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Abstract A stochastic model of sawn timber structural elements of Argentinean

Eucalyptus grandis is applied to the study of two eigenproblems. One is the free

vibrations problem which, after being solved, yields the natural frequencies and

modes. The other problem is the buckling of columns. Its solution leads to the

buckling loads and modes. The governing differential equations are stated starting

from the Euler–Bernoulli beam theory. Then, they are discretized and numerically

approximated through the finite element method. The stochasticity is given by the

mechanical properties involved in each problem. The lengthwise variabilities of the

modulus of elasticity and of the second moment of the cross-sectional area are

simulated to account for the presence of knots. The variability of the mass density

among structural elements is also considered. The statistics of the solutions are

obtained. The probability density functions of the natural frequencies and the

buckling loads are numerically obtained through a stochastic finite element concept

using Monte Carlo simulation. Numerical results for the first natural frequency are

validated with experimental values. The mode shape statistics are also analyzed.

Frequently the presence of knots in sawn timber structures is disregarded, usually

due to the lack of data and the availability of an adequate representation. The model

herein presented contributes to attain a more realistic description of structures made
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Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22453-900, Brazil

123

Wood Sci Technol (2016) 50:807–832

DOI 10.1007/s00226-016-0810-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00226-016-0810-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00226-016-0810-8&amp;domain=pdf


out of sawn timber due to the unavoidable variability of the properties, in particular

the presence of knots.

Introduction

The design of structures should satisfy two main requirements. The first one is

safety, usually expressed in terms of a certain load bearing capacity. The second

requirement is the serviceability, which refers to the ability of the structural system

to perform satisfactorily in normal use. One of the serviceability requirements is

related to the dynamic behavior of the structural systems and elements. Moreover,

the load bearing capacity can be reduced when the compressive load approaches the

buckling limit. Structural standards define limit values of the natural frequencies in

order to control the dynamic behavior of timber floors, bridges and frames and also

limit values of the compressive loads in order to avoid buckling. In this work, these

two structural problems, represented mathematically as eigenproblems, are

addressed through the study of the dynamic behavior of beams and the buckling

problem in columns of Argentinean Eucalyptus grandis sawn structural elements

with uncertain properties.

Argentinean Eucalyptus grandis is one of the most important renewable species

cultivated in Argentina (INTA 1995). A simple method for visually strength grading

sawn timber of these species has been developed by Piter et al. (2004). As reported

in this paper, the presence of pith and knots is considered the most important visual

characteristic for strength grading this material by the Argentinean standard IRAM

9662-2 (2006).

Due to its natural origin, structural timber is characterized by considerable

lengthwise variability of its mechanical properties. However, these properties are

usually treated as random variables and their spatial variability is not explicitly

taken into account in the design practice. Growth defects such as knots, often related

to localized grain deviations, are the main source of the lengthwise variability of

bending strength and stiffness in sawn beams. It is apparent that a stochastic

approach becomes necessary in order to attain a more realistic structural model.

The stochastic approaches employed for the modeling of the mechanical

properties of timber are derived from the probabilistic theories of random variables

and processes. They allow simulating the timber mechanical properties with the

objective to perform the structural analysis. The lengthwise variation of the modulus

of elasticity (MOE) was modeled by Kline et al. (1986) with a second-order Markov

model. This method was applied in order to generate serially correlated MOE values

along segments for a piece of lumber. The influence of the knots in the structural

behavior of timber beams was considered by Czmoch (1998). He studied the

bending strength in sections with knots and determined the load carrying capacity of

timber beams modeling the presence of knots through a Poisson process. He also

assumed the MOE variation as a stationary Gaussian random field simulated

through the Nataf transformation. Köhler et al. (2007) presented a probabilistic

model of timber structures where the MOE is represented as a random variable with

a lognormal PDF, assuming a homogeneous value within a structural element.
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Köhler (2007) reported a model of the lengthwise variability of the bending

strength, following the weak-zone approach proposed by Isaksson (1999) for the

bending moment capacity, in which the discrete section transition was assumed to

be Poisson distributed. In the weak-zone model, the structural timber is modeled as

a composite of weak zones connected by sections of clear wood.

Several works have studied the influence of the timber knots in the performance

of structural elements through the finite element method (FEM). Baño et al. (2011)

presented a study in which they simulated timber beams with defects and predict

their maximum load in bending. The model was implemented in a FE software.

Baño et al. (2012) reported in a study regarding the development of a bi-

dimensional model of timber pieces free of defects in order to predict the

performance of timber structural elements. The influence of the size and position of

cylindrical knots on the load capacity of timber elements using a FE program was

analyzed by Baño et al. (2013). Guindos and Guaita (2013) studied a three-

dimensional wood material model implemented in a finite element software capable

of predicting the behavior of timber at the macroscale taking into account the effect

of any type of knot. Then, Guindos and Guaita (2014) assessed the influence of

different types of knots and the fiber deviations on the bending of wood elements,

using visual grading standards. A finite element simulation tool which is able to

consider a realistic three-dimensional fiber course in the vicinity of knots was

presented by Lukacevic and Füssl (2014). The knots are modeled as rotationally

symmetric cones with their apexes lying on a piecewise linear pith.

The well-known FEM and the stochastic tools are combined in the stochastic

finite element method (SFEM). Der Kiureghian and Ke (1988) used the SFEM and

applied it to structural reliability studies. Among other results, the authors studied

the relationship between the finite element and the correlation lengths of the random

field in order to obtain a good representation of the material properties variability

with random field discretized with the midpoint method. The random system

parameters were modeled as second-order stochastic processes defined by their

mean and covariance functions by Ghanem and Spanos (1991) in their book about

SFEM. The Karhunen–Loève expansion was used to represent these processes in

terms of a countable set of uncorrelated random variables.

Various authors have presented transformation techniques in order to simulate

random variables applied to reliability studies. Der Kiureghian and Liu (1986)

introduced the Nataf transformation and applied it to structural reliability under

incomplete probability information of the random variables. If only marginal PDFs

and correlation data are available, even for non-normal random variables, the Nataf

transformation can be applied to give a set of independent normal random variables.

Ditlevsen and Madsen (1996) and Melchers (1999) dealt, respectively, with this

transformation in their books in reliability methods together with others approaches

such as the Rosenblatt transformation.

Tools such as the principle of maximum entropy (PME) proposed by Shannon

(1948) and the well-known Monte Carlo simulation (MCS) approach (Rubinstein

and Kroese 2007) are commonly employed in numerical stochastic studies. The

PME allows establishing the PDF of a random variable that best represents the state

of knowledge about it.
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In the present work, a stochastic model of timber sawn structural elements of

Argentinean Eucalyptus grandis is presented. This model is employed for the study

of the eigenproblems. From these, the first three natural frequencies and buckling

loads, and the corresponding mode shapes are obtained. The differential equations

are formulated starting from the Euler–Bernoulli (E–B) beam theory, and then, they

are discretized and numerically approximated through the FEM. The lengthwise

variability of the MOE and the second moment of area account for the knots

presence. For the first parameter, the local reduction of the MOE due to the grain

deviation produced by the knot presence is considered. The lengthwise variability of

the MOE presented in this work was developed starting from the weak-zone model

with modifications in the length of this zone. For the second moment of area, the

timber knot parameters are modeled via the joint probability mass function (JPMF)

obtained with experimental data from visual survey of beams. This method is

different to those frequently used in order to study the knots influence. Frequently

they are introduced in a deterministic context with fixed location and size. In this

study, timber knots are modeled as holes in the cross section, hence considered in

the second moment of area of the element cross section. The mass density is

considered constant along the beam span and the lengthwise variability due to the

knot presence is not taken into account. In the timber structural elements of this

species, the knots are frequently composed of material with similar density to the

clean wood. In order to simulate the mass in the inertial term, the PDF of this

parameter was obtained. Through MCS, the PDFs of the first three natural

frequencies and buckling loads are obtained. For the validation of the numerical

results, a comparison is made with experimental values of the first natural vibration

frequency. Then, the influence in the structural response of each of the stochastic

parameters is studied and analyzed. From this analysis, the vibration and buckling

modes are studied as stochastic processes.

The stochastic model presented in this work provides good predictions of the

structural behavior of sawn elements of Argentinean Eucalyptus grandis. The

stochastic analysis allows to obtain a higher range of results than a deterministic study,

and the influence of the mechanical properties in the results is better understood.

Materials and methods

This study presents eigenproblems of pinned-pinned sawn structural elements of

Argentinean Eucalyptus grandis with knots according to the E–B beam theory. For

the free vibration problem of a simply supported beam, the well-known differential

equation is the following:

qðxÞaðxÞ o
2vðx; tÞ
ot2

þ o2

ox2
eðxÞiðxÞ o

2vðx; tÞ
ox2

� �
¼ 0 ð1Þ

where qðxÞ is the material density per unit length; a(x) is the area of the beam cross

section; e(x) is the MOE; i(x) is the second moment of the beam cross section with

respect to the z axis; v(x, t) is the transverse displacement; x is the position along the
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beam length; and t is the time. For the static buckling problem, the time variable

disappears and the deflection field v(x) and the buckling load pcr are related by the

following equation:

d2

dx2
eðxÞiðxÞ d2vðxÞ

dx2

� �
� pcr

d2

dx2
vðxÞð Þ ¼ 0: ð2Þ

In the present work, the lengthwise variabilities of the MOE and of the second

moment of area of the beam cross section are introduced due to the presence of

timber knots that produces a local reduction of both. Random variables are used for

this purpose, and in what follows, these stochastic quantities are denoted by capital

letters. The differential equations, Eqs. (1) and (2), respectively, become:

Pa
o2Vðx; tÞ

ot2
þ o2

ox2
EðxÞIðxÞ o

2Vðx; tÞ
ox2

� �
¼ 0 ð3Þ

d2

dx2
EðxÞIðxÞ d2VðxÞ

dx2

� �
� Pcr

d2

dx2
VðxÞð Þ ¼ 0: ð4Þ

In this study, timber knots are modeled as holes along the beam that modify the

second moment of area of the beam cross section and consequently the bending

stiffness. However, no holes are considered in the mass since the knots mass

participates in the inertial terms disregarding an eventual density change. The

variation of the mass density P among the beams of the sample is considered.

Finite elements discretization

Let us state the variational formulation prescribing a set of admissible functions w:

Z L

0

�
qðxÞaðxÞ o

2vðx; tÞ
ot2

þ o2

ox2
eðxÞiðxÞ o

2vðx; tÞ
ox2

� ��
/ðxÞdx ¼ 0 8/ 2 w ð5Þ

Z L

0

�
d2

dx2
eðxÞiðxÞ d2vðxÞ

dx2

� �
� pcr

d2

dx2
vðxÞð Þ

�
/ðxÞdx ¼ 0: 8/ 2 w ð6Þ

For the pinned-pinned problem,

w ¼ f/ : ½0; L� ! R;/ is piecewise C2 and bounded;/ð0Þ ¼ 0;/ðLÞ ¼ 0g: ð7Þ

This formulation, together with the boundary conditions, conduces to the following

form of the two variational problems:

Mðv;/Þ þ Kðv;/Þ ¼0 8/ 2 w ð8Þ

Kðv;/Þ ¼ pcrK
Gðv;/Þ 8/ 2 w ð9Þ

where, from Eq. (8), Mðv;/Þ and Kðv;/Þ are the mass and stiffness operators,

respectively, defined as follows:
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Mðv;/Þ ¼
Z L

0

qðxÞaðxÞ o
2vðx; tÞ
ot2

/ðxÞdx

Kðv;/Þ ¼
Z L

0

eðxÞiðxÞ o
2vðx; tÞ
ox2

o2/ðxÞ
ox2

dx

ð10Þ

and, from Eq. (9), Kðv;/Þ and KGðv;/Þ are the stiffness and geometrical stiffness

operators, respectively, defined as follows:

Kðv;/Þ ¼
Z L

0

eðxÞiðxÞ d2vðxÞ
dx2

d2/ðxÞ
dx2

dx

KGðv;/Þ ¼
Z L

0

dvðxÞ
dx

d/ðxÞ
dx

dx

ð11Þ

Equations (8) and (9) are numerically approximated using the Galerkin method.

A N-dimensional subspace wN � w is defined and approximating functions vN 2 wN

are searched for. The variational problems can be formulated as follows: Find vN 2
wN such that:

MðvN ;/Þ þ KðvN ;/Þ ¼ 0 8/ 2 wN ð12Þ

KðvN ;/Þ ¼ p̂crK
GðvN ;/Þ 8/ 2 wN ð13Þ

Applying the standard finite element methodology (e.g., Bathe 1982) the

variational forms, Eqs. (12) and (13) are discretized. Euler-Bernoulli beam elements

with two nodes and two degrees of freedom per node (transverse displacement and

rotation, respectively) are employed. Hermitian shape functions are considered for

spatial interpolation of the transverse deflection v(x), in terms of the nodal variables.

vðxÞ ¼ n1ðxÞv1 þ n2ðxÞh1 þ n3ðxÞv2 þ n4ðxÞh2 ð14Þ

where

n1ðxÞ ¼ 1 � 3x2

Le
2
þ 2x3

Le
3

n3ðxÞ ¼
3x2

Le
2
� 2x3

Le
3

n2ðxÞ ¼ x� 2x2

Le
þ x3

Le
2

n4ðxÞ ¼ � x2

Le
þ x3

Le
2

and Le is the element length.

The application of Hermitian shape functions and the Galerkin’s method to

Eq. (10) results in the stiffness matrix and the mass matrix of the beam element. The

elements of these matrices are, respectively:

Ke;ij ¼
Z Le

0

EðxÞIðxÞ d
2niðxÞ
dx2

d2njðxÞ
dx2

dx

Me;ij ¼Pa

Z Le

0

niðxÞnjðxÞdx
ð15Þ
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and Eq. (11) yields the stiffness matrix and the geometrical stiffness matrix of the

beam element. The elements of these matrices are, respectively:

Ke;ij ¼
Z Le

0

EðxÞIðxÞ d2niðxÞ
dx2

d2njðxÞ
dx2

dx

KG
e;ij ¼

Z Le

0

dniðxÞ
dx

dnjðxÞ
dx

dx

ð16Þ

where the random quantities E(x) and I(x) represent the lengthwise variability along

the beam. P is the mass density random variable which changes among beams,

though its lengthwise variability is not taken into account within each beam.

Next, the global stiffness matrix, the mass matrix and the geometrical stiffness

matrix can be obtained with the usual finite element assembling. The natural

frequencies and modes are obtained solving the next equation:

½K� X2
nM�Un ¼ 0 ð17Þ

where K and M are the n� n positive-definite global stiffness and mass matrices,

respectively, Xn is the nth natural circular frequency and Un is the associated natural

vibration mode.

The buckling load is obtained solving the following equation:

K� p̂crK
G ¼ 0 ð18Þ

where K and KG are the n� n positive-definite global stiffness and geometrical

stiffness matrices of elements in compression, respectively, and p̂cr is the buckling

load.

Mechanical properties of the models

This section presents the assumptions and the way in which the mechanical

properties that appear in Eqs. (3) and (4) are represented.

Random field of the Second Moment of Area: Timber knots geometric parameters

In order to simulate the timber knots, the joint probability mass function (PMF) of

the timber knot shape parameters (O, Q, R) within the structural element cross

section is defined. The probability mass functions of the distance between timber

knots (U) and of its length (W) in the direction parallel to the longitudinal axis of the

structural element are also stated. To find the joint PMF of the knots parameters,

experimental data obtained from a visual survey of 25 sawn beams of Eucalyptus

grandis of structural size with 180 timber knots were employed. The nominal

section of the beams employed in the visual survey is 50 mm 9 150 mm and 3 m of

length. The distance between knots, their dimensions perpendicular and parallel to

the longitudinal beam axis, their depth and position within the beam cross section

are the knot features reported in the visual survey.
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Considering these visual parameters, the timber knots were classified into four

types (Fig. 1):

I. Timber knots with the depth equal to the structural element width and with

vertical position along the structural element height.

II. Timber knots with the depth less than the structural element width and with

vertical position along the structural element height.

III. Timber knots with the depth less than the structural element width and with

vertical position near to the edge of the structural element cross section.

IV. Timber knots with the depth equal to the structural element width and with

vertical position near to the edge of the structural element cross section.

Taking into account the parameters that define the position and dimensional

characteristic of the timber knots within the structural element cross section, the

joint PMF of the three random variables is defined in order to simulate the

dimensions of the timber knots and their position within the structural element cross

section:

pO;Q;Rðo; q; rÞ ¼ pRðr j o; qÞpQðq j oÞpOðoÞ
¼P½R ¼ r j O ¼ o;Q ¼ q�P½Q ¼ q j O ¼ o�P½O ¼ o�

ð19Þ

where the random variables and their statistics values are (see Fig. 1 and recalling

that capital letters denote random variables):

• O is the position of the knot centroid along the height of the structural element

cross section. Mean value l = 61.62 mm and standard deviation SD r = 38.77

mm. The sample space ranges from 10 to 136 mm.

• Q is the knot height (dimension perpendicular to the longitudinal structural

element axis). Mean value l = 23.95 mm and SD r = 11.46 mm. The sample

space ranges from 5 to 50 mm.

• R is the knot depth along the width of the structural element cross section. Mean

value l = 20.22 mm and SD r = 11.49 mm.

In the type II knots, the timber beams of the visual survey are not cut through the

cross section with the knot after the experimental test to determine their depth r

because they become useless to perform other tests. Due to the lack of information

Fig. 1 Knots shapes classification and variables considered in the joint probability mass function (PMF)
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about this random variable, the principle of maximum entropy (PME) (Shannon

1948) is applied to obtain the probability distribution of R. The PME states that,

subjected to known constrains, the joint PMF which best represents the current state

of knowledge is the one with largest entropy. The measure of uncertainties of a

discrete random variable R is defined by the following expression:

S pð Þ ¼ �
Xn
i¼1

pilnðpiÞ ð20Þ

where S is the entropy of the random variable and pi is the probability of the discrete

random variable R which assumes n different values. It is possible to demonstrate

that the application of the PME, when the random variable assumes a finite number

of values within the interval [a, b] and no further information about the random

variable is known, leads to a uniform PMF.

The random variables that define the distance between timber knots and their

dimensions in the direction parallel to the structural element axis are, respectively:

• U is the distance among timber knots. Mean value l = 288.62 mm and SD r =

175.52 mm. The sample space ranges from 15 to 1040 mm.

• W is the length of the knot (dimension along the longitudinal structural element

axis). Mean value l = 40.19 mm and SD r = 21.36 mm. The sample space

ranges from 8 to 105 mm.

The dimension of the knot in the direction parallel to the longitudinal structural

element axis w is related to the dimension in the direction perpendicular to the axis

named q. These random variables are defined by the joint PMF pQ;Wðq;wÞ. The

random variable U is considered independent from the other ones due to the fact that

there is no strong evidence of the relation between the position of the knots along

the beams and their geometry variables.

In order to validate the numerical model with the experimental data, and since the

knots geometry is discrete, the PMFs are a natural choice. Given that the density of

the data is considered enough to represent adequately the statistics of the random

variables, the use of this type of distribution is extended to the whole study.

Random field of the Modulus of Elasticity (MOE)

The MOE values in this model are assigned as a function of the knot ratio (K) of

each knot or knots clusters. The knot dimension is calculated as the distance

between two tangents to the knot, parallel to the beam axis. Let us denote by k1 the

knot dimension if the knot is isolated, i.e., separated of the next knot in a distance

larger than the cross-sectional height. In the case this distance is smaller, a knots

cluster is defined including these knots. The length of this region is assumed as the

cross-sectional height. Then, k2 states for the sum of all the dimensions of the knots

grouped in the cluster. The knot ratio (K) is calculated as k1=k3 or k2=k3, depending

on the situation. This knot ratio is adopted from the visual strength grading

presented in the Argentinean norm IRAM 9662-2 (2006).
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In the beam sections with K equal to zero (i.e., free-of-knots sections), the MOE

values are assigned through the Nataf transformation. In the beam sections with

K different from zero (sections with knots), the MOE values are uncorrelated

random variables assigned through their marginal probability density function

(PDF) defined for each value of K.

The present approach is similar to the weak-zone model proposed by Isaksson

(1999), but unlike this work, it considers the lengthwise variability of the MOE in

the sections without knots. In the weak-zone model, the structural timber component

is modeled as a composite of short weak zones connected by longer sections of clear

wood. The length of the weak zones is proportional to five times the largest knot

dimension (q, w). This feature was observed in the visual survey of the timber knots

and the surrounding fibers. The MOE in each of these zones is constant and

randomly assigned.

MOE in free-of-knots sections: Nataf transformation

The Nataf transformation is employed in order to generate and simulate the random

field of the MOE. Introduced by Der Kiureghian and Liu (1986), it allows to build a

multidimensional PDF that fits a prescribed marginal distributions and a correlation

matrix. Suppose that a random vector X has prescribed marginal distributions, say

FXi
ðXiÞ, i ¼ 1; . . .;M and the correlation matrix R. It is possible to transform the

components of X into standard normal random variables ni, i ¼ 1; . . .;M, as

follows:

ni ¼ U�1ðFXi
ðxiÞÞ ð21Þ

The Nataf transformation assumes that N ¼ N1; . . .;NMf gT is a standard normal

correlated vector which joint PDF is the multidimensional normal PDF uMðn;R0Þ:

uMðn;R0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞMdetR0

q exp � 1

2
nTR0

�1n

� �
ð22Þ

and R0 is a correlation matrix (corresponding to the multidimensional normal PDF)

that should be compatible with the prescribed correlation matrix R (corresponding to

the random field of the prescribed marginal distribution). From the above equations,

one can write:

fXðx1; . . .; xMÞ ¼ fNðn1; . . .; nMÞ detJN;X
�� �� ð23Þ

where the Jacobian of the transform JN;X is a diagonal matrix with elements

fXi
ðxiÞ=uðniÞ, i ¼ 1; . . .;M. This leads to the Nataf transformation

fXðx1; . . .; xMÞ ¼
YM
i¼1

fXi
ðxiÞ

uðniÞ
uMðn;R0Þ ð24Þ

The correlation matrix R0 is computed term by term by solving the following

consistency equation for qij:
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qij ¼
Z 1

�1

Z 1

�1

xi � lXi

rXi

� �
xj � lXj

rXj

� �
u2ðni; nj; q0ijÞdnidnj ð25Þ

where qij and q0ij are the non-dimensional correlation matrix elements of R and R0,

respectively. For given marginals and correlation coefficients qij of two variables Xi

and Xj, the preceding equation can be solved iteratively to find q0ij. To avoid such

tedious calculations, a set of semiempirical formulas of the ratio F ¼ q0ij=qij have

been tabulated for various pairs of distributions ðfXi
ðxiÞ; fXj

ðxjÞÞ in Der Kiureghian

and Liu (1986), Ditlevsen and Madsen (1996) and Melchers (1999). In the present

work, fXi
ðxiÞ and fXj

ðxjÞ are assumed to be gamma distributed. Hence, the value of

F is defined as:

F ¼
q0ij

qij
¼1:022 þ 0:022qij � 0:012ðdi þ djÞ þ 0:001q2

ij þ 0:125ðd2
i þ d2

j Þ

�0:077qijðdi þ djÞ þ 0:014didj ð26Þ

where di and dj are the coefficients of variation. Here, it has been assumed that

di ¼ dj. This assumption is based on the properties of the simulated random field

which is homogeneous and stationary. This last statement was also adopted in Kline

et al. (1986) and Czmoch (1998). A good agreement with experimental results is

shown in the last reference.

The correlation structure of the random field is described by means of the

correlation function. An exponential correlation function, proposed by Czmoch

(1998), based on experimental test carried out on pine–spruce beams grade K24

according to the Swedish standard SBN 1980 (1981) is assumed:

qij ¼ exp �2
x
ðjÞ
c � x

ðiÞ
c

��� ���
d

0
@

1
A ð27Þ

where d is the correlation length which measures the decay of the correlation

function. In this work, the values considered for the correlation length of the MOE

random field are d =1.34 m (named d1) and d ! 1 (named d1). When d ! 1, the

random field becomes fully correlated and the random field can be interpreted as a

random variable in the limit. It represents a beam with homogeneous MOE though

random; i.e., it changes from one beam to the other randomly. This second case is

often used in reliability studies and in design practice. Czmoch (1998) experi-

mentally found that the correlation length of the MOE for pine–spruce beams is

approximately 1.4 m for the serviceability load level and around 0.7 m for a load

level close to the load carrying capacity. These values of correlation length were

determined in beams with dimensions and load levels analogous to those employed

in the following sections of the present study. The Eucalyptus grandis cultivated in

the Mesopotamian provinces of Argentina has a very high ratio MOE/density higher

than all covered in the standard EN 338 (1996) for deciduous species, according to

the results of the investigation performed by Piter (2003). This feature, which can be

a particular advantage for the structural use of the material, indicates a behavior
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similar to the coniferous species. In Garcı́a et al. (2013), a validation with different

values of the correlation length found within the above established interval was

presented. It was found that the validation with experimental results of static

deflections was best attained with the correlation length d1 adopted herein.

Marginal PDF of the MOE

In order to determine the marginal PDF of the MOE, the PME for a continuous

random variable is applied (cf the previous case for a discrete random variable

Eq. 20). The measure of uncertainties of the continuous random variable X is

defined by the following expression

SðfXÞ ¼ �
Z
D

fXðxÞlnðfXðxÞÞdx ð28Þ

where fX stands for the PDF of the random variable X and D is its domain. It is

possible to demonstrate that the application of the principle under the constraints of

positiveness and bounded second moment leads to a gamma PDF. The PME con-

duces to this PDF due to the fact that the domain of the MOE is real and positive.

The known constraints of the continuous random variable that represents the MOE

are:

Z 1

0

fXdx ¼ 1 E½X� ¼ lX\1 E½lnðXÞ�\1 ð29Þ

To find the parameters of the marginal PDF of the MOE, experimental data

presented by Piter (2003) are employed. These values were obtained by means of

two point load bending tests, performed with 349 sawn beams of Argentinean

Eucalyptus grandis with structural dimensions. Bending tests were carried out

according to the standard EN 408 (1996).

The parameters of the gamma marginal PDF of the MOE are estimated with the

help of the maximum likelihood method (MLM). Then, the test of fit Kolmogorov–

Smirnov (K–S) is used (e.g., Benjamin and Cornell 1970). The PDF that best fits

with the experimental values is the gamma, in agreement with the PME. The test of

fit was also carried out with the lognormal and normal PDFs, the first one since

Köhler et al. (2007) proposed it to model the MOE and the second PDF as it is often

employed to represent mechanical properties. The normal PDF fits the experimental

data best. However, the use of this PDF in the model would occasionally lead to

negative values of the MOE which are physically unacceptable. Thus, the gamma

and lognormal PDF seem more suitable. The gamma marginal PDF and CDF of the

MOE are, respectively:

f ðx j a; bÞ ¼ 1

baCðaÞ x
a�1e�

x
b Fðx j a; bÞ ¼ 1

baCðaÞ

Z x

0

ta�1e�
t
bdt ð30Þ

where a and b denote the shape and scale parameters, respectively. In Table 1, the

marginal PDFs of the MOE for each value of K are presented.
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Mass density

In this work, the mass density in the simply supported sawn beams of Argentinean

Eucalyptus grandis is considered constant along the beam span and the lengthwise

variability due to the knot presence is not taken into account. In the timber structural

elements of this species, the knots are frequently composed of material with similar

density to the clear wood. This does not mean that the mass lengthwise variability

would not be present in timber structural elements, but this feature is not considered

in this paper.

The variability in the density among beams is considered through the PDF. In

order to determine the marginal PDF of the mass density, the PME for a continuous

random variable is applied, like the previous case. The application of the principle

under the constraints of positiveness and bounded second moment leads to a gamma

PDF. The PME conduces to this PDF due to the fact that the domain of the mass

density is real and positive. To find the parameters of the PDF of the random

variable mass density (P), experimental data presented by Piter (2003), obtained by

means of density measurements performed with 349 sawn beams of Argentinean

Eucalyptus grandis, are employed. The density measurements were carried out

according to EN 408 (1996).

Köhler (2007) represented the variability of the mass density among structural

timber beams with a normal PDF for European softwood species. In the present

work, the parameters of the PDF of the mass density are estimated with the help of

the MLM. Finally, the K–S test of fit is used to choose the PDF that fits best. As

before, assuming a = 0.05, the critical value for the K–S test of fit is equal to c =

1.36. The K–S statistics are the following: lognormal 0.65, gamma 0.69 and normal

0.75. As can be seen, the three PDFs fulfill the critical value, but the lognormal and

gamma fit best with respect to the experimental values. Here, following the PME

and due to the small difference found among the lognormal and gamma, the latter is

adopted in order to introduce the mass density uncertainty in the stochastic model.

The gamma PDF and CDF of the mass density P are, respectively:

f ðx j a; bÞ ¼ 1

baCðaÞ x
a�1e�

x
b Fðx j a; bÞ ¼ 1

baCðaÞ

Z x

0

ta�1e�
t
bdt ð31Þ

where a = 72.179 and b = 7.659 denote the shape and scale parameters, respectively.

The correlation coefficient between the values of the MOE and the density is 0.5. In

Köhler et al. (2007), a correlation coefficient of 0.6 for European softwood was

Table 1 Parameters of the

gamma marginal PDF of the

MOE for each value of K

Parameters E(x) ! Ei ! Ei ! Ei !
K = 0 0\ K � 1=3 1=3\ K � 2=3 2=3\ K

a 31.301 42.730 35.370 35.464

b 0.508 0.315 0.364 0.328

l (GPa) 15.89 13.46 12.87 11.63

r (GPa) 2.83 2.06 2.16 1.95

d ¼ r=l 0.18 0.15 0.17 0.17
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presented. According to the above-mentioned work, the correlation coefficient

shows a medium/low level of correlation among these parameters. Piter (2003)

remarks that it is not possible to find differences in the density values between the

two best strength classes of Eucalyptus grandis timber, according to the visual grade

classification presented in his work, for practical purposes, while both classes

exhibit small variations from the third one. This visual grade classification is

slightly amended and then it is adopted by the standard IRAM 9662-2 (2006). The

Argentinean standard CIRSOC 601 (2013) follows this suggestion and adopts a

unique value of mass density for the considered qualities of structural timber and

applied to verify the serviceability conditions. Taking into account the above-

mentioned assumptions and studies about the relationship between the MOE and the

mass density, these random variables are assumed to be uncorrelated within this

study.

Results and discussion

Natural vibration modal analysis

Numerical results of the first three natural frequencies Fn and modes UFn of pinned-

pinned Eucalyptus grandis timber beams are reported in this section. In all the FEM

simulations, 100 beam elements are analyzed. The integrals of the components of

the element stiffness matrix (Eq. 15) are computed by means of the Gauss

quadrature using five points. The dimensional parameters of the timber knots are

simulated with the inverse transform method (Rubinstein and Kroese 2007). The

dimensional parameters of the timber beams employed in the numerical simulation

are the following: a length of 3 m and a nominal section of the beam of 50 mm x

150 mm. These dimensional parameters correspond to timber beams of structural

size, which are often employed in design practice.

A convergence study was carried out varying the number of independent MCS ns

and evaluating the results of E½F1� (the mean value of the first natural frequency).

The graphic results are not shown herein for brevity. The adopted convergence

criterion was the following: jE½Fns
1 � � E½Fns�200

1 �j � 0:1 Hz, where E½Fns
1 � is the

mean value of the first natural frequency for a number of simulations ns and

E½Fns�200
1 � is the mean value of the first natural frequency for a number of

simulations ns� 200. The probabilistic model for d1 showed higher values of E½F1�
than for the same model for d1, and the plots of the mean value variation with

respect to ns are more separated. This study was carried out in order to determine

the appropriate number of simulations to attain a prescribed accuracy.

Validation of the stochastic model

In this section, a comparison between numerical and physical experiments through

the analysis of the first natural frequency is presented. Experimental data, obtained

by means of the test presented in Piter (2003) performed with 50 sawn beams of
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Argentinean Eucalyptus grandis with a nominal section of 50 mm 9 150 mm and a

length of 3 m, are employed. The fundamental frequency of vibration was obtained

mechanically exciting the beams through an impact at one end and placing the

sensor in the center of the body, in the antinodal position.

The comparison of the cumulative distribution function (CDF) of the first natural

frequency found with numerical and experimental approaches is shown in Fig. 2.

Numerical results correspond to two different values of the weak-zone length. The

first plot was obtained with a weak-zone length equal to five times the major knot

dimension (5 max (q, w)), while the second plot corresponds to a weak-zone length

equal to seven times the major knot dimension (7 max(q, w)). The numerical and

experimental results for the two values of the weak-zone length were compared.

Numerical results for the first case (5 max (q, w)) and d1 are acceptable and show a

good prediction of the first natural frequency of the tested beams. The statistics

obtained from the experimental results are the following: mean value E½F1� = 77.33

Hz and SD r½F1� = 5.03 Hz. Meanwhile, the statistical values obtained from the

numerical results with a weak-zone length equal to 5 max(q, w) and the correlation

length d1 are the following: mean value E½F1� = 76.47 Hz and SD r½F1� = 6.66 Hz.

The mean values numerically obtained are close to the experimental ones while the

SD and coefficients of variation present higher values with respect to the

experimental results.

In addition, the dynamic properties calculated from each tested beam (constant

within the beam span) were included in the numerical model and this case is named

homogeneous with experimental properties (HEP). The results are shown in the

same figure. In the engineering practice, timber properties are generally considered

constant along the element, and this assumption would lead to over or under

evaluation of the dynamic response. The objective of the stochastic model herein

proposed is to obtain a more realistic material approach and a better understanding

of the influence of the timber mechanical and physical properties in the structural

behavior.
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Fig. 2 Fundamental frequency. Comparison between numerical and experimental results CDF of F1 for
two different weak-zone lengths, left plot five times the major knot dimension and right plot seven times
the major knot dimension
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Influence of the random field I(x) in the natural frequencies

The influence of the random field I(x) due to the knots presence in the first three

natural frequencies Fn is studied herein. To accomplish this, the MOE and the mass

density are supposed to assume a deterministic constant value along the beam. Thus,

the only uncertainty source is the random field of the second moment of area. The

adopted reference values are the following: E0 = 15.89 GPa, q0 = 552.86 kg/m3, I0 =

9.542�10�6 m4 and A0 = 0.0058 m2. The value of I0 corresponds to a beam without

knots. For these reference values and a beam length L = 3 m, the first three natural

frequencies obtained through the classical equation for a simply supported beam

with homogeneous properties (fn ¼ ðn2p=2L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0I0Þ=ðA0q0Þ

p
) are F01 = 37.95 Hz,

F02 = 151.80 Hz and F03 = 341.56 Hz, respectively. In Fig. 3, the PDFs of the first

three natural frequencies obtained through the application of MCS are presented.

The natural frequencies obtained from the reference values are indicated with

vertical lines. The CDFs of the percentage difference between Fn and F0n are also

presented in the figure. As can be observed, the range of the results is small and the

influence of the random field I(x) is not significant. The probability of the difference

to be greater than 1% is 0.2 (PððFn � F0nÞ=F0n � 1%Þ ¼ 0:2) for the first three

natural frequencies. This value indicates the small influence of I(x) in the natural

frequencies. The differences are negative due to the fact that all the simulated beams

have knots and present a lengthwise decrease of I(x) with respect to the adopted

reference value I0.

Influence of the uncertainty in the bending stiffness E(x)I(x) and mass density P

in the natural frequencies

In this section, the propagation of the random field E(x)I(x) and the random variable

P in the first three natural frequencies Fn is evaluated. In a first stage, the mass
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Fig. 3 Natural frequencies. Modal analysis with random field I(x), PDFs of the first three natural
frequencies Fn and CDFs of the percentage difference Fn � F0n
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density assumes a deterministic constant value along the beam. Then, the mass

density assumes a random constant value along the beam adding a new source of

uncertainty in the stochastic model. The reference values and the corresponding

natural frequencies are the same as before.

The PDF of the first three natural frequencies and the CDFs of the percentage

difference between Fn and F0n obtained through the MCS are depicted in Fig. 4a, b

(dotted and dashed lines plots). The results are found for the case of the bending

stiffness modeled by a random field and the mass density by a deterministic value.

The influence of the correlation length d adopted for the free-of-knots sections can

be appreciated (d1 dotted lines, d1 dashed lines). The PDFs of Fn have a same

initial point in the zone of lower frequencies with both values of the correlation

length and lead to frequencies with approximately the same probability. In this

region, the beams have a larger amount of knots and the lengthwise variation of the

MOE in the sections without knots is not relevant. From this initial point toward the

upper percentiles of the f ½Fn� for the same probability, the values of Fn increase with
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Fig. 4 Modal analysis with random field E(x)I(x) and deterministic/random mass density. a PDFs of the
first three natural vibration frequencies. b CDFs of the percentage difference Fn � F0n
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the increment of d. One possible interpretation of this result could be that the natural

frequency of beams with higher stiffness and lower number of defects is located in

this region and the values of d are more relevant for this case. Further, the

introduction of the uncertainty in the MOE values enlarges the range of the response

with respect to the results presented in the previous section. The range of the

percentage difference is higher than the one obtained in the previous section as can

be observed in Fig. 4b. This indicates that the influence of the random field I(x) is

negligible with respect to the influence of the random field E(x). The differences are

negative and positive due to the fact that the simulated beams can have higher

values of E(x)I(x) than the adopted homogeneous reference values of E0I0.

In what follows in this section, and in addition to the uncertain mechanical

properties presented before, a random mass density (P in Eq. 3) is introduced.

Figure 4a (dash-dot and solid lines plots) depicts the PDFs of the first three natural

frequencies Fn, and Fig. 4b (dash-dot and solid lines plots) shows the CDFs of the

percentage difference between Fn and F0n. The influence of the random field E(x) is

simply appreciated in the shape of f ½Fn� that exhibits similar characteristics as

described before (d1 dash-dot lines, d1 solid lines). The range of percentage

difference is higher than in the previous case (deterministic mass density). This

indicates that the random variable P effect is not negligible. The differences are

higher than the results presented in the previous section due to the fact that the

relation E(x)I(x)/P can adopt a larger range of values than the relation EðxÞIðxÞ=q0.

Statistics for the considered values of d and the two approaches employed for

modeling the mass density in this section are depicted in Table 2. The mean value,

SD and coefficient of variation of the random variable Fn are depicted. An increase

of the value of d produces an increment in both the mean value and the SD of the

random variable Fn. This means that a beam with homogeneous MOE in the free

knots section presents higher values of natural frequency than a beam with non-

homogeneous MOE in these sections. Further, they exhibit a larger dispersion from

the expected value of Fn. The propagation of the mass density uncertainty is

observed in the increment of the response range. This can be observed comparing

the values of the SD r½Fn� when the mass density is modeled as either a

deterministic value or a random variable. The coefficient of variation remains equal

for the natural frequencies obtained with the corresponding value of d.

Table 2 Natural frequency modal analysis with the random field E(x)I(x) and the random variable P,

comparison between numerical results for the two values of d

Stochastic variables Statistics F1 F2 F3

d1 d1 d1 d1 d1 d1

E(x)I(x) E½Fn� Hz 33.64 35.09 134.77 140.58 303.74 316.57

r½Fn� Hz 2.07 2.30 8.14 9.16 18.08 20.61

r=E 0.061 0.065 0.060 0.065 0.060 0.065

E(x)I(x) and P E½Fn� Hz 33.81 35.31 135.50 141.34 305.27 318.45

r½Fn� Hz 2.90 3.08 11.57 12.32 25.87 27.80

r=E 0.086 0.087 0.085 0.087 0.085 0.087
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Alternatively, if the knot mass density were considered different to the clear

wood value, then the mass density would be a stochastic field analogous to the MOE

variable. However, the density was assumed constant within each beam, though

variable among the different beams since the experimental evidence shows that no

significant variations are found when Eucalyptus grandis is used.

Influence of the random fields I(x), E(x)I(x) and the random variable P in the mode

shapes

Due to the stochastic variation of the mechanical properties of the beam in each

section, the first three natural modes of vibration are represented by three stochastic

processes parametrized by the position in the beam span x. The mean value and the

SD functions (E½UFn
ðxÞ� and r½UFn

ðxÞ�) along the beam span of the first three

stochastic processes UFn
ðxÞ are presented in Fig. 5 for the three cases of stochastic

models studied in the previous section. In all cases, the SD function r½UFnðxÞ�
increases with the order of the natural vibration mode. More, the variation in the

shape of the function r½UFn
ðxÞ� for each natural mode can be observed. Similar

results regarding the study of the natural frequencies and mode shapes of strings

with randomly varying mass and stiffness have been presented by Manohar and

Iyengar (1994). The mean value function is not modified by the values of the

correlation length. Meanwhile, a decrease in the value of d produces an increment in

the SD function r½UFn
ðxÞ� (Fig. 5b, c). The shape of the function r½UFn

ðxÞ� keeps

approximately equal even though its values increase due to the addition of the MOE

and mass density uncertainties. This behavior can be observed comparing Fig. 5b, c

with Fig. 5a. The comparison of Fig. 5b, c shows that the function r½UFn
ðxÞ� is

slightly modified by the addition of the mass density uncertainty.

Buckling problem

Numerical results of the first three buckling loads Pn and modes UPn of a pinned-

pinned Eucalyptus grandis timber column are reported in what follows. The

parameters employed in the numerical simulation are the following: a column of

length 2 m and with a nominal cross section 50 mm x 150 mm. The ratio of the

length of the column to the lower cross-sectional dimension is equal to 40 (L/b =

40). This is equivalent to a slenderness of 139 (k = 139). These geometrical

parameters correspond to timber columns of structural size, which are often used in

design practice.

Influence of the random field I(x) in the buckling load

In this section, the influence of the random field I(x) in the first three buckling loads

Pn is evaluated. The MOE assumes a deterministic constant value along the beam.

The adopted reference values are the following: E0 = 15.89 GPa and I0 =

8.263�10�7 m4. This I0 value corresponds to a beam without knots. For these

reference values and a column length L = 2 m, the first three buckling loads obtained
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through the classical equation for a pinned-pinned column with homogeneous

properties (Pn ¼ n2p2E0I0=L
2) are P01 = 32.39 kN, P02 = 129.57 kN and P03 =

291.55 kN, respectively. The PDFs of the first three buckling loads obtained through
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Fig. 5 Natural frequencies modal shapes. Mean value and SD functions (E½UFn
ðxÞ� and r½UFn

ðxÞ�) of the
stochastic process UFn

ðxÞ (mode shape). a Random field I(x). b Random field E(x)I(x). c Random field
E(x)I(x) and random variable P
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the MCS are presented in Fig. 6. The buckling loads obtained from the reference

values are also indicated. The CDFs of the percentage difference between Pn and

P0n are depicted in the bottom plots.

The range of the results is small and the random field I(x) effect is negligible. The

probability of the difference to be greater than 2 % is 0.2 (PððPn � P0nÞ=
P0n � 2%Þ ¼ 0:2) for the first three buckling loads indicating the low influence of

I(x) in the buckling load. The differences are negative due to the fact that all the

simulated columns have knots and present a lengthwise decrease of I(x) with respect

to the adopted reference value I0.

Influence of the uncertainty in the bending stiffness E(x)I(x) in the buckling load

The propagation of the random field E(x)I(x) in the first three buckling loads Pn is

reported herein. The reference values and the corresponding buckling loads are as

before.

Figure 7 shows the PDFs of the first three buckling loads Pn (Fig. 7a) and the

CDFs of the percentage difference between Pn and P0n (Fig. 7b). The effect of the

random field E(x) is simply appreciated in the shape of f ½Pn� that presents the same

characteristics described in the natural vibration problem section.

The range of the percentage difference is larger than the one obtained in the

previous buckling case. This indicates that the variation due to the random field I(x)

is negligible compared to the influence of the random field E(x). The differences are

negative and positive due to the fact that the simulated beams can have higher

values of E(x)I(x) than the adopted homogeneous reference values of E0I0.

Table 3 includes the mean value, the SD and the coefficient of variation of the

first three buckling loads for the considered values of correlation length. Like in the

natural frequencies study, an increase of the value of d produces an increment in the
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with the random field I(x)
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mean value and in the SD of the random variable Pn and the coefficient of variation

remains constant for the buckling loads obtained with the corresponding value of d.

Influence of the random fields I(x) and E(x)I(x) in the buckling mode shapes

The mean value and the SD functions (E½UPn
ðxÞ� and r½UPn

ðxÞ�) along the column

span of the first three stochastic processes of the mode shapes UPn
ðxÞ are presented

10 20 30 40 500

0.02

0.04

0.06

0.08

0.1

0.12

P1 kN

f(
P 1)

40 80 120 160 2000

0.005

0.01

0.015

0.02

0.025

0.03

P2 kN

f(
P 2)

90 180 270 360 4500

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P3 kN

f(
P 3)

d1
d∞

d1
d∞

d1
d∞

(a)

−60 −40 −20 0 20 400

0,2

0,4

0,6

0,8

1

(P1−P01)/P01 %

F(
(P

1−P
01

)/P
01

)

−60 −40 −20 0 20 400

0,2

0,4

0,6

0,8

1

(P2−P02)/P02 %

F(
(P

2−P
02

)/P
02

)

−60 −40 −20 0 20 400

0,2

0,4

0,6

0,8

1

(P3−P03)/P03 %

F(
(P

3−P
03

)/P
03

)
d1
d∞

d1
d∞

d1
d∞

(b)

Fig. 7 Buckling problem with the random field E(x)I(x). a PDFs of the first three buckling loads. b CDFs
of the percentage difference Pn � P0n

Table 3 Comparison between numerical results for the first three buckling loads and different values of

d found with the random field E(x)I(x)

Statistics P1 P2 P3

d1 d1 d1 d1 d1 d1

E½Pn� kN 26.31 27.79 105.21 111.46 237.41 251.60

r½Pn� kN 3.36 3.79 13.50 15.15 30.06 33.77

r=E 0.127 0.136 0.128 0.135 0.126 0.134
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in Fig. 8 for the two previous cases of stochastic models of the buckling problem.

The SD function r½UPn
ðxÞ� increases with the order of the buckling mode. Further,

the variation in the shape of the function r½UPn
ðxÞ� for each buckling mode can be

observed. In comparison with the results obtained for the natural vibration modes,

the function r½UPn
ðxÞ� has a different shape but shows a similar behavior when the

order of the mode increases. In Fig. 8b, the mean value function is not modified by

the values of the correlation length. Meanwhile, a decrease in the value of d

produces an increment in the SD function r½UPn
ðxÞ�. The inhomogeneity of the

MOE values in the free-of-knots sections produces a larger variation in the buckling

modes. In addition, the shape of the function r½UPn
ðxÞ� remains approximately equal

even though its values increase due to the addition of the MOE uncertainty.
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Fig. 8 Mean value and SD functions (E½UPn
ðxÞ� and r½UPn

ðxÞ�) of the stochastic process UPn
ðxÞ (mode

shape). a Random field I(x). b Random field E(x)I(x)
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Conclusion

Sawn Eucalyptus grandis structural elements with uncertain material properties

were studied, and in particular, the eigenvalues problems were analyzed in detail. A

statistical study of the mechanical properties in the free vibration and buckling

problems theory was carried out using the E–B beam theory.

The methodology included the SFEM and tools that permit to obtain a material

structural properties approach which can represent closely the behavior of real

timber elements. The traditional criterion of employing a normal PDF for the

mechanical properties was addressed together with other alternatives, showing that

the PDF that best fits the experimental results is the gamma distribution. The

influence of the timber knots in the response is frequently disregarded. In the present

study, its consideration derives in an improved representation of sawn timber

structures. A model of the lengthwise variability of the Modulus of Elasticity

(MOE) was presented starting from the weak-zone model to study the lengthwise

variability of the bending strength. However, the present model introduced the

presence of knots in the sectional parameters and the length of the weak zone in a

different way.

The PDFs and CDFs of the first three natural frequencies and buckling loads in

structural elements with uncertain material properties were obtained by MCS. The

stochastic analysis yields further information on the structural components behavior.

The influence in the response of the correlation length of the MOE of the free-of-

knots sections was evaluated. If the CDF curves simulated for the two values of d

are observed, it is possible to find that the lower correlation length (d1) curve always

yields higher values of probability for a given frequency. On the other hand, the

homogeneous case (d1) leads to larger values of the SD. The validation of the

numerical model was carried out using results of the experimental results of the first

natural frequency. The length of the weak zones was calibrated, and it is shown that

numerical simulations results with the MOE in the free-of-knots sections

represented by a random field are closer to the experimental outcome, inasmuch

as timber beams are of superior quality. The value of the correlation length was

shown to be applicable to Eucalyptus grandis elements. The difference between

numerical and experimental results is influenced by timber defects, such as the

presence of pith, not included in the present numerical model.

The propagation of the mechanical parameters uncertainties in the natural

frequencies and buckling loads was presented for different stochastic models. First,

the influence of the random field of the second moment of area, I(x), was studied.

Then, the random field E(x)I(x) was introduced with the correlation length (d) for

the random field E(x) in the beam free-of-knots sections. The increase in the value

of the correlation length produces an increment in the SD of the response. Finally,

for the free vibration problem, the mass density random variable P was added. The

effect of the random field I(x) is found to be negligible in comparison with the

variability of the other mechanical properties. Consequently, the presence of the

knots is more important regarding the MOE variability (E(x)) than in the variation

of the second moment of the area (I(x)). The addition of the mass density
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uncertainty through the random variable P increases the range of the response and

slightly modifies the shape of the PDFs and CDFs found for the random field

E(x)I(x).

The free vibration and buckling mode shapes were also analyzed. Due to the

stochasticity of the model, a random process parametrized by the position was

obtained for both problems. The mean value remains equal in both problems, and it

is not influenced by the stochastic parameters of the model. Meanwhile, the SD

function changes its shape from one problem to the other. Also, the stochastic

variation of the mechanical properties has an apparent effect. In general, the SD

function increases its values from the first to the third natural frequency or buckling

load and also due to the addition of uncertainty in the mechanical and physical

parameters of the model.

The stochastic models introduced in the present study constitute a more realistic

material approach, also feasible to be applied to reliability studies of serviceability

limit states of structural components made of Eucalyptus grandis timber.

At present, the authors address the forced vibration problem in timber beams

including a material damping model.
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