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1.  Introduction

During the early development of embryos, cell 
differentiation is carried out by the transcriptional 
regulation of gene expression. The establishment of 
gradients of morphogens determines the patterns of cell 
fates. Cells get the information on their relative spatial 
location by ‘reading’ the local concentration of these 
morphogens (Wolpert 1969, Crick 1970). Drosophila 
melanogaster embryos constitute a model system in 
which this subject has been studied with great detail. In 
this system, bicoid (bcd), a maternal effect gene whose 
mRNA is localized at the anterior end of the embryo  
(St Johnston et al 1989, Little et al 2011), plays a key role. 
The protein, Bcd, one of the principal morphogenes 
in these embryos, is responsible, in conjunction with 
other factors, of the anterior–posterior (AP) axial 
patterning. bcd is translated into Bcd mainly at the 
anterior pole of the embryo (Little et al 2011), forming 
a concentration gradient along the anterior–posterior 

axis. Bcd is a transcription factor for over 20 target genes 
involved in the development. In particular, its role in 
the regulation of Hunchback is fundamental during the 
early embryogenesis of Drosophila. After fertilization, 
the cell undergoes several nuclear division cycles (n.c) 
without cytokinesis. After n.c. 7, nuclei move to the 
surface forming a syncytial blastoderm and  ∼4 h after 
fertilization, just before cytokinesis begins (close to n.c. 
14) there are approximately 6000 nuclei on the surface. 
Recently, live imaging using Bcd-GFP allowed the 
observation of the spatio-temporal distribution of Bcd 
during these early stages of the embryo development 
(Gregor et al 2007b). From these observations it was 
determined that the Bcd concentration gradient is 
established within the first 10 n.c., i.e. 90 min after egg 
deposition. Then, between n.c 10 and 14 the gradient 
remains almost unchanged and thereafter begins to 
decrease. The mechanisms by which the Bcd gradient is 
established so early are still not completely determined 
(Grimm et al 2010).
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Abstract
During early development, the establishment of gradients of transcriptional factors determines 
the patterning of cell fates. The case of Bicoid (Bcd) in Drosophila melanogaster embryos is well 
documented and studied. There are still controversies as to whether SDD models in which Bcd is 
Synthesized at one end, then Diffuses and is Degraded can explain the gradient formation within 
the timescale observed experimentally. The Bcd gradient is observed in embryos that express a 
Bicoid-eGFP fusion protein (Bcd-GFP) which cannot differentiate if Bcd is freely diffusing or 
bound to immobile sites. In this work we analyze an SDID model that includes the Interaction of 
Bcd with binding sites. We simulate numerically the resulting full reaction–diffusion system in a 
cylindrical domain using previously determined biophysical parameters and a simplified version of 
the Bcd source. In this way we obtain solutions that depend on the spatial location approximately as 
observed experimentally and that reach such dependence at a time that is also compatible with the 
experimental observations. Analyzing the differences between the free and bound Bcd distributions 
we observe that the latter spans over a longer lengthscale. We conclude that deriving the lengthscale 
from the distribution of Bcd-GFP can lead to an overestimation of the gradient lengthscale and of 
the Hill coefficient that relates the concentrations of Bcd and of the protein, Hunchback, whose 
production is regulated by Bcd.
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One of the simplest and most widely used models 
to explain the formation of the Bcd gradient is the Syn-
thesis, Diffusion, Degradation (SDD) model (Driever 
and Nusslein-Volhard 1989, 1988, Struhl et al 1989). 
It assumes that Bcd is synthesized at a constant rate, 
ζ, at the anterior end, then diffuses along the antero-
posterior axis (z) of the embryo with diffusion coef-
ficient, D, while it is being uniformly degraded with 
rate, α. Assuming, for simplicity, a cylindrical embryo 
of transverse area, A, and total length, L, the dynamic 
equation of the Bcd concentration, Bcd[ ], in the SDD 
model can then be written as:
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where δ z( ) is the Dirac delta function. The stationary 
solution of (3) is:

[ ] ( ) [ ] ( / )= −z z zBcd Bcd exp ,o o� (4)

where [ ] /( )ζ α= A DBcd o  and

α=z D ,o /� (5)

is the characteristic lengthscale of the gradient 
(Houchmandzadeh et al 2002). Observations of the 
Bcd distribution have led to the estimate ∼z 100o  μm. 
Within the framework of the SDD model, the time it 
takes for Bcd to diffuse over this distance is of the order of  
100 μm2/D. Thus, for the gradient to be established 
within 90 min it is necessary that ⩾   /(   )µD 10 m 90 min4 2

∼ 2 μm2 s−1 (Gregor et al 2007b). The first quantification 
of the Bcd diffusion coefficient was obtained using 
Fluorescence Recovery After Photobleaching (FRAP) 
during mitosis (Gregor et al 2007b). The estimated 
value was ∼D 0.3FRAP  μm2 s−1 which was an order 
of magnitude too small to explain the establishment 
of the Bcd gradient within the SDD model during the 
experimentally observed times. In Bergmann et al 
(2007) it was argued that after nc 14 the gradient does 
not reach the steady state solution, so that (4) is not 
valid to estimate the diffusion rate. Other alternatives 
to the SDD model have also been proposed that involve 
active (Gregor et al 2007a), advective (Hecht et al 2009) 
or anomalous diffusive (Hornung et al 2005, Yuste et al 
2010, Boon et al 2012) transport of Bcd. Another model 
stated that the stability of the gradient between n.c. 10 
and 14 could be explained in terms of an underlying 

mRNA gradient (Spirov et al 2009). The distribution 
of mRNA was measured in Little et al (2011) finding 
that it is bell-shaped with an 80% concentrated within 
the 20% of the total embryo’s length that lies closest to 
the anterior pole. This seems to discard the possibility 
that the Bcd gradient is a simple reflection of the way its 
mRNA is distributed along the axis. Regarding diffusion, 
the Bcd coefficient was measured again more recently 
using Fluorescence Correlation Spectroscopy (FCS) in 
the cytoplasm during interphase (Abu-Arish et al 2010) 
and in nuclei (Porcher et al 2010). The value estimated 
in the former was ∼D 7FCS  μm2 s−1 (Abu-Arish et al 
2010). In that work the diffusion coefficient D was also 
estimated using FRAP obtaining ∼DFRAP  1 μm2 s−1.  
Although the FCS result apparently reconciles the 
observed time it takes for the gradient to be formed 
with the SDD model, the question arises as to what is the 
reason for the discrepancy between DFCS and DFRAP. In 
Sigaut et al (2014) an explanation was provided for this 
apparent discrepancy.

Based on previous studies on the transport of sub-
stances that diffuse and react (Pando et al 2006) and 
on the analysis of FCS and FRAP experiments in such 
a case (Sigaut et al 2010), it was shown in Sigaut et al 
(2014) that both the FRAP and FCS estimates of the 
Bcd diffusion coefficient (Gregor et al 2007b, Porcher 
et al 2010) could be correct if the interaction of Bcd with 
immobile or slowly moving binding sites was taken into 
account. Namely, if Bcd is assumed to diffuse with free 
coefficient, Df, and react with binding sites, S, on more 
massive molecules according to:

+ SBcd Bcd ,
k

k

b
off

on

�� (6)

its net transport can be described in terms of ‘effective’ 
diffusion coefficients. As shown in Pando et al (2006) 
the effective coefficient is different depending on 
whether one looks at the transport of a single molecule 
in which case it is:
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In (7) and (8), DS is the free diffusion coefficient of S 
and of Bcdb, ≡K k kd off on/  is the dissociation constant 
of the reaction (6) and [S] and [ST] are the free and 
the total binding site concentrations. FRAP provides 
an estimate of Dsm (Sprague and McNally 2005) 
and FCS gives estimates of Dsm and Dcoll (Sigaut et al 
2010). Interpreting the results of Gregor et al (2007b), 
Porcher et al (2010) within this framework the work 
of Sigaut et al (2014) showed that the FRAP and the 
FCS estimates of the Bcd diffusion coefficient were 
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compatible. Associating the estimated coefficients 
to Dsm or Dcoll, depending on the experiment, the 
concentrations and the dissociation constant were 
determined (Sigaut et al 2014). The aim of this previous 
work was to reconcile the apparently contradictory 
estimates of the Bcd diffusion coefficient derived 
with FRAP and FCS. Both FRAP and FCS are optical 
techniques in which the fluorescence coming from a 
relatively small region within the embryo is collected. 
Thus, it is possible to assume that all concentrations 
are uniform (and in equilibrium with one another) 
inside the observed region. This allows the analyses 
of the results to be performed with linear equations. 
In fact, this is what we did in Sigaut et al (2014) and, 
using the fast reaction approximation, we estimated 
free diffusion coefficients and the dissociation constant 
of the reaction, biophysical parameters that we expect 
should remain the same all along the antero-posterior 
axis of the embryo. In the current paper we use the 
fully nonlinear reaction–diffusion equations that 
describe the dynamics of Bcd and of binding sites that 
interact according to equation (6) with the parameters 
determined in Sigaut et al (2014) to study the spatio-
temporal distribution of Bcd[ ] along the embryo. In this 
way we analyze the formation of the Bcd gradient within 
the context of a model that includes the Interaction 
of Bcd with binding sites together with its Synthesis, 
Diffusion and Degradation, i.e. within the context of an 
SDID model. It is most likely, however, that Bcd binds 
cooperatively to binding sites, not as prescribed by 
equation (6), and that it interacts with many different 
species, including DNA, mRNA, proteins and other 
cell components (Liu and Ma 1996, Rivera-Pomar et al 
1996, Zhu and Hanes 2000, Guruharsha et al 2011).  
Furthermore, our simplified model does not 
distinguish between the cytoplasm and the interior of 
the nuclei. In this regard, it should be understood as 
some sort of ‘effective’ model in which the reaction 
scheme (6) represents all the processes that affect the 
net transport rate and free concentration of Bcd in 
the nucleus. Most of the sites that S represents hinder 
the transport of Bcd. As determined by the analysis of 
Sigaut et al (2014) S is either immobile or diffuses freely 
at a much slower rate ( ∼D 0.1S  μm2 s−1) than the free 
diffusion of Bcd ( ∼D 20f  μm2 s−1). The idea that the 
transport of Bcd is hindered by its interaction with a 
complex environment also underlies other approaches 
that describe this transport as sub-diffusive (Hornung 
et al 2005, Yuste et al 2010, Boon et al 2012). Here we 
take a different perspective in which the dynamics, 
while not being purely diffusive, takes into account 
all these complex interactions through the simplest 
possible reaction scheme (equation (6)). Our SDID 
model should then be interpreted as a toy model where 
to investigate how the characteristic length and time 
scales of Bcd[ ] are affected when the interaction with 
binding sites is considered. In spite of its simplicity, its 
predictions can be contrasted with the observations. 
Furthermore, it helps pinpoint the main drawbacks of 

interpreting the experimental observations without 
considering the effect of the interactions of Bcd. In 
particular, taking into account the distribution of Bcd-
mRNA determined in Little et al (2011) we find that 
the SDID model can account for the formation of the 
bulk part of the Bcd gradient within the experimentally 
observed times. Although the formation of the gradient 
is a nonlinear process that involves several timescales, 
the analysis we present here confirms what was 
presumed in Sigaut et al (2014), i.e. that the collective 
effective coefficient, Dcoll, gives a correct estimate of 
the order of magnitude of the time it takes for Bcd[ ] to 
converge to its corresponding stationary distribution.

An important aspect of the bcd morphogen sys-
tem is the precise response of one of its main target 
genes, hunchback (hb). As well as bcd, hb is a maternal 
effect gene. In the early embryo, the hb mRNA is sup-
plemented with zygotically transcribed mRNA which 
production is regulated by Bcd. The distribution of the 
resulting protein, Hb, presents very sharp borders along 
the AP axis, as an ‘on/off’ pattern. This indicates a high 
sensitivity of the hb mRNA to changes in the concen-
tration of Bcd. This is consistent with a relationship 
between both concentrations with a high Hill coeffi-
cient that can be attributed to a cooperative binding of 
Bcd to some of the seven sites in the hb P2 enhancer that 
have been identified (Driever and Nusslein-Volhard 
1989, Struhl et al 1989). In fact, in Gregor et al (2007a) it 
was proposed that both concentrations were related by:

[ ]
[ ]

[ ]
[ ] [ ] /

=
+

Hb

Hb

Bcd

Bcd Bcd
,

n

n n
max 1 2

� (9)

with n  >  1, the Hill coefficient, and Bcd 1 2[ ] /  the 
Bcd concentration at which [ ]Hb  reaches half of its 
maximum value. Using embryos immunostained for 
DNA, Bcd and Hb, scatter plots of [ ]Hb  versus Bcd[ ] 
were obtained in Gregor et al (2007a). From these plots 
a Hill coefficient, n  =  5, was estimated. In spite of the 
relatively large value of n and of the fluctuations that are 
intrisic to the transcription process (Little et al 2013), 
the scatter plots also showed a remarkable degree of 
precision between the distributions of Hb and Bcd 
(∼10% near the point of half-maximal activation) 
(Gregor et al 2007a). The control experiments of 
Gregor et al (2007b) showed, on the other hand, that the 
fluorescence intensity obtained in antibody stainings 
was linearly related to the one collected from Bcd-
GFP. The latter allows the observation of the spatio-
temporal dynamics of [ ]Bcd  in vivo. Further control 
experiments demonstrated that the GFP-tagging of 
Bcd did not alter its functionality, in particular, its 
ability to act as transcription factor. It is then likely 
that the GFP-tail does not affect the binding properties 
of Bcd to the various sites that are represented by S in 
the scheme (6). Conversely, we may assume that the 
photophysical and photochemical properties of Bcd-
GFP do not change with Bcd binding. It is under this 
assumption that the interpretation of the FCS and 
FRAP experiments that we presented in Sigaut et al 
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(2014) could explain various observations within a 
unified framework. In particular, if binding changed 
the fluorescence properties of Bcd, the auto-correlation 
function derived in FCS would not be characterized 
solely by diffusive timescales as obtained in Abu-Arish 
et al (2010) but would also have exponentially decaying 
terms (Sigaut et al 2016). The fact that the ACF of  
Abu-Arish et al (2010) is characterized by various 
diffusive timescales is an indication that the assumption 
that binding does not affect the fluorescence emission 
of Bcd-GFP is correct. This assumption implies that 
the fluorescence distribution observed in embryos that 
express Bcd-GFP comes from the total, rather than the 
free, Bcd concentration. This means that the actual 
dynamics of the free Bcd is hidden in the observations. 
As we show in the paper, considering the difference 
between the free Bcd and the observed fluorescence 
distributions can help explain the shift in the Hb on-
off transition observed in Liu et al (2013) when the 
maximum Bcd concentration was different from that 
in wild type embryos. The difference between free Bcd 
and observed fluorescence also implies that the length 
and time scales of their distributions could differ as 
well. In fact, in the present paper we show that this is 
the case using the SDID model with realistic parameter 
values. Assuming that the lengthscale determined from 
the observations of Bcd-GFP corresponds to that of 
free Bcd can lead to incorrect estimations of the Bcd 
diffusion coefficient and/or degradation rate. The 
difference in the lengthscale of the free and the total 
Bcd[ ], on the other hand, can have implications for 

the relationship between [ ]Bcd  and [ ]Hb  that is derived 
from the fluorescence observations. As we show in the 
present paper the Hill coefficient that characterizes the 
relationship between the concentrations of Bcd and Hb 
can be different from the one that is directly derived 
from the scatter plot of the observed fluorescence. 
Although the Hill coefficient does not necessarily 
correspond to the degree of cooperativity with which 
Bcd binds to the sites on DNA that regulate the 
transcription of hb (see e.g. Estrada et al (2016)), it is an 
increasing function of the latter. Thus, re-interpreting 
the meaning of the Hill coefficient that characterizes 
the relation between the fluorescence profiles, as our 
theoretical studies indicate could be necessary, calls for 
a revision on the conclusions about the precision with 
which hb reads the Bcd[ ] distribution.

2.  Methods

2.1.  The SDID model
We consider a model in which Bcd is synthesized over 
a region of the anterior pole embracing 20% of the 
embryo, diffuses with free coefficient, Df, interacts with 
a single type of binding sites according to (6) and is 
degraded at a constant rate. We consider a cylindrical 
domain in which all concentrations only vary along the 
axial coordinate, z, ( =z L0 500⩽ ⩽  μm). We show a 

schematic representation of this domain in figure 1(a). 
The assumptions on the Bcd synthesis are based on 
the observations of Little et al (2011) according to 
which  ∼90% of the mRNA of Bcd is located in a region 
that starts at the anterior pole and extends up to 20% 
of the length of the embryo. Although the mRNA 
concentration in this anterior region is not perfectly 
uniform, we simplify its description and assume that 
Bcd is synthesized with a rate:

( )   ⩽
 

θ θ=
>

⎧
⎨
⎩z

z L
z L

if 0.2
0 if 0.2

,o
� (10)

where θo is constant. We assume that the binding sites 
are uniformly distributed over the whole embryo and, 
based on the analyses of Sigaut et al (2014), that they 
diffuse with coefficient, �D DS f . We thus assume 
that the binding sites belong to molecules that are 
either much more massive than Bcd or are attached 
to immobile cell components so that their mobility 
remains unaltered when they bind Bcd. In certain 
instances we also assume that they are immobile. We 
consider different alternative versions of the model that 
differ in the manner in which we treat Bcd degradation 
or in whether we include the dynamics of Bcd-GFP 
maturation or not. Cells have different systems to carry 
out the degradation of proteins and several regulatory 
mechanisms to ensure their selectivity. In many cases 
this involves the conjugation of ubiquitin to proteins 
to ‘mark’ them for their eventual degradation (see 
e.g. Lecker et al (2006)). Given that in our model S 
represents a broad range of possible binding sites for 
Bcd, in principle it is not clear how the binding of Bcd 
to S would affect the Bcd tagging process that precedes 
its degradation. It is for this reason that we consider 
two possibilities in this regard: one in which the rate of 
degradation is only proportional to the concentration 
of free Bcd and another one in which it is proportional 
to the concentration of total Bcd. Here we present 
the equations of the version that we call of ‘partial 
degradation’ because we assume that Bcd is degraded 
only in its free form. This version does not include the 
process of GFP maturation either. The equations of 
the other versions of the SDID model are described in 
the appendix. The spatio-temporal dynamics of the 
concentrations if Bcd is degraded only when free and 
the process of Bcd-GFP maturation is not included is 
given by:

α θ

∂
∂

= ∇ − − +

− +
∂
∂

= ∇ + − −

t
D k S k

z

t
D k S k

Bcd
Bcd Bcd Bcd Bcd
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Bcd
Bcd Bcd Bcd Bcd ,

f T b b

b
S b T b b

2
on off

2
on off

[ ] [ ] [ ]([ ] [ ]) [ ]

˜[ ] ( )
[ ] [ ] [ ]([ ] [ ]) [ ]

� (11)

where = +Bcd Bcd BcdT b[ ] [ ] [ ] and = +S ST[ ] [ ]
[ ]Bcdb  are the total Bcd and binding site concentrations, 
respectively and α̃ is the degradation rate. To simplify 
the notation we refer to the concentration of free Bcd 
as Bcd[ ]. It should not be confused with Bcd, which 
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generically refers to the protein. In this model we 
assume that all Bcd, free or bound to sites, is fluorescent.

2.2.  Analytical estimations: the SDID model under 
the fast reactions approximation
The SDID model in all of its versions is a reaction–
diffusion system. The analysis of this kind of systems 
may be complicated. Hereby, in order to interpret 
some results and choose a priori some parameters we 
introduce an approximation where the Bcd transport is 
described in terms of an effective diffusion coefficient. 
If we consider that reactions take place on a much faster 
time scale than diffusion a fast reaction (Strier and 
Dawson 2000) or fast buffering approximation (Wagner 
and Keizer 1994) can be used. Under this condition the 
systems given by (11) (or (A.1)) can be described as:

β

α θ

∂
∂

= ∇ − |∇ |

− +
t

D D

z t

Bcd
Bcd Bcd
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S
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where Dcoll is the effective (collective) diffusion coeffi

cient defined in (8), θ = θ

+1 S

Kd ST
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,

1 S
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2ˆ ˜
[ ]

[ ]

 for the partial degradation model 

(11).
Given that �D DS f , for simplicity we will consider 

DS  =  0. In such a case the term ∝|∇ |Bcd 2[ ]  in (12) can 
be neglected and the first of the equations reduces to:

[ ] [ ] ˆ[ ] ˆ( )α θ
∂
∂

= ∇ − +
t

D z
Bcd

Bcd Bcd .coll
2� (14)

Although this looks like a linear diffusion equation it 
is not, since Dcoll, α̂ and θ̂ depend on Bcd[ ], i.e. they are 
position and time dependent. The steady-state solution 
of (14) coincides with that of (11) for DS  =  0.

2.3.  Numerical simulations
We solve the system of equations (11), (A.1) and (A.4) 
using the Douglas-Ratchford ADI method (Douglas 

and Rachford 1956). The integration domain is a 
cylinder of length L  =  500 μm with no flux boundary 
conditions at both ends. We list in table 1 the parameter 
values that we use. For the concentrations, dissociation 
constant and free diffusion coefficients we use the 
estimates presented in Sigaut et al (2014) which 
were derived from an analysis of the experiments of  
Abu-Arish et al (2010). We show in section 3.1 how the 

rest of the parameters were chosen.

2.4.  Choice of parameter values
We here describe how we choose the parameter values 
in the case of the SDID model with partial degradation. 
To have a good starting point, we first look at the 
stationary solution of (11) with the goal of comparing 
semi-quantitatively the observed fluorescence profile 
with the (stationary) distribution of the total Bcd 
concentration, i.e. of = +Bcd Bcd BcdT b[ ] [ ] [ ]. To 
this end we set DS  =  0, a reasonable approximation 
given that �D DS f . Under this approximation, the 
continuous production of Bcd eventually saturates the 
binding sites inside the region where Bcd is synthesized 
(i.e. for z L0.2⩽ ) we estimate that there is a subregion, 

⩽z L0.2  , where [ ]Bcd  and BcdT[ ] are approximately 
uniform with Bcd and S in equilibrium between 
themselves:

[ ] [ ][ ]/([ ] )= +S KBcd Bcd Bcd ,b T d� (15)

[ ] [ ]/([ ] )= +S K S KBcd ,d T d� (16)

Figure 1.  (a) Schematic representation of the embryo that is used in the simulations. The integration domain is a cylinder of length, 
L, and diameter de. No distinction is made between cytoplasm and nuclei. The coordinate, z, runs along the direction along the 
antero-posterior axis. In the model, Bcd is assumed to be synthesized uniformly over the region z  <  zo. The gray shade represents 
the Bcd gradient that is eventually obtained with the simulations. (b)–(c) Numerically simulated concentration distributions at 
t  =  100 min and along the AP axis of BcdT (solid curve), Bcd (dashed curve), Bcdb (dotted curve) and S (dashed–dotted curve). All 
concentrations are in nM. (b) Results of the model with partial degradation, α̃ = 0.05 s−1 and θ = 0.50  nM s−1. (c) Results of the 
model with total degradation, α = 0.0005 s−1 and θ = 0.10  nM s−1.

Table 1.  Common simulation parameters to all SDID model 
versions. The rates of Bcd degradation and synthesis and of GFP 
maturation used in the different versions are given in the text.

DS 0.095 μm2 s−1

Df 19 μm2 s−1

koff 0.1 s−1

KD 0.192 nM

[ST] 130 nM

L 500 μm
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and where there is a balance between the rate of Bcd 
production and degradation. Thus, we expect the 
stationary solution to satisfy:

θ
α

≈Bcd ,[ ]
˜

� (17)

θ
α θ α

≈
+
S

K
Bcd ,b

T

d
[ ]

˜
[ ]

/ ˜� (18)

close to the anterior pole. The observed Bcd 
concentration has been estimated as  ∼140 nM at the 
anterior pole (Abu-Arish et al 2010). Therefore, we 
choose θ α/ ˜, so that = + ≈Bcd Bcd Bcd 140T b[ ] [ ] [ ]  nm  
at z  =  0.

Outside the region of Bcd synthesis ( L z L0.2 ⩽ ⩽ ), 
the stationary solution also satisfies the equilibrium 
condition (15) and (16). The stationary distribution of 
free Bcd, [ ]Bcd s, in this region then satisfies:

α= ∇ −D0 Bcd Bcd .f s s
2[ ] ˜[ ]� (19)

Thus, it is given by equation (4) with zo equal to:

α≡z D .o ff / ˜� (20)

[ ] [ ] [ ]= +Bcd Bcd BcdT b  decays with a different 
lengthscale. Namely, defining [ ]/ [ ]≡ |∇ |z Bcd Bcdo T TT  
(for z  >  0.2L) and using (4) and (15) we obtain

=
z

z

D

D
,

o

o

sm

coll

f

T

� (21)

where Dsm and Dcoll are given by (7) and (8) with DS  =  0. 
Clearly, (21) does not prescribe a single lengthscale, 
zoT, since Dsm and Dcoll depend on Bcd[ ] which is not 
uniform for z  >  0.2L. However, using some ‘typical’ 
concentration values along the gradient we find a 
first estimate of α̃. In particular, considering that zoT 
corresponds to the observed characteristic lengthscale 
of the fluorescence gradient, ( )≈� 100–150o  μm, that 
∼D 20f  μm2 s−1 and that ≈D D 0.1sm coll/  in the region 

where FCS experiments are performed (Sigaut et al 2014), 
(20) and (21) yield ˜ ( )α∼ −0.1 0.2  s−1. Then, through 
the constraint that the total concentration observed at 
the anterior pole imposes on / ˜θ α (18), we derive θ. Based 
on these a priori estimates we then explore the parameter 
space and choose final values that are able to reproduce 
semi-quantitatively the experimental observations. 
In particular, we found that α = 0.05˜  s−1 allowed to 
reproduce most properties of the observed gradient. 
Using this value of α̃, (16) and = =zBcd 0 140T[ ]( )  nM, 
we estimated θ = 0.50  nM s−1.

3.  Results and discussion

3.1.  Reproduction of the gradient
Here we show the results obtained through numerical 
simulations of the SDID model in its different versions 
and describe how the solutions depend on the various 
parameters. In the simulations we use the values, [ST], 
Df, DS and Kd derived in Sigaut et al (2010). In doing 
so we are assuming that the free coefficients, Df and 

DS, and the total concentration of binding sites are 
uniform throughout the embryo. For BcdT[ ] (which 
we assume changes along the embryo) we only fix 
its value at the anterior pole based on the results of 
Sigaut et al (2010). We use L  =  500 μm (Gregor et al 
2007b) and the rate, γ, at which Bcd-GFP matures and 
becomes fluorescent estimated in Drocco et al (2011), 
Liu et al (2013). The other parameters are chosen so 
that the solutions reproduce semi-quantitatively the 
experimental observations of Gregor et al (2007b), 
Little et al (2011) as explained in Methods and the 
appendix.

We show in figure 1(a) a scheme of the simulation 
domain as explained in Methods and in figures 1(b) and 
(c) the concentration of the different species along the 
AP axis obtained at time, t  =  100 min, using the partial 
(b) and total degradation models (c) with the param
eters of table 1 and the others as described in the caption. 
For both models we see that the BcdT profile is consist-
ent with the experimental observations. In particular, its 
concentration decays to  ∼50% of its maximum value at 
z  =  150 μm. We also observe that most Bcd molecules 
are bound at the anterior pole (as estimated in Sigaut 
et al (2014)). As we move away from the anterior pole, 
BcdT[ ] begins to decrease and the number of free bind-

ing sites increase. Since the mobility of the bound mol-
ecules is slower than that of the free ones, the gradient 
of [ ]Bcdb , and hence of [ ]BcdT , is more extended than 
that of Bcd[ ]. Comparing figures 1(b) and (c) we observe 
that the BcdT distribution is slightly different due to the  
difference in how the Bcd degradation is treated. In par
ticular, near the anterior pole the slope of BcdT[ ] is more 
pronounced in the total degradation case. The differ-
ences in the length scales obtained with both models 
is  ∼18%. In the case of the model with partial degrada-
tion, BcdT[ ] decays to 10% of its maximum at ∼z 195 μm,  
while in the case with total degradation this occurs at 
∼z 165 μm. Although this difference might seem sig-

nificant, it is within the variability found in experiments. 
On the other hand, as already mentioned, both versions 
of our model involve a series of simplifications so that 
we can only expect to obtain a semi-quantitative descrip-
tion of the experimental observations, not a complete 
quantitative agreement. In choosing the parameter val-
ues, on the other hand, we preferred to reproduce the 
distance from the anterior pole at which the concentra-
tion decays to a certain percent of its maximum rather 
than fitting exactly the lengthscale. As we discussed 
later, assuming a more realistic spatial distribution of 
the source gives a Bcd distribution that resembles the 
experimental observations more closely. Figure 1 also 
shows that in neither model the free or the total Bcd con-
centrations follow the mRNA distribution given by ( )θ z . 
This implies that, for our model, the Bcd concentration 
distribution is not a passive reflection of the mRNA that 
produces it, as assumed in Spirov et al (2009).

Comparing the values of α̃ and α used in figure 1 
with previously reported ones, 0.0003 s−1–0.0015 s−1 
(Gregor et al 2007b, Grimm et al 2010, Drocco et al 2011), 
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we observe that the one used in the total degradation 
model is within this previous estimated range, while the 
one used in the partial degradation model is larger. This 
discrepancy is reasonable if we take into account that 
degradation rates were estimated from fluorescence 
records that did not distinguish between bound and 
free Bcd. Namely, if only free Bcd is degraded with rate 
α̃, (i.e. [ ]/ [ ]α∂ ∂ ∼−tBcd Bcd ), the rate at which BcdT[ ] 
decreases due to degradation is given by ˜[ ]/[ ]α Bcd Bcd T 
(i .e. [ ]/ [ ]/[ ] [ ]α∂ ∂ ∼−tBcd Bcd Bcd BcdT T T ). Deg-
radation rates determined from fluorescence images 
would then correspond to ˜[ ]/[ ]α Bcd Bcd T . For the 
parameter values of figure 1(b), this fraction it is 
[ ]/[ ] ≈∼Bcd Bcd 0.08T , which allows to explain in part 
the discrepancy between the degradation rate used, 
α̃ = 0.05 s−1, and the values reported previously in the 
literature (Gregor et al 2007b, Grimm et al 2010, Drocco 
et al 2011).

Regarding the rate of protein synthesis, θ, the number 
of mRNA molecules inside the embryo during n.c. 10–13 
was estimated as  ∼105 molecules (Little et al 2011). Con-
sidering that mRNA molecules are mainly synthesized 
over a region that occupies  ∼20% of the total length 
of the embyro, that each molecule can synthesize one 
protein per second (Milo and Phillips 2015), that the 
region where nuclei are located and Bcd diffuses is the  
20 μm-wide outermost ‘slice’ of the embryo and approx-
imating the latter by an ellipsoid of radii  ∼  µ250 m,  
75 μm and 75 μm, the 105 mRNA molecules imply 
a  ∼0.3 nM s−1 Bcd synthesis rate. This value is similar 
to the ones used in the SDID model with partial or total 
degradation (see figure 1).

So far we have discussed the spatial properties of 
the gradient. The time it takes for the gradient to be 
formed is another important aspect that has been 
debated at large, mainly because the diffusion coeffi-
cient estimated in Gregor et al (2007b) was too small to 
account for the gradient formation within the exper
imentally observed times. Changing the reaction rate, 
koff, while keeping KD constant it is possible to modify 
the timescale over which the reactions take place. We 

thus explored the predictions of the SDID model using 
the parameters of figure 1 varying koff over the range 
(10−5–103) s−1. We found that the results were mostly 
insensitive to variations in koff (data not shown). We 
observed that the concentration distributions only 
changed for the most extreme (unrealistic) values of 
koff. We thus chose =k 0.1off  s−1, which we think is rea-
sonable for the type of interactions that Bcd may expe-
rience (Milo and Phillips 2015). We show in figure 2(a) 
the distribution of the total Bcd concentration at vari-
ous times obtained using the partial degradation SDID 
model. There we can observe how [ ]Bcd T converges to 
its asymptotic value with increasing time. In particular, 
the time it takes for it to be within 5% of the stationary 
solution is more than t  =  800 min (≈13 h). This time is 
much larger than the 100 min observed in experiments 
(Gregor et al 2007b). However, for ∈t 70, 167( ) min the 
distribution does not change significantly, as illustrated 
in figure 2(b). During this time interval BcdT[ ] differs 
by less than 10% with respect to the concentration at 
t  =  100 min and the largest differences are restricted 
to a very small spatial region. Moreover, the difference 
with respect to the stationary distribution for ⩾t 70 
min is never larger than  ∼15% regardless of posi-
tion. 15% differences are in the border of experimental 
detectability (particularly, far away from the anterior 
pole). Our results then suggest, in accordance with the 
work of Bergmann et al (2007), that the steady-state is 
not reached in less than 100 min but that yet the gradi-
ent may seem stationary. In the case of the SDID model 
with total degradation we observe a similar evolution of 
[ ]BcdT . For ∈t 80, 120( ) min, [ ]BcdT  varies by less than 
20%. Although the rates of production and degradation 
for the partial and total degradation models are differ-
ent, the spatio-temporal dynamics of the free and total 
Bcd concentrations are similar. For this reason, from 
now on we will present results corresponding to the 
partial degradation model only.

There is still one property of our simulations that 
is incompatible with the observations: the maximum 
concentration ( =zBcd 0T[ ]( )) is reached almost 

Figure 2.  (a) Distribution of total Bcd along the AP axis obtained at, increasing from left to right, t  =  50, 60, 70, 80, 90, 100, 110, 120, 
167, 833 min, using the model with partial degradation and the parameters of figure 1(b). The solid curve at the center corresponds 
to t  =  100 min, the time at which the gradient is supposedly already established. (b) Differences between [ ]BcdT  at different times 
and [ ] [ ](   )∗≡ =tBcd Bcd 100 minT T . For ∈t 70, 167( ) min, BcdT[ ] remains almost constant along the AP axis, except for a small 
region where the differences are less than 10%.
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instantaneously. This does not agree with the results of 
Little et al (2011) where it is observed that the maxi-
mum is reached 80 min after fertilization. This discrep-
ancy might be due to the finite time it takes for GFP to 
mature and become fluorescent. To evaluate the effect 
of maturation we performed numerical simulations of 
the system given by (A.4). We show in figure 3(a) the 
total Bcd concentration normalized by its asymptotic 
value at z  =  100 μm as a function of time for differ-
ent maturation rates, γ. As a reference we also show the 
corresponding curve for the SDID model with no matu-
ration (black dashed curve). The parameters used in the 
simulations are the same as in figure 1(b). As expected, 
the convergence to the asymptotic value takes longer for 
the model that incorporates maturation and becomes 
slower as γ decreases. For γ = 0.01 s−1 we observe lit-
tle differences between the models with and without 
maturation. At t  =  10 min the concentration reaches 
98.1% of the asymptotic value in the model with matu-
ration and 99.5% in the model without maturation. In 
the case with γ = 0.0005 s−1 the concentration reached 
at t  =  10 min is 73% of the asymptotic value. Hence, for 
low values of γ a significant delay in the convergence is 
observed in the region close or at the source. The delays 
obtained, however, never exceeded  ∼50% of the time 
elapsed at very early times and this gap decreased rap-
idly as time went by. In regions far from the source, the 
fraction of mature to total Bcd-GFP molecules is larger 
because it takes longer for the molecules to reach those 
regions and in that time they mature and become fluo-
rescent. These results are similar regardless of whether 
we consider the SDID model with partial or total Bcd 
degradation. This disparity in the delay to reach steady-
state depending on the position along the AP axis 
affects the fluorescence spatial distribution implying a 
change in the relationship between the lengthscale of 
the observed gradient and the parameters of the model 
(Liu et al 2013).

To analyze the effect of maturation on the length-
scale we show in figure 3(b) the ratio between total Bcd 
over fluorescent Bcd, ( ) [ ]/([ ] [ ])≡ +R z Bcd Bcd BcdT

t
b
t . 

R depends on the relation between α̃ and γ. In figure 3(b) 

we show the value, R, as a function of z for different val-
ues of γ ([0.003–0.001–0.0005] s−1). For all cases R is 
larger near the source and decreases to  ∼1 as the poste-
rior pole is reached. In Liu et al (2013) it was determined 
that ∼R 3 close to the source. Of all the considered val-
ues of γ the one that gives the most similar result to this 
observation is γ = 0.001 s−1. This value of γ is in perfect 
agreement with the rate of degradation of Bcd reported 
in Drocco et al (2011), Gregor et al (2007b), Grimm et al 
(2010). The fact that R is a decreasing function of the 
distance to the source may also affect the lengthscale of 
the gradient with respect to the case in which GFP mat-
uration is not considered. R decreases very rapidly with 
distance and at z  =  0.3L its value is already very close 
to 1. For z  >  0.3L almost all Bcd molecules are mature 
and the effect of the immature fraction on the gradient 
lengthscale can be neglected. In particular, if we com-
pare the distribution, [ ]BcdT , for the same parameters 
as in figure 3 with and without including the process of 
GFP maturation the characteristic lengthscales do not 
show any significant difference.

3.2.  Interpretation of the experimental 
observations with a model that includes reactions
The results of the simulations presented so far 
show that it is possible to reproduce the spatio-
temporal characteristics of the Bicoid gradient semi-
quantitatively using the SDID model with ‘reasonable’ 
biophysical parameter values. We now discuss how 
the experimentally observed properties are related to 
the parameters of the model. More specifically, we are 
interested in determining the relationship between 
these parameters and the length and timescales of 
the Bcd gradient and how these relationships change 
depending on whether the reactions with binding 
sites are included in the model or not. Thus, we are 
after a re-interpretation of the observations within the 
framework of a model that includes reactions. Such 
a model is nonlinear and the concentrations are not 
characterized by a single spatial or temporal scale. This 
becomes evident in the fast reaction approximation, 
(14), where the transport rate is determined by an 

Figure 3.  (a) Time dependence of the total fluorescent Bcd concentration at the position where the source ends (z  =  20 μm) 
obtained through simulations of (A.4) for different rates of GFP maturation (gray dotted line: γ = 0.01 s−1, gray dashed line: 
γ = 0.003 s−1, gray solid line: γ = 0.001 s−1 and gray dashed–dotted line: γ = 0.0005 s−1). The total Bcd concentration obtained 
without including the process of GFP maturation is shown with a black dashed curve. All parameters are the same as in figure 1(b) 
and the concentrations displayed are normalized by their corresponding asymptotic values. (b) Ratio of fluorescent to total Bcd, R, 
along the anterior–posterior axis at time, t  =  100 min for three of the maturation rates probed in (a). Symbols are the same as in (a).
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effective diffusion coefficient which depends on the 
concentration, and hence, does not have a single value 
along the embryo or over time. The presence of ‘many’ 
coefficients or ‘multiple’ scales is in agreement with the 
work of Little et al (2011) in which, in order to reproduce 
the experimental observations, a model with diffusion 
coefficients that changed in time ad hoc was introduced. 
This reinforces our idea that it is the effective diffusion 
coefficients, which naturally arise within the context 
of the SDID model, that determine the characteristic 
scales of the problem. Here we seek to relate the effective 
parameters of the model with the observed spatial scale 
and the convergence time of the gradient in the simplest 
possible way. To this end we work with the SDID model 
with partial degradation and DS  =  0. The difference 
with respect to the SDID model with total degradation 
is mainly a matter of parameter values. The differences 
with respect to the model that includes the delay in GFP 
maturation is discussed later.

3.2.1.  Lengthscale: free Bcd gradient versus total Bcd 
gradient
As discussed in the Introduction, the stationary solution 
of the SDD model with a source at one end is given by 
(4) and (5). Within the framework of this model zo 
corresponds to the characteristic lengthscale, �o, of the 
observed fluorescence distribution. As described in the 
methods section, the stationary solution of the SDID 
model with partial degradation satisfies (13) and (14). 
Within the context of this model, the lengthscale of the 
free Bcd concentration, zof , is given by (20) (and (A.2) 
in the case of the SDID model with total degradation). 
This lengthscale does not correspond to that of the 
observed gradient because the fluorescence cannot 
distinguish between free and bound Bcd. Therefore, 
the observed lengthscale, �o, should be related to that of 
the total Bcd concentration, zoT, given by (21). zoT and 
zof  can be very different between themselves. Moreover, 
zoT changes with position and time.

We now discuss in what regions (21) provides a good 
estimate of the characteristic lengthscale of the total 

Bcd distribution. We show in figure 4(a) the normalized 
free and total Bcd concentrations as functions of z at 
t  =  100 min. The free Bcd distribution decays by 50% 
for ≈z 100 μm, while the total Bcd concentration does 
it at ≈z 160 μm. Although the total concentration does 
not decay exactly exponentially with z as in (4), it can 
be approximated by such an expression over a certain 
range of z values. This is shown in figure 4(b) where we 
plot BcdT[ ] and [ ]Bcd , normalized by their maximum 
values, as functions of z. The exponential fits (linear on 
the logarithmic scale of the figure) were done over the 
regions =z 125–300( ) μm for [ ]Bcd  and ( )=z 150–300  
μm for [ ]BcdT  obtaining ≈z 19of  μm and ≈z 45oT  μm. 
These values can be compared with those predicted by 
(20) and (21). In the case of free Bcd, the characteristic 
lengthscale given by (20) with the simulation param
eters is zof  =  19.5 μm which agrees with the fitted value. 
In the case of [ ]BcdT  the comparison is more compli-
cated because the lengthscale of (21) depends on Dcoll 
and Dsm which vary with time and space. If we con-
sider the values, Dcoll and Dsm at time t  =  100 min and 
over the region where the fitting begins, z  =  150 μm, 
we obtain / ≈D D 2coll sm . Inserting those values in (21) 
we obtain ≈z 40oT  μm which is very similar to the one 
estimated from the fitting. If instead we consider the val-
ues at z  =  180 μm, the ratio of effective coefficients is 

/ ≈D D 1.2coll sm , leading to an estimate of ≈z 23oT  μm 
which only differs by a factor of 2 with respect to the 
fitted value. Thus, (20) and (21) provide good estimates 
of the characteristic lengthscales of the free and total 
Bcd concentrations if we use the values of the effective 
coefficients in the region just contiguous to the source 
(where concentrations start to decrease). We obtain sim-
ilar results using (A.2) and (A.3) within the framework 
of the SDID model with total degradation. The char-
acteristic lengthscale of the total Bcd distribution that 
we obtain with the simulations of figures 4(a) and (b) 
differs by a factor of  ∼2 with respect to that of the exper
imental observations (Little et al 2011). This discrepancy 
together with the plateau that we obtain in the region 
of the source both for the free and for the total Bcd  

Figure 4.  (a) Normalized BcdT[ ] (solid line) and Bcd[ ] (dashed line) as functions of z at time, t  =  100 min, obtained from numerical 
simulations of the SDID model with partial degradation and the same parameters as in figure 1(b). (b) Similar to (a), with the 

vertical axis on a logarithmic scale ( BcdT[ ] with ◯ and [ ]Bcd  with �). The exponential fits to the distributions over the regions 
( )=z 125–300  μm for Bcd[ ] and ( )=z 150–300  μm for [ ]BcdT  are superimposed. The characteristic lengthscales obtained with the 

fits are, respectively, ≈z 19of  μm and µ≈z m45oT . (c) Similar to (b) for the total Bcd concentration obtained from simulations using 

the source defined in equation (10) (◯) and the source defined in equation (22) which spatial distribution is similar to that of the 
mRNA determined in Little et al (2011) (�). Exponential fits of both curves are superimposed (dashed and solid lines, respectively). 
The straight line corresponding to the exponential fit of the observed fluorescence obtained in Little et al (2011) is also shown 
(dashed–dotted curve).
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distributions that is apparent in figure 4(a) can be attrib-
uted to the simplified space dependence that we have 
assumed for the source. Namely, if instead of assuming 
a step-like dependence as in equation (10) we consider 
that the source spatial distribution is similar to that of 
the mRNA shown in figure 3(E) of Little et al (2011) 
we obtain that the exponential fits hold over a larger 
regions and with larger lengthscales. We illustrate this in 
figure 4(c) where we plot with triangles the concentra-
tion, BcdT[ ], that we obtain simulating the SDID model 
with partial degradation and the same parameters as in 
figures 4(a) and (b) but using a source of the form:

( )    
 

θ µ
µ
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The solid curve corresponds to an exponential fit of the 
profile which prescribes the characteristic lengthscale, 
=z 106oT  μm, well in accordance with the experiments. 

We also plot in figure 4(c) the concentration, BcdT[ ], of 
figure 4(a) (open circles) with its exponential fit (dashed 
line) and a straight (dashed–dotted) line with 
characteristic lengthscale, =� 100 μm, as observed 
experimentally in Little et al (2011).

3.2.2.  Timescale: effective versus free diffusion  
coefficients
The solution of the SDD model given by (1)–(2), for 
long enough L, can be approximated as Bergmann et al 
(2007):
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where erfc is the complementary error function, 

erfc( ∫ π= − −z t t1 exp d
z

0
2) ( ) / . This equation shows 

that the approach to the stationary solution (4) occurs 
as if there was a front that travels at speed:

α≡ =v
D

z
D2 2 ,

o
� (24)

that depends on the diffusion coefficient D and the rate 
of degradation α, and allows to define a convergence 
time at a distance z from the source as:

( )
α

≡t z
z

D
.conv� (25)

Thus, if D is known a priori and α is chosen so that the 
theoretical characteristic lengthscale of (5) corresponds 
to the observed fluorescence lengthscale, ∼� 100o  μm, 
the convergence time can be rewritten as:

( )≡ �
t z

z

D
.oconv� (26)

At z  =  0.75L, this time is too long (⩾ hs10 ) if it is 
assumed that ≈D 1 µ2m s−1, the value estimated in Abu-
Arish et al (2010), Gregor et al (2007b) using FRAP, and 
it is too short (∼0.5 hs) if the free diffusion coefficient 
of Bcd estimated in Sigaut et al (2014), ≈D 20 µ2m s−1, 
is used instead. The solution (23) also shows that the 
rate of production, θo, determines the maximum value 
of [ ]Bcd  but is not involved in the convergence time.

In the case of the SDID model it is more difficult 
to define a ‘propagation speed’ because in addition to 
the characteristic Bcd degradation time there are other 
timescales related to the reaction. In order to derive a 
propagation speed in such a case we then work with the 
reduced equations in the fast reaction approximation 
((14) and (13)). Given the formal equivalence between 
(14) and (1)–(2) we define the speed and the conv
ergence time as in (24) and (25) but using Dcoll instead 
of D and α̂ instead of α. We obtain:
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for the model with partial degradation and
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for the model with total degradation. As we did for 
the lengthscale, we now analyze whether the solution 
obtained numerically for the model with partial 
degradation moves with the speed described by (27), if 
it is possible to define a single characteristic value for the 
speed in the region immediately adjacent to the source 
and, in that case, which effective diffusion coefficients 
determine it. As in the case of the SDD model, if the 
value, α̃, is determined setting = �zo oT  with �o the 
observed fluorescence lengthscale and zoT given by 
(21)–(20) with known values of Df qne /D Dsm coll, the 
convergence time can be rewritten as:

=
�

t
D z

D
.o

conv
sm

coll
2� (29)

The same expression is obtained for the model with 
total degradation using (A.3) and (A.2) and setting 

=′ �zo oT
. It then follows that if the degradation rate, α̃ or 

α, is derived from the observed fluorescence lengthscale, 
the convergence time to the steady state solution will 
be the same regardless of whether we use the model 
with total or partial degradation. We now continue the 
analysis for the model with partial degradation.

In order to represent the advancement of the 
Bcd front and characterize its timescale we compute 
for each position, z, the time, t, at which the free Bcd 
concentration, z tBcd ,[ ( )], reaches 50% of its asymp-
totic maximum value, [ ( )]z tmax Bcd ,t . We plot in 
figure 5 the position, z, versus the time, t, just defined. 
The slope of this curve corresponds to the propaga-
tion speed. As expected in this case the front does not 
move with a constant speed. It can be observed that 
the speed is smaller the larger z is. As for the analysis 
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of the lengthscale, here we focus on a region where the 
speed is approximately constant. Based on the results 
of figure 5 we fit the front profile with a linear function 
in two regions: [ ]∈z 100, 150  μm (light dashed line) 
and ∈z 150, 225[ ] μm (dark dashed line). From the 
fits we determine the speeds ≈v 1.3 μm min−1 in the 
region closest to the source and ≈v 0.53 μm min−1 in 
the region further away. This implies that at a distance 
of the source of the order of the observed fluorescence 
lengthscale, ( )∼z 100–140  μm, the convergence time 
is of the order of 77–100 min, similar to the character-
istic time of the gradient formation obtained exper
imentally (∼90 min). We must point out that even if we 
here analyze the convergence of the free Bcd concentra-
tion to its steady state solution, the total Bcd (free and 
bound) reaches its asymptotic distribution on a similar 
timescale.

We now analyze whether there is a simple expres-
sion that can be used to estimate the speed and the 
convergence time. To this end we compare the speed 
estimates of figure 5 with those predicted by (27). The 
latter gives µ= ≈v z 140 m, 50 min 1.5(     )  μm min−1 
and (     )µ= ≈v z 180 m, 100 min 0.4 μm min−1. These 
estimates are similar to those derived with the fitting. 
We then conclude that it is possible to relate the model 
parameters with the timescale of the Bcd gradient for-
mation in a relatively simple way. (27) also highlights 
the importance of distinguishing between the collective 
and single molecule diffusion coefficients. If in (27) we 
replace Dcoll by Dsm the estimates of the front velocity 
decrease by approximately one half implying that the 
timescale would be twice the value derived before.

3.2.3.  The distinction between free and total Bcd and 
the role of Bcd as a transcription factor
As we have already mentioned, Bcd acts as a 
transcription factor for the expression of hb. This 
process has been studied in detail both experimentally 

and theoretically (Gregor et al 2007a, Tkačik et al 
2008, Dubuis et al 2013). In particular, the observed 
(fluorescence) distributions coming from Bcd and 
Hb in fixed embryos have been used to develop the 
theory. These distributions were found to be related 
by a non-linear function with Hill coefficient n  =  5, 
i.e. consistent with a high degree of cooperativity of 
Bcd for the transcription of hb (Gregor et al 2007a). 
These observations, however, cannot distinguish 
between free and bound Bcd. Here we explore how 
these observations should be re-interpreted when 
the interaction of Bcd with binding sites is taken into 
account. The concentration of the specific hb regulatory 
sites on DNA is very small compared to the [ST] value 
that we have used in the simulations (∼130 nM) 
which is consistent with the variety of species (Liu and 
Ma 1996, Rivera-Pomar et al 1996, Zhu and Hanes 
2000, Guruharsha et al 2011) that S represents. Thus, 
it is reasonable to assume that binding of Bcd to the 
promoters of the hb transcription does not alter 
significantly the concentrations of free or bound Bcd 
that enter the scheme (6). This assumption allows us 
to readily use the results obtained with the simulations 
described in the previous sections. Namely, we assume 
that the concentrations prescribed by our model 
with S representing non-specific binding sites are not 
altered significantly by the Bcd binding related to the 
transcription of hb. We then assume that Hb and (free) 
Bcd are related by equation (9) with ≡K BcdD 1 2[ ] / , an 
effective dissociation constant between Bcd and the 
sites on DNA that are specific for the transcription 
of hb. The aim of this section is to analyze to what 
extent the Hill coefficient that may be derived from 
the fluorescence distributions provides information 
on the coefficient, n, that enters equation (9) which is 
somehow related to the cooperativity with which Bcd 
binds to the hb promoter. Although it is very likely 
that this binding is cooperative, in this study we place 
ourselves in the situation that highlights the most our 
conclusions. Namely, we assume that [ ]Hb  and (free) 
[ ]Bcd  are related by equation (9) with n  =  1. We show 
in figure 6 the (normalized) concentrations of free and 
total Bcd obtained with the simulations and that of Hb 
computed as just described as functions of position 
along the embryo. Once we have the Hb distribution, 
we derive the apparent Hill coefficient that relates the 
two observables of the experiment: the fluorescence 
distributions that we assume are proportional to [ ]Hb  
and to the total (not the free) concentration of Bcd 
and observe that it can be (much) larger than 1. This is 
illustrated in figures 6(b) and (c).

We show in figure 6(b) the normalized concen-
tration of Hb as a function of the concentrations of 
free and total Bcd obtained using equation (9) with 

= =KBcd 0.5D1 2[ ] /  nM, n  =  1 and the distributions, 
Bcd[ ] and [ ]BcdT , that correspond to the stationary 

solution of the SDID model with partial degradation 
and the parameters of table 1. We note that the relation-
ship between Hb[ ] and [ ]Bcd  is hyperbolic while the one 

Figure 5.  Position along the AP axis and time, (t, z), 
at which the free Bcd concentration reaches 50% of its 
asymptotic value at the same z in the case of the model with 
partial degradation (solid line) and the same parameters 
of figure 1(b). To estimate the rate at which the gradient 
converges to its steady state two linear fittings were done in 
different regions along the AP axis (dashed lines).
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between Hb[ ] and BcdT[ ] is sigmoidal, i.e. characterized 
by a relationship of the form equation (9) with n  >  1. 
The latter ressembles more the experimental observa-
tions than the former. In order to analyze how the esti-
mated Hill coefficient may differ from the actual one if it 
is derived from the fluorescence distributions under the 
implicit assumption that the Bcd fluorescence is pro-
portional to the free (not the total) Bcd concentration 
we proceed as follows. We first compute [ ]/[ ]Hb Hb max 
as in figure 6(a). We assume that this is the relation-
ship that holds in the real system. We then proceed as if 
we had obtained the distributions of the fluorescence 
coming from Hb and Bcd in this system and derive an 
estimated Hill coefficient, nf, from the fit:

[ ]
[ ]

[ ]
[ ] [ ] /

=
+
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∗ ∗
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Hb
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Bcd Bcd
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n

n n
max 1 2

f
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where [ ]Hb  and [ ]∗Bcd  are proportional, respectively, 
to the Hb and Bcd fluorescence distributions. We 
compare the estimates of nf when the fluorescence is 
proportional to BcdT (i.e. =∗Bcd BcdT) as we think 
occurs in the real system and when we use =∗ BcdBcd  
instead. To do the fitting we rewrite (30) as:
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where it becomes clear that nf  is the slope 
of  the  ( [ ] / [ ] )−log Hb Hb 1max  versus ∗log Bcd /( [ ]

∗Bcd max[ ] ) relationship. We show in figure  6(c) 
( [ ] / [ ] )−log Hb Hb 1max  as a function of ∗log Bcd( [ ] /

[ ] )∗Bcd max  for ∗Bcd[ ] equal to Bcd[ ] (dashed line) or 
BcdT[ ] (black solid line). As expected, the relationship 

is linear in the first case with a slope, nf, that coincides 
with the actual cooperativity coefficient, n  =  1. In 
the other case the relationship is linear for small 
BcdT[ ] but, as [ ]BcdT  increases, the linearity is lost. 

In particular, the slope changes dramatically in the 
region where [ ]Hb  is most sensitive to changes in 
[ ]BcdT , ∼ −Bcd Bcd 0.5 0.8T T max[ ]/[ ] ( ). If the data is 

fitted using (30) in this region of great sensitivity (see 
figure 6(c)) we obtain ≈n 4f  which is larger than the 
actual cooperativity index, n  =  1. The estimated Hill 
coefficient, nf  =  4, works relatively well when we try to 
reproduce the Hb[ ] versus [ ]BcdT  relationship as shown 
in figure 6(b) where we have plotted Hb Hbmax[ ] / [ ] 
computed using equation (30) with [ ] [ ]=∗Bcd BcdT , 
nf  =  4 and =∗Bcd 921 2[ ] /  nM (gray solid curve). When 
making this figure we chose the most extreme possible 
scenario of an underlying coefficient, n  =  1, and an 
estimated coefficient, nf  >  1. The [ ]Hb  distribution 
obtained with n  =  1 is not so similar to the experiments. 
Using n  =  2 gives a better [ ]Hb  distribution and an 
apparent Hill coefficient, nf  =  7 (data not shown). In 
any case, figure 6 serves the purpose of illustrating that 
the inability to distinguish between free and total Bcd 
can lead to an overestimation of the Hill coefficient 
and of the degree of Bcd cooperativity with which hb 
is transcribed.

Considering that the fraction of Bcd that is involved 
in Hb transcription is negligible compared to the frac-
tion that is bound to non-specific sites, S, could also help 
understand some of the observations of Liu et al (2013) 
where the spatial location along the embryo where [ ]Hb  
decays abruptly was analyzed in embryos with differ-
ent total amounts of Bcd. As stated in Liu et al (2013), 
‘if Bcd concentration directly controls cell fate [...] the 
Bcd-dependent patterning markers must always form 
at the same absolute Bcd concentration’. The results 
displayed in figure 3 of Liu et al (2013) showed that this 
is the case during early development when the location 
of the transition point (that is associated to the location 
of the cephalic furrow) approximately corresponds to 
a position where the Bcd fluorescence reaches a fixed 
value. However, later on a dynamic adaptation occurrs 
so that the point moves towards a fixed position along 
the embryo, not a fixed fluorescence value. Our model 
provides a means to reconcile these observations: since 
[ ]Hb  is a function of free Bcd while the Bcd fluorescence 
is proportional to [ ]BcdT , changing [ST] we could have 
larger BcdT[ ] values and the same free Bcd concentra-
tion. We illustrate this in figure 7 where we compare the 

Figure 6.  (a) Normalized concentrations of total ( BcdT[ ], solid curve) and free ( Bcd[ ], dashed curve) Bcd and of Hb (dash-dotted 
curve), as functions of position along the embryo. (b) Normalized [ ]Hb  as a function of Bcd[ ] (dashed curve) and of BcdT[ ]  
(solid curve) and Hill function of the form (30) with nf  =  4, =∗Bcd BcdT[ ] [ ] and =∗Bcd 931 2[ ] /  nM (gray solid curve).  
(c) ( [ ] / [ ] )−log Hb Hb 1max  versus ( [ ] / [ ] )∗ ∗log Bcd Bcd max  for =∗ BcdBcd  (dashed curve) and =∗Bcd BcdT (black solid curve), 
with the various concentrations computed as in figure 6(a). The gray solid curve has a slope ≈ −4. For all curves, [ ]BcdT  and Bcd[ ] 
correspond to the solution at =t 100 min   of the SDID model with partial degradation and the parameters of table 1 and [ ]Hb  is a 
function of free Bcd given by equation (9) with n  =  1 and [ ] /= =K Bcd 0.5D 1 2  nM.
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normalized Hb[ ] distributions that we obtain with the 
simulation of figure 6(a) and with similar simulations 
but with different values of [ST] or of the Bcd source 
strength as functions of position along the embryo in 
(a) and of BcdT[ ] in (b). There we observe that increas-
ing the rate of Bcd production increases the average 
BcdT[ ] (⟨[ ]⟩ =Bcd 42.4T  nM for the reference case 

shown with gray solid curves; =Bcd 37.6T⟨[ ]⟩  nM and 
=Bcd 48.1T⟨[ ]⟩  nM for half or twice the Bcd source 

strength, respectively) and a fixed Hb Hb max[ ]/[ ]  value 
corresponds to a fixed BcdT[ ] (i.e. fluorescence) value 
and different positions along the embryo. This is similar 
to the observations of Liu et al (2013) at early times. If 
we increase [ST] instead, the average [ ]BcdT  increases 
as well ( =Bcd 37.6T⟨[ ]⟩  nM for [ST]  =  100 nM 
and ⟨[ ]⟩ =Bcd 48.1T  nM for [ST]  =  150 nM) but a 
fixed [ ]/[ ]Hb Hb max value corresponds to a fixed posi-
tion along the embryo and different values of [ ]BcdT . 
Although the real problem is much more complicated 
than what our model can describe, these results indicate 
that the dynamic change in the cephalic furrow position 
with time might be related to an increase of the Bcd 
‘traps’ that the cell may start to produce in the presence 
of larger Bcd concentrations.

4.  Conclusions

Understanding the processes that lead to cell 
differentiation during embryogenesis is a key goal 
of scientific research (Wolpert 1969, Crick 1970). 
Advancing in this regard is not only relevant to 
improve the comprehension of how life and living 
organisms are shaped but also of the limits that 
physics imposes on such processes (Tkačik et al 2008, 
Dubuis et al 2013). The case of the patterning along 
the anterior–posterior axis of Drosophila melanogaster 
embryos is an example that has been studied in great 
detail both experimentally (Driever and Nusslein-
Volhard 1989, Gregor et al 2007a, 2007b, Little et al 
2011, 2013) and through modeling (Driever and 
Nusslein-Volhard 1988, Bergmann et al 2007). The 
gradient of the protein Bicoid (Bcd) which acts as 

transcription factor for the production of other 
proteins, is key for this process. The Bcd system, on the 
other hand, provides a paradigmatic example of the 
difficulties of quantifying biophysical and biochemical 
parameters from fluorescence observations. The SDD 
model (Driever and Nusslein-Volhard 1989, 1988) was 
proposed to explain the formation of the Bcd gradient 
in Drosophila melanogaster embryos but it could not 
account satisfactorily for all its observed characteristics. 
In particular, the estimates of the Bcd diffusion 
coefficient derived in Gregor et al (2007b) using FRAP 
were too small to explain the establishment of a stable 
gradient within the times observed experimentally. 
The estimated diffusion rate was challenged by 
new measurements obtained with FCS (Abu-Arish 
et al 2010, Porcher et al 2010). These apparently 
contradictory results on Bcd diffusion could be 
explained within a unified model in Sigaut et al (2014) 
by considering that, in the embryo, Bcd not only diffuses 
freely but also interacts with binding sites, a process 
that naturally occurs in this case given that Bcd is a 
transcription factor. According to this unifying model 
Bcd diffuses with a free coefficient, ∼D 20f  μm2 s−1,  
and a large fraction of it is bound to immobile or very 
slowly moving ( ∼D 0.1S  μm2 s−1) sites so that FRAP 
and FCS experiments provide information on the 
effective coefficients of (7) and (8) (Sigaut et al 2010, 
2014). In this paper we have studied if this type of SDID 
model with the diffusion coefficients, concentrations 
and dissociation constant estimated in Sigaut et al 
(2014) can explain the formation of a Bcd gradient with 
the space and time properties observed experimentally. 
In spite of its simplicity, the model provides an ideal 
platform where to analyze how the characteristic 
length and time scales of Bcd[ ] are affected when the 
interaction with binding sites is considered. In order to 
quantify some unknown parameters we compared the 
characteristic lengthscale of the observed Bcd gradient 
with that predicted by the model. Given that Bcd-GFP 
is fluorescent regardless of whether it is free or bound 
we interpreted the observed lengthscale as the one 
that corresponds to the total (not just the free) Bcd 

Figure 7.  Normalized [ ]Hb  as a function of position (a) and of BcdT[ ] (b) for the same simulation as in figure 6(a) (gray solid curve) 
and for similar simulations but with [ST]  =  150 nM (gray dashed curve), [ST]  =  100 nM (black dashed curve), for a Bcd production 
rate half (black dashed–dotted curve) or twice as large (grey dashed–dotted curve) as that of figure 6(a). The curves obtained with 
different [ST] values are indistinguishable in (a) and those obtained with different source strengths are indistinguishable in (b).
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distribution. As discussed in the Methods and Results 
sections, if Bcd binds to sites the lengthscales of [ ]Bcd  

and BcdT[ ] differ by a factor  ∼ D

D
sm

coll
 (see (21)) outside 

the region of Bcd synthesis. This ratio can be arbitrarily 
small (Pando et al 2006) and has been estimated to 
be  ∼0.1 in the anterior end of the embryo during its 
early stages (Sigaut et al 2014). This means that the 
quantification of biophysical parameters based on the 
lengthscale of the fluorescence distribution can lead to 
very different parameter estimates depending on the 
model with which the observations are interpreted. 
Since both Dsm and Dcoll are nonlinear functions of 
the concentrations, their ratio changes with position 
along the embryo. The simulations of figures 4(a) and 
(b) estimate it as  ∼2 outside the region where Bcd is 
synthesized. Although this ratio is close to one and 
does not imply an order of magnitude difference in 
the parameter estimates that can be derived from the 
observed lengthscale, according to the simulations of 
figures 4(a) and (b), [ ]Bcd  and [ ]BcdT  decay to 50% 
of their maximum values at very different distances 
from the anterior end, ≈z 100 μm, and ≈z 160 μm, 
respectively. This again highlights the implications that 
a particular choice of model has on the interpretation 
of the observations. We based our choice of the 
parameters that were not estimated in Sigaut et al (2014) 
on the fluorescence lengthscale distribution and on 
the time it takes for the gradient to be established. The 
quantitative discrepancies between the simulations of 
figures 4(a) and (b) and the experimental observations 
(e.g. the lengthscale is  ∼45 μm in the simulations and 
100–150 μm in the experiments (Little et al 2011)) can 
be attributed to the very simple spatial distribution 
of the source that we used (equation (10)). Repeating 
the simulations with a source spatial distribution that 
mimicked that of figure 3(E) of Little et al (2011)) we 
obtained a total Bcd distribution (shown in figure 4(c)) 
that decayed exponentially over a larger region and 
with a lengthscale  ∼106 μm, i.e. twice as long as 
before. In any case, the simulations performed using 
the simple source (equation (10)) are good enough 
for the purpose of the present work, which is not to 
reproduce all the experimental observations with 
complete quantitative agreement, but to study how the 
binding/unbinding reactions of Bcd might affect the 
fluorescence distribution and its interpretation.

The simplicity of the SDD model is very appeal-
ing. Within its context, the properties that are observed 
experimentally are directly related to the parameters 
of the model. The SDID model is nonlinear and a 
direct comparison between theory and experiment 
is more complicated. In spite of this, in this paper we 
went beyond the numerical simulations and obtained 
analytical expressions that could describe the simu-
lated results. In this way we could establish that the 

role that the free diffusion coefficient plays in the SDD 
model, in the SDID model it is played by the largest of 
the two effective diffusion coefficients of Pando et al 
(2006) (the collective coefficient of (8)) as illustrated in  
figure 4 and 5. Had it been the single molecule coef-
ficient that is estimated with FRAP (Sigaut et al 2010), 
the timescale of the gradient formation would have 
been too large compared to the experimental observa-
tions. This is especially important for the action of Bcd 
as transcription factor and the precision with which its 
‘bulk’ concentration can be estimated by the regula-
tory binding sites on DNA (Gregor et al 2007a, Ipiña 
and Dawson 2016). Considering the interaction of Bcd 
with binding sites as done in our SDID model has major 
consequences for the interpretation of the experiments 
that seek to quantify the action of Bcd as transcription 
factor. More specifically, given that the fluorescence 
does not distinguish between free and bound Bcd, the 
relationship between the Bcd concentration and that of 
the proteins, e.g. Hunchback (Hb), whose production 
it regulates needs to be reassessed. As shown in figure 6 
the SDID model predicts that the Hill coefficient that 
characterizes the relation with Bcd and the production 
of Hb can be smaller than the one that is directly derived 
from the scatter plot of the observed fluorescence. This 
conclusion is derived under the assumption that the 
fraction of regulatory sites on DNA that Bcd binds to 
is negligible compared to those that are included in the 
SDID model which should then correspond to other 
(non-specific) binding sites. In view of the hopping 
and sliding model of transcription in which transcrip-
tion factors bind to non-specific sites for relatively long 
times (Elf et al 2007, Hammar et al 2012) and eventu-
ally find the specific sites for transcription on the DNA 
molecule (von Hippel and Berg 1989) and given the 
fact that Bcd interacts not only with DNA, but also with 
mRNA and proteins (Liu and Ma 1996, Rivera-Pomar 
et al 1996, Zhu and Hanes 2000, Guruharsha et al 2011), 
it is very likely that this assumption be valid in the case 
of Bcd. Given that most intracellular messengers are 
subject to binding/unbinding processes, it is likely that 
similar problems to those discussed here will be found 
in other systems. Our results are then not only relevant 
for the particular case of the Bcd gradient but also have 
wide implications for the interpretation of fluorescence 
images in living organisms in general.
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Appendix

In this appendix we present the versions of the SDID 
model that we have implemented and analyzed but have 
not described in detail in the manuscript.

A.1.  The SDID model with total degradation of Bcd
In this case we consider that Bcd is degraded while being 
free or bound and the dynamic equations read:
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where α is the degradation rate. The choice of parameter 
values is done as in the model with partial degradation. 
We first derive the stationary solution for DS  =  0. In this 
case the equilibrium condition (15) and (16) does not 
hold for all ⩾z L0.2 . But if reactions occur on a faster 
timescale than degradation (as in the ‘fast reaction 
approximation’ of (14)), it is possible to assume that 
(15) and (16) hold approximately at every [ ]∈z L L0.2 , . 
In such a case, the evolution equation for Bcd[ ] is given 
by (14) with α α= D Dcoll sm˜ /  and θ̂  as before. As in 
the model with partial degradation we estimate the 
lengthscales of the stationary solution as:

α α≈ =′z D D ,o coll smf
/ ˜ /� (A.2)

for [ ]Bcd , and,

=′ ′z z D D ,o o coll smT f
/� (A.3)

for [ ]BcdT . Although the ratio between the characteristic 
lengthscales of [ ]Bcd  and [ ]BcdT  in this case is given by (21) 
as in the partial degradation model, the lengthscale of the 
gradient depends on different biophysical parameters. The 
estimate of the degradation rate, α, that may be derived 
from the characteristic lengthscale of [ ]BcdT  in this 
case is approximately related to the one obtained in the 
model with partial degradation by ˜ /α α= D Dfsm . Since 
�D Dfsm , if we use this value of α and the model with total 

Bcd degradation to determine the source intensity as before 
we obtain a value, θ, that is smaller by a factor, D Dfsm / , with 
respect to the one derived using the partial degradation 
model. Taking into account that in the region where FCS 
experiments are performed ∼D D 0.05fsm / , using (A.2) 
and (A.3) we obtain the a priori estimate α ∼ 0.005 s−1. 
The numerical simulations performed with this value 
did not give proper concentration distributions for the 
different species. Hence we used α = 0.0005 s−1 and 
θ = 0.10  nM s−1 instead.

A.2.  The SDID model with with GFP maturation
Experiments use Bcd-GFP to observe the distribution of 
Bcd. It takes some time for GFP to mature and become 
fluorescent (Sniegowski et al 2005, Iizuka et al 2011, 
Little et al 2011). Thus, to interpret the observations it 

may be necessary to include this process. In such a case 
we need to distinguish between fluorescent (or tagged) 
and non-fluorescent (or untagged) Bcd (Bcdt and Bcdu, 
respectively) and include the transformation between 
one another. The equations then read:
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(A.4)

where γ is the rate of GFP maturation. Here we 
assume that this maturation only affects whether the 
protein is fluorescent or not but not the properties of 
its transport, binding or degradation. We also assume 
that immediately after its synthesis the protein is not 
fluorescent.
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