
Expert Systems with Applications 42 (2015) 6075–6081
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
An effective Power Quality classifier using Wavelet Transform
and Support Vector Machines
http://dx.doi.org/10.1016/j.eswa.2015.04.002
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: deyongdm@gmail.com (D. De Yong), sbhowmik@gmail.com

(S. Bhowmik), fernando.magnago@gmail.com (F. Magnago).
D. De Yong a,⇑, S. Bhowmik b, F. Magnago a,b

a Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Argentina
b Nexant INC, 3100 Ray Rd. # 230, 85226 Chandler, AZ, USA
a r t i c l e i n f o

Article history:
Available online 8 April 2015

Keywords:
Power Quality
Wavelet Transform
Support Vector Machine
Complex disturbance detection and
classification
a b s t r a c t

In this paper we propose a method based on a combination of binary classifiers which are optimized for
those special cases where the real signals contain a multitude of events within the analyzed temporal
window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier
is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs.
One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented
with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers.
Each SVM node is trained separately allowing them to be parallelized. The training stage is performed
using single events, however due to the structure of the SVM methodology selected, it allows the system
to detect complex events. Tests and training were performed using real complex signals and the results
show the proposed methodology to be highly efficient.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the new investment in power distribution systems and
the increased proliferation of renewable energy and the associated
equipment there is a renewed focus on the quality of power sup-
plied to the customers. Additional interest and pilot programs in
Smart Grid technology has heightened these issues as it is reflected
by a call for policies and compliances throughout the world. From a
utility perspective, additional requirements by customers con-
cerned with a high level of quality have increased these require-
ments. The main reasons are due to the use of sensitive
equipment and an economic need to operate their system reliable
whilst maintaining good Power Quality and performing root cause
to all deviations. Historically, a lot of research has been done (des
Merces Machado, Bezerra, Pelaes, de Oliveira, & de Lima Tostes,
2009; Math et al., 2010; Olofsson, 2009; Reaz, Choong, Sulaiman,
Mohd-Yasin, & Kamada, 2007; Roscoe, Burt, & McDonald, 2009;
Santoso, Powers, Grady, & Parsons, 2000; Soo-Hwan, Gilsoo, &
Sae-Hyuk, 2010; Stockwell, Mansinha, & Lowe, 1996) in this realm,
yet ubiquitous implementations by most utilities of these tech-
niques are yet to be seen. A recent critical review regarding the
detection and classification of Power Quality events, illustrates
the importance that this issue has today (Mahela, Shaik, & Gupta,
2015). There are several factors that have inhibited this, namely:
lower priority on guaranteeing high Power Quality, in-house
manual root cause analysis, lower incorporation of Power Quality
sensitive equipment, low customer demand and education
regarding Power Quality, deficiency of robust tools that can be
cheaply and easily incorporated to help in classification of all
Power Quality deviations.

Due to the aforementioned reasons, utilities will need to initiate
aggressive programs to address Power Quality issues in their sys-
tems. They will also have to have a system of quickly performing
root cause analysis on deviations observed on their system for
maintaining compliance. Any tool that can help them to detect,
identify and classify any PQ event in order to undertake pertur-
bances in-house analyses is highly desirable. The tool should also
be easy to implement, train and adjust for any variations often
experienced due to the growth of nonlinear sensitive equipment
(such as Smart Grid technologies, FACTS devices etc). Currently
the manual process of detection and classification of such PQ
events will need to be bolstered or replaced with an offline or
real-time tool integrated with the Distribution Management
System (DMS).

In a modern grid context, the most important PQ issues are:
Fault analysis and location, Capacitor bank operation, Volt/Var
fluctuation, and harmonic contamination.

A description of all the steps and methods that can be applied
for PQ is presented in Bollen and Gu (2006), IEEE Recommended
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Practice for Monitoring Electric Power Quality (2009). In particular,
classification methods based on Wavelet analysis are presented in
Gaouda, Salama, Sultan, and Chikhani (1999), Jaehak, Powers,
Grady, and Bhatt (2002), Liyan Liu, and Zeng (2008), Santoso,
Powers, Grady, and Hofmann (1996). Classification methods based
on Artificial Neural Networks (ANN) are presented in (Cheng, 2012;
Monedero et al., 2007; Santoso et al., 2000; Wijayakulasooriya,
Putrus, & Minns, 2002). In recent years new methodologies based
on Support Vector Machines are suggested. A general description
of the method can be found in Cristianini and Shawe-Taylor
(2000). Since then the application of this technique to PQ related
issues has been proposed (Biswal, Biswal, Dash, & Mishra, 2013).
All methods based on linear learning techniques need to be trained
before the installation on the real scenario. They require consider-
able amount of data containing the different PQ events. Since it is
very difficult to obtain real signals from measurement devices
these systems are trained using simulated signals. Publications
that suggest the use of SVM to detect PQ events are based on sim-
ulated signals. Some of them use a mathematical models of the
system to simulate the perturbation behavior (Biswal, Biswal, &
Dash, 2013; Biswal et al., 2013; Chen, Xu, Piao, & Yuan, 2009;
Garcia, Gualdron, & Plata, 2007; Janik & Lobos, 2006; Jinsha,
Yinghui, & Tiefeng, 2009; Li & Bao, 2011; Mohapatra, Sinha,
Panigrahi, Mallick, & Hong, 2011; Osman, 2007; Vega, Kagan,
Ordonez, & Duarte, 2009). Others use commercial software that
simulates a power system in order to reproduce PQ events. These
signals are exported to a data base and used to train the detection
algorithm (Hamzah, Anuwar, Zakaria, & Tahir, 2009; Ismail,
Zakaria, & Hamzah, 2009; Ming & Kai-Cheng, 2009; Thukaram,
Khincha, & Ravikumar, 2006; Weiming, Xuelei, Jingbo, & Zhiheng,
2006; Whei-Min, Chien-Hsien, Chia-Hung, & Fu-Sheng, 2008).
Although these approaches are very useful, they are not always
effective when they are applied to a real event. For example, in
Axelberg, Gu, and Bollen (2007) it is concluded that the classifier
reduces its effectiveness when tested for field signals. Despite the
fact that some authors focus their research using real signals
(Axelberg et al., 2007; Eristi & Demir, 2012; Susukh,
Premrudeepreechacharn, & Kasirawat, 2009), these waveforms
present only one event at a time. However, this is not the typical
case, since it is very frequent to have more than one event within
the same time frame. These kinds of disturbances are usually called
complex disturbances and cause great difficulties during the iden-
tification stage due to co-existence of different disturbance charac-
teristics. The difficulties includes wrong characteristic calculations,
incorrect evaluation, and low classification accuracy.

Recently, different approaches were proposed; (Biswal, & Dash,
2013) presents a method where the S Transform is used to extract
the features and classify the events based on a decision tree
methodology. Although it is an efficient methodology, the classifier
is designed using different optimization techniques, and the results
are obtained after several decision steps which causes time delay
in classification.

Cheng-Long, Yen-Ling, Tsong-Liang, Ying-Tung, and Joe-Air
(2005) implemented a classifier based on Wavelet Transforms and
a Dynamic Structure Neural Network. Features were extracted from
several wavelet coefficients; therefore it is sensitive to the presence
of noise in the input signals and do not perform adequately.

Nowadays, classifiers based on Support Vector Machines (SVM)
have increased the interest of the research community, due to their
simplicity. Liu, Li, and Wen (2013) present a method that uses the
normalized energy of different WT coefficients and it is combined
with Principal Component Analysis (PCA) in order to extract the
main signal features. Then, the classification is performed using a
SVM. This methodology becomes complex mainly during the train-
ing stage. In addition, each complex event needs to be previously
uniquely identified before the training stage.
The method proposed in Liu, Cui, and Li (2015) considers the
complex disturbance classification as a multi-label classification
problem. The paper suggests a method based on the Ensemble
Empirical Mode Decomposition (EEMD) technique to extract the
signals features and a multi-label classification technique named
Rank Wavelet Support Vector Machine. The main advantage of this
work is the correlation preservation between different event types
which improve the method’s accuracy. However, the maxim num-
ber of decomposition levels is set to eleven in order to cover all
characteristic of complex disturbances; this issue may become
expensive from the point of view of computational cost. In addi-
tion, since Rank Wavelet SVM is a complex classification scheme,
it makes the samples belong to multiple categories.

Based on the analysis of the current needs and the evaluation of
the different methodologies presented, it can be inferred that there
is a need of developing a new set of algorithms that can handle
complex events, be easy to implement and present low computa-
tional cost.

This paper proposes a method based on a combination of binary
classifiers which is optimized for complex event real signals. The
proposed PQ classifier is based on Wavelet Transforms (WT) and
Support Vector Machines (SVM). The method uses One vs. One
multiclass SVM.

The main contribution of the proposed approach is that the
classifier needs to be trained using only individual PQ events,
and due to its parallel processing structure, can successfully
identify perturbations that contains more than one event within
the same time frame. This identification is successfully performed
by training the system using only single event signals. The use of
the proposed SVM based method, allows one to tune each
binary classifier individually, in addition, since each classifier are
handled individually, can be used in parallel, becoming very
computationally cost efficient. Moreover, the proposed method
allows the system to select a set of features specifically for each
binary classifier according to the individual disturbances that
needs to be classified, thus improving the performance.

Due to the use of less number of coefficients better perfor-
mances are obtained, and since it is a single-label classification
method it is simpler than the one presented in Liu et al. (2015).

The tests were performed with real signals captured in the field
instead of simulated ones making it a realistic robust classifier.
These important features differentiate our proposal with respect
to those classifiers from previous works.

The paper is organized as follows: First it presents an overview
of a disturbance processing system, then, a detailed explanation of
the most important concepts related to Support Vector Machine is
presented. After that, the proposed methodology is described and
the most relevant results are shown. Finally the pertinent conclu-
sions are discussed.
2. Disturbance processing system

According to Fig. 1 a typical disturbance processing system can
be comprised by: A preprocessing module, a detection module, a
feature extraction module and a classification module:
2.1. Preprocessing module

A typical waveform obtained by measuring a Power System
usually is contaminated with additive noise.

The noise will affect the ability of the detection module and also
the performance of the classification process. The objective of this
module is to filter the noise and prepare a clean data set to be used
by the detection module.



Fig. 1. Disturbance processing system.

D. De Yong et al. / Expert Systems with Applications 42 (2015) 6075–6081 6077
2.2. Detection module

Because of the random nature of a disturbance, its occurrence
cannot be predicted. For this reason a monitoring system must
continuously sample and sense parameters which indicate the
presence of an anomaly in a current or voltage waveform. One
strategy to detect a disturbance is to analyze the rms value of
the waveform or to sense the high frequency wavelet coefficients.

2.3. Feature extraction module

Normally the amount of data obtained by sampling a waveform
is considerably large. Therefore this data needs to be transformed
into a reduced set of features. This process is known as feature
extraction.

2.4. Classification module

The classification module is responsible in characterizing the
information according to a set of predefined classes.

3. Support Vector Machine

The SVM method is a supervised learning technique used for
pattern recognition and regression analysis. In general the SVM is
used where the data are represented by two different classes,
whose objective is to find the best hyper plane that divides the
data into these two classes.

Finding the best hyper plane requires that the distance between
the training samples and the hyper plane be maximized.

Fig. 2 illustrates the input spaces formed by two data classes. It
shows the separation hyper plane, the margin m, and the data val-
ues over the hyper planes H0 and H1. The data that determine these
planes are known as Support Vectors.

If the data can be separated in the input space, then a group of
data d can be defined as fðxi; yiÞg, where:

xi 2 Rd; yi 2 f1;�1g ð1Þ
Fig. 2. Separation hyper plane.
Considering the hyper plane 2 Rd, the problem can be formu-
lated as an optimization problem, where the objective equation
can be defined as hw:xþ bi.

Then, the optimization problem is to minimize ||w|| subject to:

yiðw:xj þ bÞP 1 ð2Þ

At the border, the restriction becomes:

yiðw:xj þ bÞ ¼ 1 ð3Þ

The separation between the classes is 2/(||w||). The optimal
plane can be found solving the minimization of:

uðwÞ ¼ 1=2jjwjj2 ð4Þ

Subject to:

yiðw:xj þ bÞP 1 ð5Þ

This problem can be also formulated mathematically as follows:

minw;xmax/i
f1=2jjwjj2 �

Xn

i¼1

ai½ciðwxi � bÞ � 1�g ð6Þ

where ai is a Lagrange multiplier, the non-zero values of xi are
known as the Support Vectors (Cristianini & Shawe-Taylor, 2000).

The linear approximation can be represented as follows:

min uðw; eÞ ¼ 1
2
jjwjj2 þ C

XN

i¼1

ei

 !
ð7Þ

where e is a slack variable and C a penalty factor.
If data are not linearly separable a conversion method is needed

to transform the original data space into a new one. The conversion
is nonlinear and the new space dimension is higher than the
dimension of the original one. These transformations are per-
formed by Kernel functions.

With the introduction of a Kernel function the SVM problem
does not need to be modified significantly.

To find the /i it is necessary to solve the following problem:

max
Xl

i¼1

/i � 1=2
Xl

i;j¼1

yiyj/i/jKðxixjÞ ð8Þ

Subject to:

Xl

i¼1

yi/i ¼ 0 ð9Þ

0 6 /i 6 Ci ¼ 1; . . . ; l ð10Þ

The most commonly used Kernel functions are: Polynomial,
Gaussian, Radial Basis function (RBF), and Neural Network based
kernel function (Cristianini & Shawe-Taylor, 2000).

Since originally SVM was developed for binary classification, if a
multi class classifier is needed, such as the case of PQ classification,
particularly where the signals contain more than one disturbance,
the SVM needs to be implemented in several steps. The natural
extension is to combine several binary classifiers to conform a
binary decision tree; however, the size of the problem and
consequently the performance is influenced by this fact. In addi-
tion, for the particular case analyzed in this paper, if a combination
of events wanted to be detected, the binary decision tree needs to
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be built taking into consideration all possible combinations. The
training of a classifier based on binary decision tree architecture
is much more complex. Moreover, the incorporation of a new class
(i.e. a new type of disturbance) is more difficult because the classi-
fier needs to be re-structured and, in consequence, re-trained.

Therefore, as an alternative, in this paper a classifier based on
methods known as one versus one (OVO) or one against one
(OAO) method, and one versus all (OVA) is implemented and
described below.

3.1. One versus all method

Its main idea is to build k SVM models where k is the number of
classes. Mathematically this optimization problem can be formu-
lated as follows:

min 1=2wiT wi þ C
X

ei
jw

iT ð11Þ

Subject to the following constraints:

yðwixþ biÞP 1� ei
j if y ¼ i ð12Þ

yðwixþ biÞ 6 �1þ ei
j if y–j ð13Þ

Once the optimization problem is solved, the solution is
selected based on the following condition:

x ¼ arg max yðwixþ biÞ
� �

ð14Þ
Fig. 3. d1 Wavelet Transform coefficient.
3.2. One versus one method

This method was proposed by Ismail et al. (2009), its main idea
is to build k(k � 1)/2 classifiers where each one is trained using
data from two classes. Based on the nomenclature used in the pre-
vious section and considering classes i and j, the following opti-
mization problem is solved:

min 1=2wijT wij þ C
X

eijwijT ð15Þ

Subject to the following constraints:

yðwijxþ bijÞP 1� eij if y ¼ i ð16Þ

yðwijxþ bijÞ 6 �1þ eij if y ¼ j ð17Þ

Once all k(k � 1)/2 classifiers are built, a voting strategy is per-

formed. In this work, the vote is based on signðyðwijxþ bijÞÞ. If x is in
class I, then the vote for class I is incremented. The predicted x is
based on the maximum voted class.

4. Proposed method

4.1. Preprocessing

Since the proposed method is focused on real signals it is neces-
sary to apply a low pass filter to smooth out the high frequency
components of the signal (Hong-Tzer & Chiung-Chou, 2001).

This module also narrows the signal duration to a fixed num-
bers of fundamental cycles.

4.2. Detection

The detection module is based on the Wavelet Transform (WT)
since its capability for signal classification and identification is pro-
ven (Santoso et al., 1996)

Once the mode and the signals are selected, the detection pro-
cess starts; the signal is decomposed into Wavelet coefficients
using Wavelet Transform, and based on these coefficients, the pro-
gram detects whether any of the PQ disturbances is present in the
signal and calculates the duration of the event.

By means of the detailed coefficients d1 and d2 the algorithm
identifies the presence of some impulses; these signals are the ones
that the program uses to automatically detect the presence of a
perturbation. The duration of the perturbation is calculated by
comparing the coefficients with a threshold signal.

As an example, Fig. 3 illustrates the d1 coefficient from a signal
with a swell and a random noise. The first and the last peak in this
case are used to set the start and end of the event.

4.3. Feature extraction

Once a disturbance is detected, the next step is to minimize the
dimension of the data that is delivered to the classification stage.

The approximation scales and the detail coefficients d1–dn of the
Wavelet Transform are processed to obtain different parameters
that characterizes a given event.

As an output of the detection module and as an input of
the classification module, 31 parameters are calculated. These
parameters are the energy of the seven first WT coefficients, these
energies are calculated as the difference between the normalized
coefficients and the total energy of a pure sinusoidal signal, and
these energies are calculated based on the Parseval theorem.
Then, four additional components are calculated; k1 which is the
normalized measurement of the samples which values are greater
than 1, k2 the number of samples that are in the interval [�0.1, 0.1],
k3 counts for the samples in the interval (0.1, 1] and k4 represents a
normalized value of the amount of d1 Wavelet coefficients over the
selected threshold.

k1Norm ¼
PN

i¼1k1ðiÞ
N

k1 ¼
1
0

�
if sample ðiÞP 1
if sample ðiÞ 6 1

ð18Þ

k2Norm ¼
PN

i¼1k2ðiÞ
N

k2 ¼
1
0

�
if sample ðiÞ 6 0:1
if sample ðiÞP 1

ð19Þ

k3Norm ¼
PN

i¼1k3ðiÞ
N

k3 ¼
1
0

�
if sample ðiÞ 6 1
if sample ðiÞP 0:1

ð20Þ

k4Norm ¼
PN

i¼1d1ðiÞ
M

k4 ¼
1
0

�
If d1ðiÞP Threshold
If d1ðiÞ 6 0:1

ð21Þ



Fig. 4. SVM classifier.

Table 1
Training set.

PQ event Simulated Real Total

Sag 200 300 500
Swell 200 300 500
Harmonic 100 400 500
Interruption 200 200 400

Table 2
Results test 1.

PQ event Sag Swell Harmonic Interruption

Sag 30 0 0 0
Swell 0 13 3 0
Harmonic 0 0 20 0
Interruption 2 0 0 8
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Then, the mean, median, standard deviation and variance for d1,
d2, d3, d4 and d5 Wavelets coefficients complete the 31 parameters
used to characterize a signal.

The feature extraction module reduces the dimension of the
data from approximately 2000 samples to 31 parameters.
Therefore, the reduction factor is around 65.
Fig. 5. Voltage harm
4.4. Classification

Fig. 4 shows the developed classifier. It comprises four SVM
nodes and its architecture is based on one versus one strategy.

The first node is responsible to identify the Sags, the second one
the Swells, the third one Harmonics and the last one Interruptions.
This architecture allows the system to have a very good perfor-
mance when more than one event is present in the same analysis
window time. This classification does not need to include and train
additional steps of combined signals.

This feature represents an advantage with respect to the binary
tree decision classifier that is normally used in Hamzah et al.
(2009), Ismail et al. (2009) and Ming and Kai-Cheng (2009).
5. Results

5.1. Training set

To train the classifier, a set of data was selected using simulated
and real signals. For simplicity only four types of PQ events were
considered: Sags, Swells, Harmonics and Interruptions. Table 1
summarizes the considered signals.

To analyze the results, two different types of experiences were
performed; the first one considers 76 field signals that contain only
one event at a time with the following distribution: 30 Sags, 16
Swells, 20 Harmonics and 10 Interruptions. For the second test
62 field signals that contain two events at the same analysis time
were considered: 42 Sags and Harmonics, 8 Swell and Harmonic
and 12 Sags and Swells. In addition to this, real signals with only
one event were added to this test; 30 signals with Sags, 16 with
Swells, 20 with Harmonics and 10 with Interruptions.

Table 2 presents the results of the detection process considering
real signals that contain a single PQ event in the analyzed window.
The developed monitoring system was capable to detect and clas-
sify correctly 93.43% of the disturbed waveform.

Figs. 5–7 Illustrate different analyzed signals that comprise dis-
turbances conformed by a combination of Harmonics, Sag and
Swells.

Table 3 presents the results using real signals that contain two
different disturbances within the same analyzed time window. The
developed software was able to successfully detect and classify
92.65% of the disturbed waveforms. It is important to mention that
onics and sag.



Fig. 6. Voltage harmonics and swell.

Fig. 7. Voltage sag and swell.

Table 3
Results test 2.

PQ Event Quantity Signals that detect only one event

Sag + harmonics 42 3
Swell + harmonics 8 0
Sag + swell 12 2
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the remaining 7.35% were partially detected because the system
was capable to find one of the two PQ events. Another important
remark is that the classifier was not re-trained with the specific
combination of disturbances that were used in this second experi-
ence in order to test the performance of the monitoring system.

6. Conclusions

This paper proposes an efficient and computationally cheap
method to detect and classify PQ events containing complex
perturbation present in distribution power system signals. The
methodology is based on Wavelet Transforms (WT) that is used
to extract the main features of the signals. Then a One vs. One
multiclass SVM built as a binary node array is used in classifying
the extracted features. The main advantage of this type of method-
ology is to allow the classification of complex events using a simple
array of binary structures. In addition, it reduces the computational
cost because each node can be processed independently
allowing parallelization. Moreover, since each node is treated
independently, the input parameters can be individually tweaked
and optimized. Therefore each classifier can be specialized to
recognize assigned event type in a more efficient way. In the future
signals that exhibit correlation between different events may to be
evaluated. Correlation features allow a sense of robustness and
decrease the amount of false positive classification.

To train the system, a combination of signals comprising of real
power system events and simulated events were used as inputs.
Only signals that included single events were used to train the clas-
sifier. Then, to evaluate and test the results complex real power
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system events were used. The classifier successfully detected both
single events as well as complex events.

To summarize, the methodology presented in this paper allows
one to classify complex events without the need of a sophisticated
training set. Since it is based on binary classifiers, it is very easy to
design, implement, modify, train and optimize and can be paral-
lelized reducing the computation time.

To improve the method, in a future work several issues will be
analyzed such as evaluating the event correlation, reducing and
weighting features for classifying unique subset of events, studying
how to adaptively optimize the parameters used per node and to
improve the de-noising preprocessing stage before the WT
transformation.
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