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ABSTRACT: A theoretical methodology is introduced to calculate the low-bias
conductance, structure, and composition of long polyelectrolyte-modified
nanochannels of arbitrary geometry. This methodology is applied to explore
the coupling between acid−base equilibrium and geometry in cylindrical, conical,
and trumpet-shaped nanochannels modified by end-grafted layers of poly(2-
(methacryloyloxy)ethyl-phosphate) (PMEP), a diprotic polyacid. The ionic
conductance and speciation curves (i.e., the fraction of deprotonated,
monoprotonated, and diprotonated acid segments) for this system were predicted
as a function of the solution pH. The apparent pKa’s and widths of the transitions
between the different acid−base states determined from the speciation curves
depend on the diameter and shape of the nanochannel and the bulk salt
concentration. In the limit of wide channels, the apparent pKa’s and widths can be
estimated by a simplified analytical model derived from the more general
molecular theory. Both the general and the simplified theory predicts that, due to
charge-regulation effects, the first acid−base transition (0/−1 transition) is wider than the second one (−1/−2), and both
transitions are wider than the ideal one expected for an isolated acid−base group in the bulk. It is also shown that the inflection
points of the conductance versus pH curves provide a very good estimation of the apparent pKa’s of the polyelectrolyte for
cylindrical channels, but the quality of the estimation decreases for noncylindrical geometries.

■ INTRODUCTION

In the last 15 years, the study of solid-state nanochannels has
led to the discovery of novel physical and chemical phenomena,
such as current rectification and surface-governed unipolar ion
transport.1−7 The typical diameters of nanochannels range from
∼10 to ∼100 nm; therefore, they exhibit a high surface-to-
volume ratio, which allows manipulation of ion fluxes through
the properties of the inner wall. Inspired by biological
nanochannels,1,3,5,8−11 researchers have explored theoretically
and experimentally the role of the shape12,13 and the surface
charge14−16 of the nanochannels on their ionic conductance.
These studies had led to potential applications in diverse fields,
including energy conversion,1,17,18 ionic logic circuits,19−21 and
biological sensors.4,5,22−27 Each of these applications has
different requirements in terms of current−potential behavior
and response to stimuli, and thus applications require a deep
understanding of the effects of the geometry of the channel and
the chemical properties of the channel’s inner wall on the ionic
conductance. The present study reports a new theoretical
methodology to calculate the low-bias conductance of nano-

channels of arbitrary shape as well as new theoretical insights to
understand the coupled effects of channel geometry and surface
chemistry on conductance. We specifically analyze a model
system of a nanochannel modified by end-grafted poly-2-
(methacryloyloxy)ethyl phosphate (PMEP) polyelectrolytes.
We chose this system because PMEP is a diprotic polyacid,
which allows us to characterize how the two different acid−base
equilibria of PMEP and the coupling between them are
modulated by nanoconfinement effects imposed by nano-
channels of varying dimensions and geometry. Moreover,
nanochannels28 and nanopores29 modified by PMEP have been
studied experimentally and are interesting candidates for the
construction of synthetic hybrid assemblies displaying proper-
ties observed in biological ion channels.
Grafting weak polyelectrolytes to the inner wall of a

nanochannel creates a responsive system where the number
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of chargeable monomers increases with the degree of
polymerization and the state of charge can be controlled by
the pH and ionic strength of the solution. Nanoconfinement by
the nanochannel enhances the coupling between physical
interactions, chemical equilibria, and molecular organization, as
shown in previous experimental and theoretical work.28−31 In
this context, confinement emerges as a potential strategy to
modulate the kinetics and thermodynamics of chemical
reactions in nanoscale systems. However, it is very challenging
to measure and control chemical reactions in confined
environments; for example, the state of protonation of a
weak polyelectrolyte within a single nanochannel cannot be
directly accessed from experiments, and thus it has to be
inferred from conductance experiments.
We combine here an established molecular theory to treat

chemical equilibrium in confined environments with a new
approach to determine the low-bias conductance of polyelec-
trolyte-modified long nanochannels of arbitrary shapes. We
show that the apparent chemical equilibrium constants (pKa) of
the diprotic polyacid inside the channel are shifted with respect
to the pKa’s of the monomers in homogeneous solution and
depend on the shape of the channel. Furthermore, the pH
ranges where the acid−base transitions occur are wider than
those in bulk solution, and the first acid−base transition is
always wider than the second. We show that the conductance
versus pH curve allows quantitative determination of the
apparent pKa of the polyacid inside the nanochannel for a
cylindrical geometry and an approximate determination for
other geometries, which validates the use of the pH-
dependence of the channel conductance to infer the
protonation states of nanoconfined species.

■ THEORETICAL METHOD
The system under study, schematized in Figures 1 and 2,
consists of a single nanochannel modified by PMEP chains end-

grafted to the inner surface. We will consider in this work
cylindrical, conical, or trumped-shaped nanochannels, although
our methodology can be applied to an arbitrary geometry. The
channel connects two macroscopic reservoirs containing
identical aqueous solutions of KCl at a fixed concentration
and pH. We will explore the connection between the shape,
structure, and composition of these channels and its macro-

scopic conductance with a new modeling approach based on a
previously reported molecular theory.28,31,33,34 We start by
formulating the molecular theory for a cylindrical channel at
equilibrium. The molecular theory explicitly considers the
shape, size, charge, and conformations of all of the molecular
species of the system and the acid−base equilibria of the
segments of the tethered weak polyelectrolyte. The theoretical
approach consists of writing the free energy of the system as a
functional of the densities of the mobile species (water
molecules, Cl−, K+, H+, and OH−), the probability distribution
function of the polyelectrolyte conformations, and the position-
dependent fractions of the chemical states of the monomers.
These functions are then obtained by finding the extremum of
the free energy functional. We propose a free energy that has
the following contributions: conformational entropy of the
polyelectrolyte Spol, mixing entropy Smix of the free ions (K+,
Cl−, OH−, and H+) and water molecules (w), the chemical free
energy Fμ associated with the acid−base equilibrium of PMEP
segments, and the electrostatic energy Felec:

= − − + +μF TS TS F Fpol mix elec (1)

In this work, we will consider good solvent conditions, and
therefore we do not include the contribution due to attractive
van der Waals (vdW) interactions.35

The system is in contact with a bath (solution) of all mobile
species, and therefore we use a semigrand canonical ensemble,
where the number of ions and solvent molecules inside the
nanochannel is determined by the condition of constant
chemical potential everywhere in the system. The semigrand
potential is the Legendre transform of the Helmholtz free
energy. For a cylindrical nanochannel, the semigrand potential
per unit area is given by

∑β β
π

βμ= −W
F
RL

N
2 i

i i
(2)

where μi and Ni are the chemical potential and total number of
molecules of species i per unit area, respectively, R is the
channel radius, L is the channel length, β = 1/kBT, kB is the
Boltzmann constant, T is the temperature, and the sum runs
over all of the free species. We add to the semigrand canonical
free energy two constraints to account for the global

Figure 1. Scheme of a section of cylindrical nanochannel modified by
an end-grafted layer of the weak polyacid (poly(2-(methacryloyloxy)-
ethyl-phosphate)), PMEP. The solution inside the nanochannel
contains water molecules, salt anions (small red circles), salt cations
(small blue circles), hydroxyl ions, and protons. Each monomer in
PMEP can exist in one of three possible chemical states: PMEPH2
(AH2), PMEPH− (AH−), and PMEP2− (A2−).

Figure 2. Panels (a), (b), and (c) show schemes of the geometries
explored (not in scale). Locally each geometry can be approximated as
cylinder due to the large aspect ratio of the channel. Panel (d) shows a
transversal view of the channels. We assume cylindrical symmetry,
meaning that inhomogeneities are considered in the radial (r) and
principal axis directions (z) only.
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electroneutrality and the local incompressibility (packing
constraint). The detailed expression of the thermodynamic
potential per unit area is
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The first term in eq 3 corresponds to the conformational
entropy of the tethered polymers; σ is the grafting density of
PMEP defined as the number of chains per area, and P(α) is
the probability of having a chain in conformation α. The second
term corresponds to the mixing (translational) entropy of the
solvent and free ions and the standard chemical potential (μi

o)
contribution for these species. In this term, ρi(r) is the number
density at r, r is the radial coordinate, and vi is the molecular
volume of species i = K+, Cl−, H+, OH−, w.
The third term is the free energy associated with the acid−

base chemical equilibria:

+ +− + − − +X Yoo H IooAH AH H , AH A H
K K

2
2a1 a2

(4)

and represents the mixing entropy between segments in
different chemical states. The polymer volume fraction
⟨ϕp(r)⟩ is the product of the polymer monomer number
density, ⟨ρp(r)⟩, and the volume of a monomer, vp. The
monomers in the polymer can have zero, one, or two negative
charges, which correspond to e = 0, −1, −2. The fraction of
monomers in state e is fe(r), and μe

o is the standard chemical
potential of the monomer when its charge is e. The fractions of
monomers are normalized so that ∑e = 0

2 fe(r) = 1.
For free monomers in bulk solution, the concentration of

monomers in each chemical state is determined by two
equilibrium constants:

= =
− + − +

−K K
[AH ][H ]

[AH ]
,

[A ][H ]
[AH ]a1

2
a2

2

(5)

where [j] denotes the molar concentration of species j (we
approximated activities by molar concentrations in these
expressions). The standard free energy of the reactions ΔG1

0

= μ−1
0 + μH+

0 − μ0
0 and ΔG2

0 = μ−2
0 + μH+

0 − μ−1
0 , and the

equilibrium constants are related by Kai = C exp(−βΔGi
0) (with

i = 1, 2), where C = ρw
bulk/NA is a constant necessary for

consistency of units.

The fourth term in eq 3 represents the electrostatic energy,
where ψ(r) is the local electrostatic potential at position r,
⟨ρq(r)⟩ is the local mean density of charge at r, and ε is the
dielectric constant of the solution inside the nanochannel. The
density of charge is given by

∑
ρ ρ

ρ

⟨ ⟩ = −⟨ ⟩ +

+
− −

= + − + −

r r f r f r

r q

( ) ( ) ( ( ) 2 ( ))

( )

q p

i
i i

1 2

K ,Cl ,H ,OH (6)

where qi represents the charge of each free ion species.
The fifth term enforces constant chemical potentials across

the system for K+, Cl−, OH−, and w. The sixth term is the
global electroneutrality constraint, enforced by the Lagrange
multiplier λ. The seventh term is the local incompressibility
constraint, which models the intermolecular repulsive inter-
actions as a packing constraint. The repulsive interactions are
considered as excluded volume interactions that are accounted
for through the constraint that the available volume element at
r is exactly the sum of the volume filled by the each of the
different chemical species at r, that is:

∑ϕ ϕ ϕ+ ⟨ ⟩ + =
= + − + −

r r r( ) ( ) ( ) 1p
i

iw
K ,Cl ,H ,OH (7)

where ϕi(r) is the volume fraction of species i at r. This
constraint is enforced in the free energy expression, eq 3,
through the Lagrange multipliers π(r), which correspond to
local osmotic pressures.
The position-dependent density of each molecular species

ρi(r), the polymer probability distribution P(α), the different
degrees of dissociation fe(r), the electrostatic potential ψ(r), and
the local osmotic pressure π(r) inside the nanochannel are
obtained in equilibrium conditions through minimization of the
semigrand canonical potential, eq 3.
The minimization of the semigrand canonical functional with

respect to the densities of mobile ions and solvent yields:

ϕ βμ= − βπ − βψ

= − + − +

r r v r q

i

( ) exp[ ( ) ( ) ],

Cl , K , OH , H , w

i i i i

(8)

This expression shows the functional dependence of the
position-dependent volume fraction of species i inside the
nanochannel with the local osmotic pressure and the local
electrostatic potential.
For the degree of charge, we obtain

ϕ

ϕ ϕ
=
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where |e| is the elementary charge. These equations
demonstrate how the local degree of protonation depends on
the bulk pH, through the bulk concentration of protons, and
the local electrostatic potential. It is important to emphasize
that the local electrostatic potential depends on the distribution
of all charged species in the system, and, therefore, the degree
of protonation depends on the overall molecular organization
within the pore. In the bulk, ψ = 0, and thus eqs 9 and 10
reduce to the bulk relationships between degrees of
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protonation and acid−base equilibrium constants for diprotic
acids.36

Minimization of the free energy functional with respect to
P(α) yields the following expression for the probability
distribution of the polyelectrolyte:

∫α α β π= −

+

⎧⎨⎩
⎫⎬⎭

P
Q

r
r
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n r v r

f r

( )
1

exp d ( , )[ ( )

ln( ( ))]

R

p p
0

0 (11)

where np(r,α) is the number of segments that a chain in
conformation α has in the cylindrical shell between r and r + dr,
and Q assures normalization of P(α).
The extremum of the free energy functional with respect to

the electrostatic potential leads to the Poisson equation of the
form:

ψ
ρ

ε
∇ = −

⟨ ⟩
r

r
( )

( )q2
(12)

The equilibrium properties of the polyelectrolyte-modified
nanopore are obtained by numerically solving the system of
equations given by the Poisson equation, eq 12, the packing
constraint, eq 7, the position-dependent densities of mobile
species, eq 8, the position-dependent fractions of the chemical
states of the monomers, eqs 9 and 10, and the probability
distribution function of the polyelectrolyte chains, eq 11 (for
details, see the Supporting Information). From the numerical
solution of the theory, thermodynamic and equilibrium
structural properties for the cylindrical channel can be
calculated, including the distribution of ions within the pore
as well as the position-dependent state of ionization of the
monomers.

■ CONDUCTANCE OF NANOCHANNELS WITH
CYLINDRICAL AND NONCYLINDRICAL
GEOMETRIES

To describe different shapes of channels, we use the following
analytical expression for the change of the channel diameter, D,
along the channel main axis, z:

= − +⎜ ⎟
⎛
⎝

⎞
⎠D z D D

z
L

D( ) ( )
n

max min min (13)

Note that n = 0, 1, and 2 correspond to cylindrical, conical, and
trumpet-shaped channels (see Figure 2) with apertures of
diameter Dmin (tip) and Dmax (base). While eq 13 is a
convenient analytical expression to describe the shape of the
nanochannel, the theory described below is not limited to
shapes described by this expression; that is, our theory can be
used to model arbitrary shapes as long as the nanochannel has a
large aspect ratio.
The main idea behind our theoretical approach to model the

conductance of a long nanochannel with arbitrary shape is to
split it into approximately cylindrical slices and approximate its
total resistance as the series combination of the resistances of
these slices. In other words, we approximate the total resistance
of the nanochannel as the sum of the resistances of N = L/dz
segments of length dz and diameter D(z). This approximation
is valid because the length of the nanochannel (L ≈ 12 μm) is
much larger than its diameter (D ≈ 100 nm), and, therefore,
the channel can be locally approximated as a cylinder of
diameter D(z). In the case where D ≈ L, this approximation

breaks down and a fully two-dimensional calculation is
required; see, for example, ref 37. Let us define ω(z) dz as
the resistance of a cylindrical slice of diameter D(z) (note that
ω(z) has units of Ω m−1). In the low-bias limit (i.e., vanishing
applied bias), we can calculate the total resistance of the
nanochannel, Ωtot, as

∫ ωΩ = z z( ) d
L

tot

0 (14)

The differential of length dz can be transformed into a
differential of channel diameter dD by differentiation of both
sides of eq 13, which yields

=
−

−
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Replacing eqs 13 and 15 with eq 14 finally yields

∫ ωΩ =
− − −
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D D
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n D
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1 1/

min

max
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Equation 16 allows us to calculate the low-bias resistance
Ωtot,(n) and conductance, G(n) = 1/Ωtot,(n), of noncylindrical long
nanochannels modified by polyelectrolytes from the knowledge
of the resistance of a cylindrical channel of diameter D and
thickness dz. This resistance can be obtained from the
molecular theory described above using the Nernst−Planck
equation under the Goldman constant-field approximation:38

∫∑ω π= ̅
=

−

+ −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D

F
RT

q D c r r r( ) 2 ( ) d
i

i i

D

i

2

A,C,H ,OH

2

0

/2
1

(17)

where F is the Faraday constant, R is the gas molar constant, D
is the channel diameter, D̅i is the diffusion coefficient of ion i
(which we approximate to that in water), and ci(r) is the molar
concentration of ion i inside the cylindrical section predicted by
the molecular theory.
In summary, the model outlined above allows us to calculate

the low-bias conductance of polyelectrolyte-modified long
nanochannels of arbitrary shape. We tested the approximation
of modeling a noncylindrical channel as the combination of
cylindrical slices of different diameters for the case of a conical
nanochannel with constant surface charge (i.e., without the
presence of grafted polyelectrolytes). We chose this system
because it can be modeled using the Nernst−Planck−Poisson
equations and solved without further approximations using
finite elements (FE) calculations. Figure 3a shows that the
conductance predicted by our theoretical approach is in
excellent agreement with FE calculations that explicitly
modeled the complete channel.
Our theory can be also used to successfully fit the available

experimental conductance versus pH curves for PMEP-
modified conical nanochannels;39 see Figure 3b. The black
points in the figure correspond to the experimental low-bias
conductance, which was determined as the slope of the I−V
curve for V → 0 using the raw data plotted in Figure 3a of ref
39. To fit the experimental data, we fixed the nanochannel
dimensions to the values reported in ref 39. In the calculation,
we fixed the dimensions of the channel (Dmin = 16 nm, Dmax =
290 nm, and L = 12 μm), the bulk pKa constants of PMEP, and
the bulk salt concentration (Csalt = 0.1 M), and we allowed the
degree of polymerization N and the surface coverage σ to vary
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(we used N = 14 and σ = 0.01 chains nm−2; in practice, the
relevant parameter is N·σ,28 so other combinations of N and σ
are possible). We also allowed the geometry to slightly depart
from an ideal conical shape: we used n = 1.3, which is close to
the ideal conical shape (n = 1). The fact that our theoretical
methodology agrees very well with less approximate theoretical
calculations (Figure 3a) and that it can be successfully used to
fit experimental results (Figure 3b) supports its validity as a
tool to study the conductance of long cylindrical and
noncylindrical nanochannels.

■ RESULTS AND DISCUSSION
Acid−Base Equilibria and Conductance in Cylindrical

Nanochannels. Figure 4 shows predictions for a polyelec-
trolyte-modified cylindrical nanochannel with diameter D = 16
nm and bulk salt concentration Csalt = 0.1 M. Figure 4a shows
the pH dependence of the degree of dissociation ⟨fe⟩, for e = 0,
−1, and −2, where e denotes one of the three possible states of
charge of the MEP monomers in PMEP (see Figure 1). These
states correspond to the phosphoric acid (AH2 = R−PO4H2, e
= 0), the monovalent charged (AH− = R−PO4H

−, e = −1), and
the divalent charged phosphate (A2− = R−PO4

2−, e = −2)
species. The chemical equilibrium constants for the phosphate
groups in the bulk (see eqs 4 and 5) are pKa1

bulk = 4.5 and
pKa2

bulk = 7.7. These bulk values do not consider the effect of the
local environment on the acid−base equilibrium. The molecular
theory incorporates local environment effects into the bulk
equilibrium constants, which leads to apparent equilibrium

constants within the nanochannels that are different from the
bulk ones, as we discuss next.
The first chemical equilibrium involves the transition from

the uncharged state (at pH = 2.0) to the single charged state (at
pH ≈ 8.0), with an almost zero population of monomers in the
state of charge e = −2. For pH values greater than 8, the
fraction of uncharged monomers is almost zero (⟨f 0⟩ ≈ 0), and
the number of monomers in state −2 increases at the expense
of monomers in the state −1. For pH > 12, the PMEP behaves
as a strong polyelectrolyte with all of the groups in the charge
state −2. The average charge per monomer ⟨Qmon⟩ = −⟨f1⟩|e| −
2⟨f 2⟩|e|, shown in Figure 4b, increases in absolute value with
increasing pH and reaches −2|e| at pH ≈ 12. The conductance
of the system (G) in Figure 4c increases with increasing
solution pH. This effect is due to the increase of the total
concentration of cation counterions inside the channel that are
needed to compensate the increasing charge of the
polyelectrolyte. These counterions act as free charge carriers;
therefore, the conductance of the nanochannel increases
according eq 14. At pH = 12, the nanochannel is highly
permselective, and the concentration of counterions is
predicted to be 4 orders of magnitude larger than the
concentration of co-ions; see Figure 4d. Because of this
asymmetric concentration of free ions, the solution inside the
nanochannel is referred to as a “unipolar” solution.18

The values of apparent pKa’s of confined polyelectrolytes are
different from the bulk pKa’s values due to local environment
effects; see, for example, ref 28. We define the first and the
second apparent chemical equilibrium constants as the pH
values where ⟨f 0⟩ = ⟨f−1⟩ and ⟨f−1⟩ = ⟨f−2⟩, respectively. Note
that this is the usual definition of apparent pKa; that is, the
apparent pKa is defined as the pH value where the fractions of
the two chemical states involved in the chemical equilibrium are

Figure 3. (a) Comparison of the conductance of a conical
nanochannel (Dmin = 10 nm, Dmax = 290 nm, and L = 12 μm) as a
function of the surface charge. Circles show the conductance obtained
with our theoretical methodology, and triangles show the solution of
the Nernst−Planck−Poisson equations using finite element calcu-
lations, respectively. For details on the finite elements calculations, see
the Supporting Information of ref 40. (b) Experimental conductance
versus pH results for PMEP-modified nanochannels (■) and
theoretical fit. The experimental conductances were extracted from
the I versus V data at V → 0 for a PMEP-modified nanochannel (data
published in Figure 3a of ref 39; the error represents the errors
associated with finding the slope of the plot around V = 0).

Figure 4. Cylindrical nanochannel behavior when PMEP is end-
grafted to the inner surface. pKa1

bulk = 4.5, pKa2
bulk = 7.7. (a) Average

degree of dissociation. The fractions of monomers in uncharged state
⟨f 0⟩, the single charged state ⟨f−1⟩, and the double charged state ⟨f−2⟩
are shown in green, black, and red lines, respectively. The apparent
pKa’s (pKa

app) were determined from these curves as the pH’s where
⟨f 0⟩ = ⟨f−1⟩ (pKa1

app = 5.81) and ⟨f−1⟩ = ⟨f−2⟩ (pKa2
app = 9.67). (b)

Mean charge per monomer as a function of pH (green solid line) and
its first derivative with respect to pH (magenta dashed line). (c)
Channel conductance (green solid line) and its first derivative with
respect to pH (magenta dashed line). The apparent pKa’s estimated
from this plot as the maximum of the first derivative are pKa1

cond = 6.06
and pKa2

cond = 9.69. (d) Average concentration of anions and cations
inside the nanochannel as a function of solution pH. Calculation
parameters: D = 16 nm, Csalt = 0.1 M, N = 28 units per chain, NP/A(R)
= 0.2 chains/nm2.
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the same. We find pKa1
app = 5.81 and pKa2

app = 9.67 for the
system in Figure 4 (N = 28 monomers per chain, NP/A(R) =
0.2 chains/nm2, D = 16 nm, Csalt = 0.1 M). Note that the
determination of pKa1

app requires knowledge of the average
degrees of dissociation, which cannot be experimentally
measured in a single nanochannel, to calculate the apparent
equilibrium constants. On the other hand, the conductance of
the nanochannel is a experimentally measurable quantity that is
routinely used to estimate the state of charge of the
polyelectrolyte.28 To study the accuracy of estimating the
apparent pKa’s from conductance data, let us define the
chemical equilibrium constants pKa1

cond and pKa2
cond as the pH

values where the first derivative of the conductance reaches a
maximum, that is, the inflection points of the G versus pH
curves (the superindex “cond” denotes apparent equilibrium
constants estimated from the conductance). The vertical dotted
lines in Figure 4c show the apparent pKa’s determined from the
predicted conductance curves. In the case of the cylindrical
nanochannel shown in Figure 4, the apparent equilibrium
constants for both acid−base equilibria estimated from the
conductance are good estimations of those directly determined
from the degrees of dissociation. The value of pKa1

cond = 6.06
(determined from the conductance) is slightly larger than
pKa1

app = 5.81 (determined from the dissociation fractions) due
to the small, but not negligible, contribution of the counterions
due to the species R−PO4

2− to the total conductance near pH =
pKa1

app. In the last section of the paper, we will address
noncylindrical channels and explore the effect of geometry on
the agreement between these two apparent chemical
equilibrium constants.
Polymer Distribution. Figure 5 shows the polymer

distribution inside the nanochannel for different pH’s and

states of charge of the polymer: pH = 2.0 (uncharged polymer,
black curves), pH = 6.0 (partially charged, red curves), and pH
= 11.0 (fully charged, green curves), and different channel
diameters D = 290 nm (panel a), D = 20 nm (panel b), and D =
10 nm (panel c).
The fully extended polymer chain has a length of h ≈ 10 nm,

which should be compared to the nanochannel radius. When

the radius of the channel is greater than or equal to 10 nm
(Figure 5a for D = 290 nm and Figure 5b for D = 20 nm),
increasing the pH swells the polyelectrolyte layer to its
maximum thickness of 10 nm because the polyelectrolyte
chains adopt extended conformations upon charging. The
coupling between polymer conformation and the state of
charge of the monomer is less important for the second
chemical equilibrium than for the first one (compare red and
green lines in Figure 5a) because before the second
deprotonation step, the monomers already have a −1|e| charge,
and thus the polyelectrolyte chains are already stretched. This
result shows that polymer stretching is almost completely
saturated after the first deprotonation step. For fully stretched
chains on a planar surface (or a very wide channel), the average
polymer volume fraction ⟨ϕp⟩ can be estimated by assuming a
density profile with a step-function shape, which yields a
volume fraction of ⟨ϕp⟩ ≈ NpNvp/A(R)h = 0.053. This result is
in agreement with the results in Figure 4a for a very wide
channel, D = 290 nm. However, for a narrow channel with D =
20 nm (i.e., h ≈ D/2), we observe ⟨ϕp⟩ ≈ 0.11 (see green curve
in Figure 4b). In this case, the volume fraction of the polymer is
larger than that expected on a planar surface due to the fact that
for highly curved surfaces the available volume decreases as the
distance from the surface increases. Thus, for fixed surface
coverage of the polymer, the average polymer density of the
layer increases with decreasing D.
Figure 5c shows the volume fraction of polymer inside the

nanochannel with diameter D = 10 nm and different bulk pH
values. In this case, the radius of the channel is smaller than the
length of the fully extended polymer; thus ⟨ϕp⟩ is
homogeneous within the channel and rather insensitive to the
state of charge of the polymer. In this case, ⟨ϕp⟩ is ∼0.2, which
is much larger than the value predicted for planar surfaces due
to the surface curvature effect explained in the previous
paragraph and the overlap of the polymer layers at the center of
the channel expected from the fact that h < D/2.

Nanoconfinement Effects on the Chemical Equili-
brium. In this section, we focus on the effect of nanoconfine-
ment on the chemical equilibrium constants. For the cylindrical
channel of D = 16 nm and salt concentration 0.1 M (see Figure
4), the theory predicts pKa1

app = 5.81 and pKa2
app = 9.67, which

are larger than the corresponding bulk equilibrium constants
(i.e., the pKa for a MEP monomer in the bulk) of pKa1

bulk = 4.5
and pKa2

bulk = 7.7. The shift of the pKa equilibrium constants
under nanoconfinement emerges from the competition
between interactions and molecular organization to minimize
the system free energy. As the bulk pH rises, the polyelectrolyte
charges increases, and the electrostatic repulsions among
charged monomers increase. The electrostatic repulsions can
be reduced by uptake of counterions inside the nanochannel (at
the cost of a reduction of the entropy of these counterions), by
stretching of polymer chains (at the cost of a reduction of the
conformational entropy of these chains), or by shifting the
chemical equilibrium toward the uncharged species (at the cost
of a higher chemical equilibrium free energy). The third
mechanism (shift of chemical equilibrium) implies that, for a
polyacid, the apparent pKa of the polyacid is larger than that in
the bulk solution (bulk pKa).

41 As shown in previous
works,30,31 all mechanisms are operational, although polymer
stretching is more important during the first protonation than
during the second one; compare the polymer distributions at
pH = 2.0 and pH = 6.0 in Figure 4a.

Figure 5. Polymer volume fraction ⟨ϕp(d)⟩ as a function of distance
from the wall of the nanochannel, d. The curves correspond to pH =
2.0 (black), pH = 6.0 (red), and pH = 11.0 (green). The diameters of
the channel are (a) D = 290 nm, (b) 20 nm, and (c) 10 nm. Other
parameters: N = 28 units per chain, NP/A(R) = 0.2 chains/nm2, Csalt =
0.1 M.
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Confined chemical equilibria also show wider transitions
than in the bulk; therefore, for a complete description of
chemical equilibrium in confined environments, not only the
apparent pKa but also the width of the transition should be
considered. In Figure 6, we report the effect of the diameter of

the cylindrical nanochannel on the values of pKa1
app, pKa2

app, and
the widths of the respective transitions, Δ1 and Δ2. We define
the widths of the transitions as the difference between the pH
values where the degree of dissociation is 1/11 and 10/11:

Δ = ⟨ ⟩ = − ⟨ ⟩ =− −
⎜ ⎟ ⎜ ⎟
⎛
⎝
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This definition of Δ was chosen to ensure Δ = 2 for an ideal
acid−base equilibrium (see Figure 4S).
Figure 6 shows that pKa

app and Δ increase for decreasing
nanochannel diameter. The pKa

app differs from the pKa
bulk

because the acid−base equilibrium is displaced toward the
uncharged segments to minimize the local electrostatic
repulsions in the system (a process known as charge
regulation), as we explained above. The transition widths for
MEP monomers in the bulk are 2.03 pH units for the two
chemical equilibria, which are slightly larger than the ideal value
of 2 pH units due to the coupling between the two acid−base
equilibria in the bulk. This coupling is rather small for MEP
because its two pKa’s are separated by more than 2 pH units,
pKa2 − pKa1 = 3.2.36

To understand the effect of confinement on the chemical
transitions, we propose a simple analytical model, which is a

simplified formulation of the general molecular theory. This
model is useful to understand the shifts of the apparent pKa’s
and the transition widths Δ shown in Figure 6a and b. The
model, described in detail in the Supporting Information,
considers a homogeneous polymer layer on a flat surface
interacting with a homogeneous bulk solution, that is, a two-
phase system, and assumes f−2 = 0 during the first transition
and f 0 = 0 during the second transition. The analytical
expressions, eqs 17 and 18, for the first and second acid−base
equilibria, respectively, require the following input parameters:
f−1, f−2 (fraction of dissociation of MEP monomers in the film),
ϕp (polymer volume fraction in the film, we use the value ϕp =
0.053 for both transitions), and Csalt (salt concentration in the
bulk). The apparent pKa constants can thus be calculated as the
pH where f−1 = 0.5 (for pKa1

app) or f−2 = 0.5 (for pKa2
app).
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The predictions of the simple model (dotted lines in Figure
6a) are in good agreement with the calculations of the
molecular theory (symbols in Figure 6a) for large diameters (D
> 50 nm). This result is important because it shows that it is
possible to capture the chemical equilibrium shift with a simple
model in the range of large diameters (D > h). As expected,
reducing the salt concentration increases the free-energy cost of
uncharging a MEP monomer in the film and increases the shift
of the apparent pKa’s with respect to the bulk values (see Figure
S3).
For channel radii smaller than the length of a fully extended

polymer chain (10 nm in our case), the simple model fails to
reproduce the predictions of the molecular theory because this
model does not account for the effect of the curvature of the
surface. In conclusion, for narrow channels, where nano-
confinement shifts the chemical equilibria toward the un-
charged states, the molecular details of the polymer layer
become important and should be explicitly taken into account.
The expressions for the widths of the protonation transitions

in the simple model are (see Supporting Information):
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In eq 22, Δideal = 2 is the ideal transition width, and ϕp
A and

ϕp
B are the volume fraction of the homogeneous polymer layer

when ⟨f−1⟩ = 1/11 and ⟨f−1⟩ = 10/11, respectively. Note that
Δ2 is independent of ϕp because we assume that the density
profile of the polyelectrolyte is unaffected by the second
deprotonation step (see Figure 4a). In the case of Δ1, we use

Figure 6. (a) pKa
app as a function of cylindrical nanochannel diameter,

D. The pKa1
app is defined as the pH value where ⟨f 0⟩ = ⟨f−1⟩, and the

pKa2
app is defined as the pH value where ⟨f−1⟩ = ⟨f−2⟩. (b) Width of the

transition (Δ) as a function of D. The width Δ is defined as the
difference between the pH values where the degree of dissociation
reaches the values of 1/11 and 10/11 (Δ1 for ⟨f−1⟩ and Δ2 for ⟨f−2⟩);
see text. Horizontal dashed lines show the bulk values for the pKa’s and
Δ. Horizontal dotted lines show the predictions of the simple
analytical model, eqs 20−23. Parameters: NP/A(R) = 0.2 chains/nm2,
degree of polymerization N = 28, pKa1

bulk = 4.5, pKa2
bulk = 7.7, and Csalt =

0.1 M.
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ϕp
A = 0.053 (see above) and estimate ϕp

A = 0.1 from the results
in Figure 5 (the criteria used in this choice are discussed in
Figure S2). Equations 22 and 23 show that the widths of the
transitions have an ideal contribution Δideal = 2 plus a nonideal
part.
Figure 6b shows the width of the 0/−1 transition (●) and

the −1/−2 transition (red■) for a salt concentration of 0.1 M.
The green horizontal dashed line indicates the ideal bulk width
of 2.03 pH units, while the red and black dotted lines show the
widths predicted by our simple model for the first and second
transitions, respectively. For large channel diameters and Csalt =
0.1 M, eqs 22 and 23 correctly capture the nonideal
contribution to the transition widths. We observe transition
widths of 2.67 (first transition) and 2.24 (second transition),
which are equal to the widths of the transition of
polyelectrolyte brushes on a flat substrate determined with
the simple model (dotted line). The simple model also deviates
from the predictions of the molecular theory for narrow pores,
as was explained above for the apparent equilibrium constants.
As we discussed above, the free-energy cost of protonation of

a MEP monomer is larger inside the nanochannel than in the
bulk due to the electrostatic repulsions between the negative
charges on these monomers. This free-energy cost of
protonation depends on the molecular organization of the
film, such as the conformation of the polyelectrolyte and the
content of counterions. The molecular organization changes
continuously as the pH is varied (see Figures 4 and 5), which
results in a continuous change of the protonation free-energy
cost, and, therefore, the acid−base transition width becomes
larger than the ideal one. In other words, the nonideal
contribution to the transition width in eqs 22 and 23 arises
from the variation of the electrostatic interactions within the
polyelectrolyte film during the protonation process9,42−44 (it is
possible to think about this effect as an acid−base titration
where the effective pKa shifts with pH). It is also very
interesting to note that the width of the second transition is
always smaller than the width of the first transition. This result
is explained by the fact that the reorganization of the system
during the 0/−1 transition is more dramatic than that during
the −1/−2 transition (see the counterion concentration in
Figure 4 and volume fraction profiles for the polyelectrolyte in
Figure 5).
Acid−Base Equilibria and Conductance in Noncylin-

drical Nanochannels. We introduce in this section results for
conical and trumped-shaped nanochannels. We computed the
molecular properties of conical and trumpet-shaped nano-
channel using nanochannel dimensions based on experimental
values:45 Dmin = 10 nm (tip diameter), Dmax = 290 nm (base
diameter), and L = 12 μm (channel length).
Figure 7b1 and b2 shows the charge per monomer averaged

over the whole nanochannel, ⟨Qmon⟩, as a function of pH (the
calculation of average values for noncylindrical nanochannels
within our theoretical framework is explained in the Supporting
Information). The nanochannel conductance (Figure 7c1 and
c2) results from the inverse of the total nanochannel resistance
given by eq 16. Comparison of the conductance of nano-
channels with different shapes but equal base and tip diameters
in Figure 7 shows that the trumpet-shaped nanochannel has a
lower conductance than the conical nanochannel. This effect
arises because for the same tip and base diameters, the trumpet-
shaped nanochannel has a smaller diameter, and thus a larger
resistance, than the conical nanochannel at all intermediate z
positions.

The values of pKa
cond estimated from the conductance curves

and the pKa
app directly obtained from the ⟨fe⟩ curves are

different for the conical and trumpet nanochannels. Table 1
compiles the values of pKa

app, pKa
cond, and ΔpKai

app = pKai
cond −

pKai
app, for i = 1, 2 and the different nanochannel shapes.

The results in Table 1 show that the geometry of the pore
changes slightly the agreement between the apparent pKa
obtained from the macroscopic calculated conductance
(pKai

cond) and that directly obtained from the protonation
state of the system, pKai

app. This agreement is important for the
experimental characterization of nanochannels of different
shapes. The slight disagreement between pKa

app and pKa
cond

in noncylindrical channels is due to the fact that the
conductance is more affected by the state of protonation of
the polyelectrolytes in the tip of the nanochannel than by those
close to the nanochannel base. Therefore, the conductance
does not exactly reflect the global state of charge for
noncylindrical channels. Table 1 also shows that the apparent
pKa’s for the trumpet-shape channel are larger (i.e., more
shifted with respect to the bulk pKa’s) than those for the cone.
This result is explained by the fact that the trumpet is narrower
than the cone for all z, and, as we showed in Figure 6a, the
apparent pKa’s increase for decreasing channel radii.

Figure 7. (a1, a2) Average fractions of dissociation, ⟨fe⟩, as a function
of pH for the three different monomer states, that is, e = 0 (neutral
monomer, green curve), e = −1 (black curve), and e = −2 (red curve).
(b1, b2) Average charge per monomer as a function of pH; the dashed
line shows the first derivative with respect to pH. (c) Conductance of
the nanochannel, G, as a function of pH; the dashed line shows the
first derivative of the curve with respect to pH. Dotted lines show the
pKa

app estimated from ⟨f 0⟩ = ⟨f−1⟩ and ⟨f−1⟩ = ⟨f−2⟩ in (a1, a2) and the
first derivative of G in (c1, c2). Dmin = 10 nm, Dmax = 290 nm, L = 12
μm, Csalt = 0.1 M.

Table 1. Values of Apparent pKa’s Determined from the
Speciation Curves (pKai

app), Inflection Point of the
Conductance versus pH Curves (pKai

cond), and Difference
between These Values ΔpKai

app, for the First (i = 1) and
Second (i = 2) Transitions and Different Channel Shapes

cylinder cone trumpet

pKa1
app 5.81 5.40 5.41

pKa1
cond 6.06 5.76 5.97

ΔpKa1
app 0.25 0.36 0.56

pKa2
app 9.67 9.08 9.10

pKa2
cond 9.69 9.34 9.59

ΔpKa2
app 0.02 0.26 0.49
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■ CONCLUSIONS

In this work, we introduced a new theoretical approach to
calculate the low-bias conductance of polyelectrolyte-modified
nanochannels of arbitrary shape. Our methodology is based on
approximating the total resistance of noncylindrical nano-
channels as the series combination of the resistances of
cylindrical slices of different diameters, which can be calculated
using a molecular theory. This approximation, which is
expected to be valid for long aspect ratios (length larger than
radius), was validated against a full solution of the Nernst−
Planck−Poisson equations using finite elements for nano-
channels with constant surface charge. The theoretical
approach introduced in this work complements previous
approaches to study polyelectrolyte-modified channels and
pores, which were restricted either to long cylindrical
nanochannels28 or to short nanopores.46 We have also
introduced a simplification of the general molecular theory
approach to study the shifts in the apparent pKa of the
polyelectrolyte due to nanoconfinement. This model neglects
the curvature of the surface and thus describes the shift of pKa
and width of transitions when diameters are much larger than
the thickness of the polymer layer.
We applied our theory to study the acid−base properties of

diprotic polyacids, which is interesting due to the presence of
two acid−base transitions. We showed that as the pH rises and
the polyelectrolyte increases its charge, three main mechanisms
emerge to reduce the electrostatic repulsions: (i) shifting the
chemical equilibrium, (ii) stretching polymer conformations,
and (iii) changing the concentration of free ions inside the
nanochannel. All of these mechanisms are combined to
minimize the total free energy of the system. Decreasing the
channel diameter shifts the chemical equilibrium to the
uncharged state (i.e., it favors the first regulation mechanism)
and broadens the two acid−base transitions of PMEP. We also
show that the first deprotonation process has a broader
transition width than the second for all diameters.
We addressed the question whether the inflection point of

the conductance versus pH curve can be used to estimate the
apparent pKa of the weak polyelectrolyte. We found that for a
cylindrical nanochannel, the apparent equilibrium constant
obtained from the calculated conductance versus pH data is in
good agreement with the pKa

app obtained directly from the state
of protonation of the monomers. For other nanochannel
geometries, the agreement between the two methods of
calculating the apparent pKa slightly worsens and can be as
large as one-half pH unit, due to the fact that the state of charge
in the narrow regions of the channel has a bigger effect on the
conductance than that in the wide parts. These results are
important as they establish the accuracy of using conductance
versus pH data to estimate the protonation state of weak acid−
base species within single chemically modified nanochannels.
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