies on the absence of overlap in a given subset of
spectra, which does not always occur, or at least not for all
resonances with peak overlap in the whole range of frequencies.
Grouping resonances within clusters is needed to generate

peak lists for the database query. Edison and co-workers
reported a simple approach to generate peak lists that works
nicely with 13C NMR data14 but would certainly be harder to
apply in 1H NMR spectra. CLASSY,15 another development
from the group at Imperial College London, which aims at
improving biological information recovery, creates clusters
based on a binary connectivity, linking chemical shifts from
driver peaks that possess a similar number connectivity number,
referred to as nodes. However, it does not specify precisely how
it distinguishes among metabolites with similar number of
nodes, and moreover how it deals with overlapping resonances.
Finally, R-STOCSY16 creates clusters of consecutive resonances
that stand out based on a covariance/correlation ratio
landscape, although this can be peaks on a multiplet as well

as biologically linked metabolites. Improvements to the latter
include OR-STOCSY,17 which allows for better recovery of
biological information by applying a filter from OPLS-DA
output, and the application of statistical recoupling of variables
to obtain a 2D pseudospectrum that can link clusters without
the need for vicinity.18 This linking, as before, includes both
structural and biological connectivities.
This work presents a simple methodology that shortens the

time employed for the identification of metabolites, not limiting
it to those of biological interest to the classification (as a
product of the statistical analysis on the acquired spectra), but
rather to the whole set of compounds detected in the NMR
spectra. It is based on statistical analysis over the 2D matrix,
which contains traces that are similar to one another, in this
case the 2D STOCSY matrix. Peak overlap detection by
clustering analysis and sorting of traces (POD-CAST) clusters
the traces that look similar, while it helps dealing with those
peaks that present overlap. Its output is composed of a visually
appealing figure with easy to read compressed data as well as a
list of sorted driver peaks for easier search in databases. The
graphical output can be adjusted by varying an overlap
threshold value, to differentiate structural correlation from
decreased correlations due to overlap (although it cannot
eliminate strong correlations due to pathway connectivity,
intrinsic to STOCSY). Peak picking for driver peaks can be
applied almost automatically or through a list of manually
picked peaks. The advantages of POD-CAST were compared to
the DemixC approach,19,20 currently one of the best available
methodologies for assessing complex mixtures (designed to
work on TOCSY experiment data, but easily adaptable to data
from STOCSY analysis). POD-CAST can be also applied over
data sets where similar traces are to be identified, for example,
TOCSY spectra.

■ METHODS

Simulated Spectra Set

Raw free induction decay files corresponding to 1D NOESY
with presaturation 1H NMR experiments were downloaded
from the Human Metabolome Database7 for glutamic acid,
leucine, lysine, and valine (HMDB ID numbers: HMDB00148,
HMDB00687, HMDB00182, and HMDB00883, respectively).
All four spectra were individually phase and baseline corrected
using Mnova (v. 10.0) software (Mestrelab Research S.L.,
Santiago de Compostela, Spain). The four spectra were
normalized to an equal (arbitrary) area for the integration of
the α protons between 3.57 and 3.77 ppm, yielding an
equimolar relation to one another. Twenty spectra were created
by arithmetic combinations of the processed spectra using
randomly generated coefficients ranging from 0.8 to 1.2 for
each amino acid spectrum to form a set of 20 spectra, with their
compositions independent to one another. The spectra were
superimposed, several regions for peaks arising from small
impurities were selected as “blind” to set the intensities within
them to zero (0.80−0.85, 1.05−1.35, 2.85−2.95, and 3.35−3.40
ppm), and then the region from 0.7 to 3.9 ppm was exported
for statistical analysis.
Sample Preparation of “Artificial Mixture Set”

Twenty samples were prepared containing variable volumes of
stock solutions in D2O (D, 99.9%, Cambridge Isotopes
Laboratories, Inc., Andover, MA, USA) with ∼500 μM sodium
azide (>99.0%, Sigma-Aldrich) of 11 compounds: arginine,
ascorbic acid, choline chloride, citrulline, folic acid, glutamic
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acid, histidine, ornithine hydrochloride, pantothenic acid
(calcium salt), taurine, and tryptophan (all reagents were
>99.0%, Sigma-Aldrich). The stock solutions were prepared as
follows: a mass between 0.17 and 0.25 g was weighed, and the
solid was added to 1.0 mL of the sodium azide solution in a
conical microtube. After vortexing for 10 s to help dissolution
(there was no effort made to aid dissolution further in cases of
slow dissolution), the microtubes were centrifuged at 3200 rpm
for 5 min on an Adams Compact II Centrifuge (Becton
Dickinson and Company, Sparks, MD, USA). The supernatants
were collected with glass Pasteur pipettes, with the exception of
the solutions of choline chloride and ornithine hydrochloride,
as both had all the solid dissolved after vortexing. The next step
involved the addition of random volumes (between 35 and 50
μL) from each of the stock solutions into 20 microtubes to
generate 20 samples that were composition independent. The
final step consisted of completing 600 μL on every sample
using the sodium azide solution. From each of the 20 samples,
50 μL was diluted to 550 μL using the sodium azide D2O
solution and transferred into UP5−7 5 mm OD NMR tubes
(New Era Enterprises, Inc., Vineland, NJ, USA) for the
acquisition of 1H NMR spectra.

NMR Data Acquisition

The 1D 1H NMR spectral data on all diluted samples and 2D
experiments (COSY, HMBC and HSQC) on one concentrated
sample were collected at 295 K on a Bruker Avance-III
spectrometer equipped with an Ultrashield magnet at 500 MHz
using a TCI (1H/13C/15N//2H) CryoProbe optimized for 1H,
increasing sensitivity relative to traditional room temperature
probes,21 under the control of TopSpin software (v. 3.2), all
products of Bruker-Biospin (Billerica, MA, USA). 1D 1H NMR
spectra were acquired using a home-refined version of the
excitation sculpting method incorporated with the water signal
suppression.22 A 1H−1H 2D TOCSY experiment of one of the
concentrated samples was performed on a Bruker Avance-III
HD spectrometer equipped with an Ultrashield magnet at 800
MHz using a QCI (1H/19F−13C/15N//2H) CryoProbe.

NMR Data Processing

The 1D 1H NMR spectra were processed using Mnova, starting
with a one-time zero filling and a 1 Hz Gaussian function
apodization, followed by phasing and baseline corrections. The
spectra were referenced to the choline methyls proton
resonance at δ 3.19 ppm (singlet).7 The spectra contained
over 200 peaks each, and despite possible small pH differences
among the samples, there was great consistency in the position
of the peaks throughout the set. The peak shifts variations were
corrected to within 0.001−0.002 ppm by local peak alignment,
performed manually in Mnova for all spectra of the data set
simultaneously. Spectra used for the analysis had the empty
regions on the extremes stripped off and the intensities around
4.78 ppm, the water peak, were suppressed to zero, before
being exported for statistical analysis. The spectra obtained
were clean, free from residual artifacts and identified
contaminants.

Statistical Analysis

The STOCSY analysis6 is normally performed by choosing a
driver peak, whose correlations are shown in a color coded
trace over a pseudo 1D NMR spectrum. Each point on the
trace (its shape) is defined by the covariance of the given
chemical shift to the driver peak in the whole spectral sample
set, while color coding is used to show the magnitude of the

correlation coefficient (in some cases the absolute value of it is
shown instead). This correlation arises from the collinearity of
the driver peak chemical shift to the whole range of the spectra,
variables, over the spectra from all the samples, observations.
POD-CAST analysis was performed using a script on Matlab

R2014b (Mathworks, Natick, MA) over STOCSY traces.
STOCSY analysis was performed on the data sets imported
from MS Excel using a script on Matlab. This script, kindly
provided by researchers at Imperial College London, was
refined to produce the 1D STOCSY traces corresponding to
each driver peak (given a peak list or selecting all peaks above a
chosen threshold), and a 2D matrix containing the correlation
information from every trace, that is to say, the information
found on the color coding of the STOCSY traces.
The first step was to generate a square matrix containing

information related only to the driver peaks, as there is no
interest in correlations of the driver peaks to the noise areas. To
that purpose, the overlap matrix O was obtained in which each
overlap coefficient Oij is the inner product of the correlation
traces i and j. Since Oij would have the maximum overlap value
for traces where i = j, each trace was then normalized to that
value, which in the end renders matrix O with all diagonal
values equal to 1. Later on, a binary connectivity matrix B was
determined from matrix O, such that elements Bij are equal to 0
if Oij is equal or smaller than a chosen threshold, and equal to 1
if Oij is greater than it (the default threshold is 0.5). Then a
cumulative overlap index (COI) was obtained for each row i of
matrix B, calculated by adding all j elements in row i. Matrix B
shares some similarity to the connectivity matrix obtained for
CLASSY,15 while the cumulative overlap index is related to the
importance index calculated in DemixC.19,20

The presence of negative correlations has a wealth of
information in STOCSY analysis, as it is normally linked to
biochemically meaningful correlations.6 Note that any Oij
element that had a negative value is also converted to zero in
matrix B for the calculation of the COI values. In the results of
the present work, the negative correlations are purely
coincidental (and are thus not shown in any overlap matrix
plot), as the STOCSY matrices derived from the analysis over a
set of 20 simulated spectra, in the first case, and from 20
artificial mixtures of independent compositions, in the second
case.
The following step was the application of a hierarchical

clustering analysis23 (HCA) to matrix O using a Euclidean
distance measurement for the metrics with the Ward type of
linkage, which rendered appropriate results. The type of linkage
serves the purpose of visualization by creating a dendrogram, in
which the closest traces appear together in branched leaves, the
height of which is a measurement of the distance between the
traces. The longer the distance, the more dissimilar are the
traces. Leaves form then branches and all these are linked based
on the linkage type. The resulting dendrogram has the chemical
shifts of the driver peaks as labels for the leaves.
The last step consists in sorting the traces of matrix O by

using the order of the leaves in the dendrogram in the vertical
dimension of the matrix to produce a vertically sorted matrix,
Ov. This matrix would have dissimilar traces far from one
another, and traces whose distances are smaller among them
close together, forming bands. These bands, plotted in a color
coded fashion with different shades of red above the chosen
threshold for the construction of matrix B, would be as wide as
the number of peaks of the compound comprising it (if there is
no peak overlap at all, overlap cases are discussed below). To
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enhance visualization, the dendrogram is placed next to matrix
Ov, showing a match between branches in the dendrogram and
bands in the sorted matrix, and an average spectrum is placed
on top of the sorted matrix for guidance. Traces with
overlapping peaks will share overlap (weaker correlation than
for pure compounds) with peaks from other bands.
Matrix Ov can be sorted even further, in the horizontal

dimension with the same order given by the dendrogram leaves,
rendering a diagonal block type of matrix, Ovh. Any overlap
detected in matrix Ov will appear as an off-block rectangle,
which can appear contiguous to the diagonal block (for
overlapping peaks between neighbor bands), or off-diagonal for
overlapping peaks in non-neighboring bands, as it will be seen
below. The dendrogram is displayed next to matrix Ovh, now in
both axes.
The COI is added as a label for each driver peak trace, and as

a bar plot on the other side of matrices Ov or Ovh, and it is an
indication of the number of peaks with appreciable or
substantial connectivity to the driver peak, as it does not
distinguish between Oij values just above the threshold or close
to unity. As it is discussed below, overlap regions are easily
detected when a trace contains differing COI numbers from the
most frequent values within the band, or when the COI exceeds
the leaf count for the band. These overlapping traces tend to
appear in the contacts between bands, but may also appear in
other bands, oftentimes due to the existence of overlap with
more than two compounds for the given driver peak. The
default threshold value of 0.5 for the COI creation from matrix
B can be increased gradually, to cause the disappearance of
intermediate overlap coefficient values. This will lead to a COI
distribution where overlapping contribution among peaks is
lost, the COI values will be reduced and most peaks adding to
the COI will be nonoverlapping peaks.

Database Query

The sorted list of chemical shifts was split into groups, each one
composed of the driver peaks of a given band. All lists were
used separately as input for the 1D 1H NMR search in the
Human Metabolome Database (peak tolerance was set to 0.02
ppm). The hit list provided by the database was analyzed and
the spectra of the candidate metabolites was compared to the
correlation trace for matching (either the 1D STOCSY trace or
the correlation trace in the 2D matrix). In cases where neighbor
bands showed a high degree of overlap, with a few traces
identified by a COI value higher than the most frequent for
each neighbor band, the extra driver peaks were also
incorporated to the other group to check for improvement in
the matching index on the query. Once the assignment of the
group of peaks to the given candidate was defined, through 2D
NMR correlation experiments for additional confirmation, all
(or most) driver peaks were assigned to any given compound
(or more than one compound if there was overlap).

■ RESULTS AND DISCUSSION

Figure 1A shows the stacked spectra from HMDB of all four
compounds in the simulated spectra set, glutamic acid, leucine,
lysine, and valine. Valine and leucine have isopropyl groups and
thus methyl groups. The number of methylenes varies among
the four amino acids: no methylene in valine, one in leucine,
three in glutamic acid, and four in lysine. The structural
similarity present has a consequence, there is strong overlap of
peaks from methylene and methyne groups on the spectra of
these four compounds (the methyl groups have peaks that

barely overlap around 0.965 ppm). The overlapping of peaks is
an issue itself when performing a STOCSY analysis. The
correlation is mixed if the chemical shift of the driver peak
corresponds to peaks from two or more compounds, and the
resulting STOCSY trace normally has contributions from
correlations to the peaks of all the compounds involved, unless
the contributions to the overlapping peak are uneven and the
correlations corresponding to the smaller contributor are more
obscured.
Figure 1B presents the average of the 20 simulated spectra

for the “mixtures” of glutamic acid, leucine, lysine, and valine.
This simulated spectra set has the advantage that all the peaks
are aligned within it. Although it is not what normally happens
with real mixtures, it serves the good purpose of showing the
results of POD-CAST on a simple data set. The overlaps of
peaks mentioned above are in fact useful to show the potential
of POD-CAST toward their quick detection.
Figure S1 in the Supporting Information shows the stacked

STOCSY traces for driver peaks chosen at: 0.948, 1.021, 2.310,
3.590, and 3.718 ppm, A, B, C, D, and E, respectively. It can be
clearly seen that traces A and E match as well as traces B and D
(trace C does not match to either). It is obvious that STOCSY
produces redundant information, as its basis is the correlation
of one peak to another or others, and the correlation is
reciprocal. The key is to take advantage of this redundancy in a
way that the outcome results in a faster metabolite
identification process. The first step toward automation resides
in selecting a complete set of driver peaks. Although it could be
arguable in metabolomics that there is no need to identify all
the metabolites in a given sample set and the focus should be
put only on those metabolites that end up being significantly
different between two cohorts, there is an additional benefit of
performing the process with all the peaks on the spectrum.
Regardless of the possible identification of all the metabolites,
accounting for all the peaks will provide a good estimation of
the total amount of metabolites being detected.
A 2D STOCSY matrix was obtained using all the peaks (94)

from an average spectrum of the whole data set as driver peaks.
This rectangular matrix was reduced to the square matrix O,
seen in Figure 2, showing only cross correlation values in color
coding that represent the normalized inner product between

Figure 1. (A) Stacked 1H NMR spectra from the Human Metabolome
Database for glutamic acid, valine, lysine, and leucine, from top to
bottom, normalized to an equal integral value for the α 1H resonance.
(B) Average spectrum of the 20 simulated 1H NMR spectra from
linear combination of spectra from glutamic acid, valine, leucine, and
lysine with randomly assigned coefficients between 0.8 and 1.2 for
each.
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the traces of the two driver peaks. The comparison of the traces
for the driver peaks chosen in Figure S1 will show the
information redundancy discussed. Moreover, it can be easy to
identify several other traces that would match any of the ones
chosen above. Despite being a square matrix of reduced size,
compared to a full size 2D STOCSY matrix, the visualization on
the actual chemical shift scale helps linking the peaks to one
another through the cross peaks, as in any typical homonuclear
2D correlation experiment.
The rest of the steps in POD-CAST were followed to

produce Figure 3 (an expanded version showing the labels is
included in the Supporting Information in Figure S2). The
traces in matrix O were clustered to produce the dendrogram
depicted in Figure 3 (left side) and a sorted list of chemical
shifts as labels for the leaves, yielding branches that group these
driver peaks (as detailed in Figure S2, left side). The reordered
list was then used to sort matrix O on the vertical dimension,
creating matrix Ov and grouping the resembling traces into
bands (Figure 3 and Figure S2, center), while conserving the
horizontal scale for the traces to be comparable to the average
1H NMR spectrum for the simulated set (Figure 3 and Figure
S2, top). The bar plots on the right side of Figure 3 and Figure
S2 show the COI value for each trace. As expected, there are
only four clearly identifiable bands (matching the branches in
the dendrogram), each one ideally belonging to the driver
peaks of each one of the amino acids.
The last step was the search by peak list in the “1D NMR

search” section of the Human Metabolome Database7 using the
groups of peaks from the four bands found (peak groups are
listed in Table S1). Table S2 presents the number of peaks for
each band, the compound name of all matching hits and their
hit rank, with the addition of the first nonmatching hit, and the
Jaccard Index (JI) and Match Ratio (MR) values for the
searches. The MR is a ratio, expressed as a fraction, of the
number of matching peaks over the total number of peaks
involved in the query: matching, nonmatching left in the
database peak list and nonmatching left on the submitted peak

list. The JI is essentially the calculation of the MR ratio. A
perfect search will result in a JI of 1.0, while submission of a
peak list with missing (incomplete) or extra (expanded) peaks
will result in a reduced JI value. The total number of peaks on
the database differs slightly for several hits on a given
compound, as for example for lysine the hit list has both the
D- and L-isomers, and there usually appears spectral data from
more than one database (HMDB7 and BMRB24) for a given
metabolite.
All four searches have shown a marked difference on the JI

values from the matching hits and the best nonmatching hit,
with a greater number of matching peaks for the matching hits.
In three out of the four queries the best nonmatching hit is a
compound with far more peaks on its spectrum than for the
best hit. The best matching case was for L-valine, with all peaks
matching and a JI of 1.0. The worst matching case was one of
the L-leucine spectra with a JI of 0.632. These four cases were
strong matching situations, although the search can have in
some cases good matching for other molecules rather than the
one really producing the NMR signals in the mixture. This is
related to the diversity of the compounds, the population
density of compounds with similar peaks, and the subset of
peaks used in the query as picked from POD-CAST (it can
happen that not all the peaks of the molecule were picked due
to overlap with other peaks, incomplete peak picking or worse
resolution of multiplets than in the databases).
The overlapping of peaks has always been presented in

STOCSY as an issue,6,15,19,20 as the aspect of a STOCSY trace
that combines correlations to, at least, two compounds makes
identification and assignment more cumbersome.25 One of the
main problems of the overlap regions is that the correlation

Figure 2. Overlap matrix O resulting from the normalized inner of all
pairwise combinations of the correlation traces for every driver peak,
obtained after performing a STOCSY analysis over the simulated
spectra set. Average spectrum is overlaid on each axis. White
background corresponds to regions without (driver) peaks.

Figure 3. POD-CAST on simulated spectra set. (Top) Average
spectrum. (Left) Dendrogram obtained by HCA over the traces from
the overlap matrix of the 2D STOCSY traces using automatic peak
picking. (Center) Overlap matrix O (Figure 2) sorted by the order of
the driver peaks obtained after HCA and dendrogram generation.
(Right) Cumulative overlap index indicating the number of peaks with
overlap coefficient values above the chosen threshold.
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trace for a given driver peak can show a mixture of correlations
to two or more compounds that share the driver peak, or
correlations to peaks of only one of those compounds.
Moreover, it does not need to be a perfect apex to apex
overlap, but rather any part of a peak can cause conflict with
peaks from other compounds. The outcome would depend on
the relative weights of the different molecules, directly related
to their concentrations, at the chemical shift of the driver peak
across the sample set. In some cases of overlap, if the driver
peak belongs only to molecule A, molecule B can be masking a
correlation to another peak of molecule A when the difference
in concentration is important. This last problem cannot be
overcome by POD-CAST applied on STOCSY data, but in a
regular NMR-based metabolomics project it could be detected
by inspection of the set of 2D NMR spectra for coupled
resonances, namely COSY and TOCSY, or other experiments.
However, for the cases where the intensities of the

overlapping peaks are similar, POD-CAST helps in the
detection of these overlapping regions, both at first glance of
the traces and analyzing the COI (vide inf ra), which allowed us
to overcome the overlap problem, detect the overlapping peaks
and improve the search results. A detailed visual inspection on
the boundaries between bands II and III, and also between
bands III and IV, shows overlap traces that clearly merge
(weaker) correlations from both bands. Having detected that,
the searches were performed once again for bands II and IV
incorporating to each peak list the chemical shifts of the
overlapping traces from band III, as shown in Table S1. In both
cases, there was an improvement on the JI found for the hits:
for band II it increased to 0.875, and for the matches of band IV
it grew to 0.920 and 0.696 (first and second matching hits,
respectively). Note that each of the sets of peaks incorporated
to other bands already show a singularity in the dendrogram,
being separated from the branch containing most of the leaves.
From the 7 peaks added to the original band IV list, 6 peaks

belong to a singular overlapping region for lysine and leucine
peaks, between 1.6 and 1.8 ppm, as shown in Figure S3 The
quintuplet of lysine centered at 1.710 ppm (spectrum A)
overlaps with the multiplet of leucine centered at about 1.690
ppm (spectrum B). The average spectrum for the whole spectra
set (spectrum C) shows clearly that some peaks from both
spectra overlap. In fact, instead of 18 peaks (13 from leucine
plus 5 from lysine), the derived average spectrum has 14 peaks
detected, meaning that 4 out of the 5 peaks from lysine are
overlapping with peaks from leucine. The STOCSY trace with
driver peak at 1.740 ppm (data not shown) clearly shows 5
peaks in the region with high correlation values, the quintuplet.
This means that band III has more peaks than expected
between 1.6 and 1.8 ppm, as a result of the quintuplet center at
1.710 ppm passing undetected in the peak detection. The peaks
at 1.707 and 1.713 ppm show the contribution from the former
due to their proximity. Removal of one of those two peaks
around 1.710 ppm and the peak at 3.727 ppm (derived from a
similar analysis) from the peak list in the search for band III
further increases the JI to 0.816, not because of more matching
peaks, but due to a reduction in the number of nonmatching
peaks.
Similar conclusions can be obtained employing the

information in the COI bar plot with a fairly simple
interpretation. The COI value for each trace reflects the
number of peaks that have a normalized overlap coefficient
above a given threshold. The default value of 0.5 is a
conservative (empirical) value that allows to capture

intermediate and high correlations (i.e., overlapping peaks
and peaks from the same molecule). This leads to three main
scenarios for the analysis of the COI values: (a) the case of a
compound without overlapping peaks will show COI values
throughout the band traces that nicely match the number of
peaks in the dendrogram branch, as happens for example in
band I on both the simulated (vide supra) and the artificial (vide
inf ra) spectra sets, (b) if the COI values throughout the band
are even, but greater than the total number of leaves in the
dendrogram branch, this will point to a band whose peak list
should be expanded with overlapping peaks from other bands
(for instance, band IV from the simulated spectra set in Figure
3 has an evenly distributed value of 23 for the COI on its 16
peaks, and its peak list was expanded with the 7 lowest peaks
from band III for an improved query output), and (c) a band
with a frequent COI value and higher COI values for some of
its traces (it can be a smaller branch on its own if the overlap is
between multiplets) will reveal a band containing all of its
peaks, including some that would overlap with other bands (as
will appear below for the artificial mixture set).
There is an added adjustment that can be made at this stage

with POD-CAST: tuning the threshold value for the creation of
matrix B, which then leads to the COI. If this threshold is
increased for the simulated spectra set to 0.875, as shown in
Figure S4, the contribution from overlapping peaks on the COI
is lost and only the high correlation elements remain. Clearly,
each band block has an almost even COI value, reduced from
that in Figure S2 by the number of overlapping peaks, 5 in this
case for lysine and leucine. Even more, these five peaks from
the multiplet form a block of their own, with COI of 5. This
adjustment of the threshold is then a valuable tool for assessing
the traces corresponding to overlapping peaks in a quick
manner.
Sorting matrix Ov additionally in the horizontal dimension

provides a diagonal matrix similar to that of the global
hierarchical clustering in CLASSY.15 Again, the focus in POD-
CAST is to be able to identify compounds, while dealing with
overlap regions. Figure S5 (center) shows matrix Ovh for the
simulated spectra set. The sections of the bands with an even
COI in Figure 3 will render high overlap square blocks through
the diagonal in matrix Ovh. The overlap regions are again easy
to identify, appearing as rectangles with weaker overlap. In the
simulated spectra set, only the regions connecting the lowest
three squares show these rectangles, equivalent to traces
between bands in Figure 3. These plots where each little square
represents a driver peak are ideal to visualize the concept
behind the COI.
Despite the simplicity of this simulated spectra set, there is an

enormous benefit on the application of POD-CAST to any
given metabolomics set. The choice of the simulated spectra set
as a proof of concept had the objective of minimizing possible
drawbacks appearing in real sets, of which the most important
could be peak (mis)alignment, bigger variations in concen-
tration (dynamic range), peak overlaps, and peak picking. As it
was already discussed elsewhere,26 peak alignment is crucial for
obtaining good quality correlation values, and hence STOCSY
traces. The same applies when the whole 2D STOCSY
correlation matrix is sought. The STOCSY traces might also
be affected if a compound is only present in small
concentrations and in a few samples from the whole data set
(instead of being present in a big percentage of the samples),
and even more if one or some of those peaks suffer from
overlap with any other peak or more than one. This is a worst
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case scenario, but anything in between this and the simulated
set has different degrees of weaknesses when performing a
STOCSY analysis on it.
Finally, the choice of driver peaks is crucial for the present

analysis. As mentioned above, the introduction of all (or most)
of the peaks on the spectra set allows a good estimation of the
number of compounds detected in the samples. However, some
small peaks on the average spectrum picked as driver peaks
could be “noise”, if coming from molecules at low
concentrations, while others can be 13C satellite peaks coming
from molecules at high concentrations. Even though the
satellite peaks would appear in the reference spectra in the
databases, they will not appear on the tables of assigned peaks,
and hence are not “searchable”. These satellite peaks are indeed
expected to show the same correlations as the principal peaks
they are related to, and show together in the same bands in
matrix Ov, if included, but their inclusion in the database
queries will likely reduce the overall JI by adding nonmatching
peaks. The peaks from “noise” might be showing correlations to
any set of peaks, or poor correlations in general, and add
confusion to the database search process. This is the reason
why it is imperative to analyze the peaks and overlap traces next
to the average spectrum used for peak picking, to be able to
keep these “polluting peaks” out of the list of driver peaks to be
assigned.
The artificial mixture set, whose average spectrum is shown

in Figure S6, presents at least 200 peaks if peak picking is
performed just above a given threshold over the noise level. To
focus on the application of POD-CAST and its advantages, the
following analysis will be first reduced to the major components
of the artificial mixture, using as driver peaks those with
intensities above that of the downfield peak at 8.55 ppm. Matrix
O for this reduced set is shown in Figure S7, and Figure 4
shows matrix Ov for this reduced set (an expanded version
showing the labels is included in the Supporting Information in
Figure S8).
At first glance, it appears that only five bands are present in

the sorted matrix, both analyzing the dendrogram and the
matrix itself. However, an inspection of matrix Ovh for the
artificial mixture set, shown in Figure S9 reveals a disconnection
between the second upper block and the lower blocks. This in
fact can be identified as a small band, also detected in the
dendrogram and with singular COI values compared to the
neighbor blocks. In consequence, not only it will be analyzed as
a band itself, from a total of six, but also peaks from overlap
with its neighbor bands will be introduced into its peak list.
Matrix Ovh also shows pairwise overlap between the lowest
three bands: bands IV and V, bands IV and VI, and bands V
and VI show rectangles of intermediate overlap values. These
support the selection of additional peaks, which are missing to
them due to overlap, from band IV to be added on bands V and
IV.
The database search was then pursued using the peak lists of

the six bands, as listed in Table S3, incorporating now directly
overlapping driver peaks. This addition was also supported by
the observation of both the dendrogram branches and matrix
Ov, and by analyzing the COI values as described above. Table
S4 shows the results for the database query showing the hits
and the first nonmatching compound, together with the
corresponding JI and MR values, and includes the peaks from
six compounds: choline chloride, pantothenic acid, taurine,
arginine, citrulline, and ornithine. Matching hits for this set
range from a perfect match, JI of 1.0, for choline and taurine, to

a lower JI value of 0.583 for citrulline (although the third
matching hit for arginine is slightly lower).
Of the six molecules in the reduced set of high intensity

peaks, three amino acids have a rather small structural
difference, as shown in their chemical structures in Chart S1.
Arginine, citrulline, and ornithine structures differ on the
groups bound to the nitrogen atom in the end of the aliphatic
chain of three methylenes, with arginine being a guanidine
derivative, citrulline a urea derivative, and ornithine having the
free amino group. Their 1H 1D NMR spectra have two triplets
downfield from 3.0 ppm for the α and δ protons, and two
complex multiplets between 1.5 and 2.0 ppm for the β and γ
methylenes. The overlap of the six multiplets creates the
continuous signal overlap region between 1.5 and 2.0 ppm,
seen in the top of Figure 4. The peaks from the three amino
acids are clearly identified as well as the overlapping peaks for
citrulline and ornithine within the arginine band.
The peak list for the artificial mixture set was expanded to

include low intensity peaks, mostly aromatics and those
between 2 and 3 ppm. A POD-CAST analysis with this list
of peaks provided the results seen in Figure S10, where the
bands are annotated for the corresponding compounds. The
main observations drawn from the figure were: (1) no histidine
peaks are present; (2) folic acid peaks do not present overlap in
the upfield region of the spectra; (3) only the aromatic peaks
from tryptophan are detected, the aliphatic ones are overlapped
with high intensity peaks and there is no correlation observed
with them; (4) only the doublet at 4.535 ppm is seen for
ascorbic acid, the remainder of the correlations are obscured by
more intense peaks and the two peaks appear within the

Figure 4. POD-CAST on artificial mixture set: (Top) Average
spectrum. (Left) Dendrogram obtained by HCA over the traces from
the overlap matrix of the 2D STOCSY traces using manual peak
picking, peak list reduced to the most abundant compounds. (Center)
Overlap matrix O (Figure S7) sorted by the order of the driver peaks
obtained after HCA and dendrogram generation. (Right) Cumulative
overlap index indicating the number of peaks with overlap coefficient
values above the chosen threshold.
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arginine band; (5) glutamic acid peaks present a strong overlap
(most of its peaks) with folic acid (an amide formed from
glutamic acid amino group and pteroyc acid), and its peaks
were split in two bands; (6) taurine peaks were separated
compared to Figure 4, as the bands that have overlap (arginine
and pantothenic acid) have also other bands in between
(glutamic acid and tryptophan).
POD-CAST was also successfully tested in sample sets from

biological origin, for example the 1D 1H NMR spectra from the
published study on falcons affected by aspergillosis.27 Figure
S11 shows the sorted overlap matrix from the spectra from
plasma samples obtained from falcons, with the putative
annotation for each band. The main band consists of peaks
from the wide lipid resonances. Although it is better seen in a
magnification (not shown), traces on the top section of the
band correspond to resonances associated with lipids linked to
HDL, while those in the lower section of the band to the VLDL
type. The second major band is that for glucose (both forms
together), without the anomeric doublet peaks, that due to the
overlap are contained within the lipids band. The third band in
width, in the bottom of the figure, corresponds to peaks from 3-
hydroxy-butyrate, although some peaks are missing from the
multiplet at 4.14 ppm due to overlap with lactate. These
overlapping lactate peaks are in a neighbor band, but the rest of
the lactate six peaks are split into other two bands, one peak
almost adjacent to the lipids band (the one upfield on the 1.33
ppm doublet) and a pair of nonoverlapping peaks in between
bands of leucine and pyruvate. Other amino acids and small size
metabolites completes the list: glycine, citrate (one clean
doublet only, the other overlaps with lipids), alanine (the
doublet only, overlapping with lipids), valine, urea, creatinine,
phenylalanine/tyrosine/formate (overlap also due to their small
intensity), betaine, and creatine.
It is worth reinforcing that POD-CAST does not seek to

replace STOCSY, rather in this case it is being applied to
STOCSY data to boost its performance. For example, the
implementation of STOCSY in the last case would imply the
analysis of over 115 individual STOCSY traces, to be grouped
based on their similarity and peaks with high correlation put
into peak lists for database queries. Before even beginning to
look at these traces, a POD-CAST analysis reduces the number
to about 20 sets of 1D STOCSY pseudospectra that are
expected to contain similar correlation profiles, as revealed in
Figure S11. This would roughly imply a 5-fold reduction on the
time of analysis, if not more. In addition, the visual
identification of traces from driver peaks with overlapping
resonances, and their decluttering into the appropriate subsets,
is cumbersome to perform manually. Using POD-CAST the
identification of traces with mixed contributions is more direct,
by looking at the COI profile, the overlap traces and the doubly
sorted overlap matrix looking for cross-peaks off the diagonal
square blocks.
After obtaining the best hits possible in the database query

and comparing the spectra of the hits with representative
STOCSY traces (chemical shifts, integration, multiplicity and
couplings), the compound identification should proceed as it is
standard in any NMR metabolomics study. The assignment
should go from Level 2 of confidence, “putatively annotated
compound”, to Level 1, “identified compound”, by using two
orthogonal analytical techniques to the analysis of the
metabolite of interest and to a reference standard.28 For this
purpose, the chemical shifts from the bands are used in
conjunction with the data obtained from the collected 2D

correlation experiments, namely TOCSY, COSY, HSQC, and
HMBC in this work for the artificial mixture set.
POD-CAST shares some similarities with approaches like

CLASSY and DemixC. In CLASSY, the main focus is put on
the biological information recovery instead of the identification
of compounds. This identification step is a crucial step in
CLASSY, as it needs to create local clusters that would then be
“related by global hierarchical clustering”. While the authors
easily explain how to obtain local clusters (having no
overlapping peaks), they mention the problem for identifying
overlapping peaks or peaks in crowded regions. For example,
arginine and ornithine are located in one big cluster in their
study (even though it is worth recognizing the intrinsic
biological correlation between them), while both metabolites
are easily identified with POD-CAST (even with citrulline
contributing to the crowded region between 1.5 and 2.0 ppm).
Still, while the claim is that the interpretation of the biological
perturbations is not hindered by splitting sets of structurally
related peaks, it is easy to realize that for identification purposes
any database query with a limited peak list will produce inferior
results.
DemixC is proposed for the analysis of mixtures and

identification of the spin systems analyzing the TOCSY
spectrum of the mixture, with the ulterior identification of
the mixture components through database search. DemixC will
create an overlap matrix from the inner products of the
correlation traces, reduce its diagonal peak to the intensity of
the second highest peak, and normalize the adjusted overlap
matrix. Then an importance index will be calculated for each
trace, as a cumulative measurement of the overlap, and a
clustering algorithm applied over the vector of importance
indexes. This is “equivalent” to counting peaks of overlap for
each trace and ordering the traces by that number, instead of
strictly comparing the chemical shifts of those overlaps, as in
POD-CAST. This cumulative overlap contains low, intermedi-
ate, and high overlap values, so that traces from compounds
with no overlap will have an importance index similar to the
number of peaks it has, but if it had overlapping peaks the
importance index will be higher due to the added intermediate
overlap values.
For example, if a mixture of two compounds had a molecule

with only three doublets, not overlapping with any other peak
in the spectrum, and a second molecule had another set of
three doublets, also nonoverlapping, a crude analysis with
DemixC will count 6 peaks for each trace in the importance
index of each one of the 12 traces, and the traces would form a
mixed cluster of 12 peaks with an importance index value of 6,
instead of 12. A database query for these 12 peaks will most
likely produce faulty hits. Instead, POD-CAST will readily
identify that there are two sets, composed of six peaks each with
even COI values of 6 for all traces, by clustering the different
overlap traces. As a result, the two subsets would be expected to
produce successfully in database queries. In the reported
DemixC examples, there is no analysis on the significance of the
importance index value, and no discrimination between spectra
subsets with equal number of peaks or importance index.
For cases where there is overlap, DemixC has a strategy for

choosing a representative trace for the database query. DemixC
will select for each cluster the trace with the smallest
importance index value, so that “the likelihood is maximized
that the selected traces reflect individual components free of
spurious contributions from other spin systems”.20,29 This
solution clearly leads to incomplete peak lists, as overlapping
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peaks present in other clusters are being neglected in the
diminished peak lists. This, like the split sets proposed in
CLASSY for crowded regions, will lead to poorer matching
scores, while POD-CAST is expected to perform better by
including also the overlapping peaks in the peak list.

■ CONCLUSION

A simple and fast methodology was developed for accelerating
and improving database queries for the identification of
compounds in metabolomics studies. POD-CAST was able to
quickly and efficiently cluster all the peaks selected as driver
peaks for STOCSY traces from 1H NMR spectra in two model
spectra sets, one simulated (lacking misalignment issues), and
the other from experimental spectra from artificial mixtures,
and also in a sample set from biological origin. POD-CAST was
also able to detect peak overlap regions and identify peaks
missing in peak lists to improve the search scores. This issue of
overlap in correlation, in these cases in STOCSY, has always
been described as problematic, hindering identification, and was
normally avoided, ignored, or neglected (yielding incomplete
peak lists for the database query and inferior results).
POD-CAST bases its peak overlap detection on the weaker

correlation observed for compounds with overlapping peaks
when these peaks are used as driver peaks for STOCSY,
compared to using nonoverlapping peaks from the same
compounds, or peaks from compounds without peak overlap,
as driver peaks. In addition, POD-CAST has an adjustable
parameter, the threshold used to generate (from a binary
matrix) the COI, which measures the cumulative overlap and
can account for different strengths of overlap to bypass cases
where the COI is more or less even throughout a band.
Other approaches use indexes that are equivalent to counting

peaks, like the importance index in DemixC or the sum of the
overlap trace elements in CLASSY, which derives from the
inner product of a binary connectivity matrix and is used to
create local clusters for identification. On the basis of only these
P vectors, slightly different in each approach, they will likely fail
to differentiate traces from spectra with the same number of
peaks but at different chemical shifts. In similar cases, POD-
CAST will successfully cluster overlap traces from all driver
peaks based on the distances among the traces, and similar
traces will be clustered together in bands, regardless of the
number of peaks within it (compared to numbers from other
bands).
Visualization is key for quick interpretation of the data. POD-

CAST presents a plot that includes all the necessary
information to assess the presence of bands of similar traces
and simultaneously account for overlapping peaks absent from
some bands, based on their cross correlation and the COI
values for each trace. Doubly sorted overlap matrices are also
useful for the identification of overlapping peaks. Database
queries are expected to provide high quality output, although
this depends on the spectra chemical shift population
distribution and the number of similar spectra within the
database.
While DemixC is proposed for the analysis of TOCSY

spectra, it is also suggested to be useful for metabolomics,
which is completely understandable as the combination of
TOCSY traces for the different spin systems within a molecule
should resemble the STOCSY trace for that molecule. Likewise,
POD-CAST could be used for analyzing traces from TOCSY
spectra, and this will be exemplified in a separate work.

Current efforts are also concentrated in the application of
POD-CAST in other type of traces, as well as its extension to
13C NMR spectra. The use of 13C NMR spectra has recently
been highlighted as a promising alternative to avoid the overlap
issue in STOCSY, due to the greater peak spreading between
20 to 200 ppm, and was supported by the development of a
specialized probe with enhanced 13C sensitivity.14
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