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Abstract. This article aims to discuss the arcsine–log calibration curve (ALCC) method designed for the Better Fertiliser
Decisions for Cropping Systems (BFDC) to calibrate relationships between relative yield (RY) and soil test value (STV). Its
main advantage lies in estimating confidence limits of the critical value (CSTV). Nevertheless, intervals for 95% confidence
level are often toowide, and authors suggest a reduction in the confidence level to 70% inorder to achieve narrower estimates.
Still, this method can be further improved by modifying specific procedures. For this purpose, several datasets belonging to
the BFDC were used. For any confidence level, estimates with the modified ALCC procedures were always more accurate
than the original ALCC. The overestimation of confidence limits with the original ALCC was inversely related to the
correlation coefficient of the dataset, which might allow a relatively simple and reliable correction of previous estimates. In
addition, because the method is based on the correlation between STV and RY, the importance to test it for significance is
emphasised in order to support the hypothesis of a relationship. Then, themodified ALCC approach could also allow amore
reliable comparison of datasets by slopes of the bivariate linear relationship between transformed variables.
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Introduction

When developing fertiliser-recommendation models based on
soil test value (STV), the most usual goal is to identify a critical
value or range of a soil fertility variable for a given level of
crop yield under which response to fertilisation is most likely.
The most common approach is to fit a regression line between
crop yield and STV, the latter as the independent variable and
the crop yield, many times expressed as relative yield (RY),
as the dependent one. Mathematical functions used to describe
this relationship may be linear-plateau, quadratic-plateau
or exponential (Mitscherlich) among others (Colwell 1963;
Mallarino and Blackmer 1992).

The most widely method used for fitting regression
models, the ordinary least-squares (LS) approach, assumes that
only the dependent variable (e.g. RY) is random, whereas the
explanatory or regressor variable (e.g. STV) is considered asfixed
and error-free. This approach is especially valid for cases inwhich
the explanatory variable is truly fixed, such as fertiliser rate.
However,when this variable is not controlledby the researcher, as
happens with STV, researchers normally still consider it as fixed.
In this sense, it has been pointed out that LS regression is
frequently abused in soil research (Webster 1997). When the
underlying relationship is bivariate, it should be described as such

and not as a predictive one. As well as crop yield, the STV
represents an ‘observed’ dimension of the experiments, and
comes from a population that has a reference distribution and,
thus, an error component. Therefore, a joint distribution of both
variables called ‘bivariate’ should be also considered,which in its
simplest case is the ‘bivariate normal’ (Legendre and Legendre
1998).

Furthermore, calibrating RY v. STV often shows problems
related to normality and homogeneity of variance. This means a
lack of statistical robustness of LS regression to answer
questions of interest (Kutner et al. 2005). Neither RY nor STV
follow normal distribution, and thus, variable transformation is
usually recommended (Webster 2001). However, the most
common situation is to transform only the dependent variable
(RY), while keeping original units in the explanatory variable,
and thus, the solution results are partial. On the other hand, if
the nutrient under study is the only limitation to the crop growth,
it is expected that high levels of STV may result in larger and
less variable yields each time. This behaviour results in a
dependence of RY variance on STV values when RY is the
dependent variable. Weighted regression is usually applied, but
it does not always brings a solution (Motulsky and Christopoulos
2004).
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On the other hand, an innovative approach has been proposed
by Dyson and Conyers (2013) for calibrating soil tests aimed at
recommending crop fertilisation. The ALCC (arcsine–logarithm
calibration curve) method has been developed for determining
confidence limits of the critical value (CSTVs) for nitrogen (N),
phosphorus (P), potassium (K) and sulfur (S) and response of
various grain crops in Australia (Anderson et al. 2013; Bell et al.
2013a, 2013b, 2013c; Brennan and Bell 2013; Speirs et al.
2013). As opposed to most of the commonly used calibrating
methodologies, the ALCC method: (i) transforms both variables
involved in the relationship (i.e. RY and STV), and (ii) reverses
the axes (i.e. fit STV v. RY) to estimate not only the CSTV for a
given RY level but also its confidence interval (CI).

In the original study (Dyson and Conyers 2013), the authors
highlighted that estimations of CI in the original methodology
were often too wide for making reliable recommendations and
comparisons between datasets. Therefore, they suggested that the
CI be reduced from 95% (P= 0.05) to 70% (P= 0.30) in some
comparisons (Dyson and Conyers 2013; Watmuff et al. 2013).
However, a detailed review of the original ALCC method
suggests that, by modifying specific procedures, it is possible
to achieve more accurate estimates of CSTVs without reducing
the level of confidence.

The objectives of this study were: (i) to evaluate changes in
procedures of the ALCC method in order to obtain CSTVs with
narrower CI; (ii) to test the reliability of the shape of STV–RY
relationships based on a simple linear parameter; and (iii) to
discuss the importance of testing the correlation coefficient for
significance in order to support the hypothesis of a relationship
between variables.

Materials and methods
Data sources and analyses

Datasets were gathered from several sources.

Dataset 1

The first dataset was obtained from the BFCD Interrogator
Database (NSW DPI 2012). It was intentionally the same as
Dyson and Conyers (2013) described in their paper, belonging to
the National Soil Fertility Program (NSFP) from 1968–72
(Fig. 1). The follow filters in the BFDC Interrogator were
applied to obtain this dataset: Nutrient= ‘P’, Farming
System = ‘dryland’, From Year= ‘1968’, To Year= ‘1972’,
State= ‘Victoria’, Season= ‘winter’, Crop= ‘cereal wheat’,
Australian Soil Class = ‘All’, Soil Test and sample depth= ‘P
Colwell mg/kg at 0–10 cm’, Trial quality = ‘A trials only’.

Dataset 2

A second dataset was also defined by using the BFCD
Interrogator Database in order to make specific comparisons
of parameters using theoriginal and themodifiedALCCmethods.
This dataset was obtained through the follow filters:
Nutrient = ‘P’, Farming System = ‘dryland’, From Year= ‘All’,
To Year= ‘All’, State= ‘All’, Season= ‘winter’, Crop= ‘cereal
wheat’, Australian Soil Class= ‘Vertosol Black +Vertosol
Grey’, Soil Test and sample depth= ‘P Colwell mg/kg at
0–10 cm’.

Dataset 3

A third dataset was built for a comparison of standard errors
(SE) of the CSTV estimator. For this purpose, 60 datasets of
STV and RY were used. They were gathered from (i) the BFCD
Interrogator Database (23) (NSWDPI 2012); and (ii) published
and unpublished grain crop fertilisation experiments in the
Pampean Region of Argentina (37) including several
crop–nutrient combinations (wheat, maize and soybean crops,
andN, P, S and zinc (Zn)). Dataset 3was defined by using specific
variables from each of the 60 datasets (n= 60): (i) correlation
coefficient (rxy), (ii) SE of CSTV estimator by using the original-
ALLC method, and (iii) SE of CSTV estimator by using the
modified ALLC method.

All datasetswere tabulated and processed in aMicrosoft Excel
(Microsoft Corp., Redmond, WA, USA) environment in order to
make all comparisons. Analyses of obtained linear models were
also checked in theRsoftware environment usingpackagesSmatr
v3.4-3 (Warton et al. 2012) and Stats v3.2.4 (RCore Team2016).
All figures were made with the GraphPad Prism software v7.0a
for MacOSx (GraphPad Software Inc. 2016).

Procedures of the modified ALCC

Nine steps are needed; each can be performed with a common
spreadsheet in Microsoft Excel or similar. Essential commands
for applying in a common spreadsheet are included in
parentheses. Note that they could vary depending on the
software version and language. Steps 1–3 of the modified
ALCC are essentially the same as the original ALCC method
(Dyson and Conyers 2013). Specific differences are detailed in
the Results and discussion.

1. Transform variables. This will simplify the relationship
between variables as a simple linear equation.
Transformations are:

(a) Natural logarithm for the STV, hereinafter Y (= LN(STVi)).
The method does work independently of STV units, which
normally are expressed in kg/ha, mg/kg, among others.
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Fig. 1. Scatter-plot of relative yield (RY, %) and soil test value (STV,
Colwell P at 0–10 cm,mg/kg) for dataset 1: 107experiments from theNational
Soil Fertility Program (1968–72) in Victoria (107 class A trials). Data were
gathered from the BFDC Interrogator database following previous
descriptions given by Dyson and Conyers (2013). Dashed line represents
the fitted calibration curve by the arcsine–log calibration curve (ALCC)
approach (back-transformed from a linear regression between transformed
variables (Fig. 2).
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(b) Arcsine of the square root for the RY, hereinafter X (= ASIN
(SQRT(RYi/100))). The estimations of RY must be made
with respect to a maximum yield (observed or estimated) as
the non-deficient situation. For further details, seeDyson and
Conyers (2013).

2. Center the X variable, with respect to the RY level for
which you want to estimate the CSTV (= ASIN(SQRT
(RYi/100)) – ASIN(SQRT(RYgoal/100))). For example, for
an RYgoal = 90%, we need to subtract, from each value of X,
the corresponding arcsineH(90/100) = 1.249.

3. Estimate the Pearson correlation coefficient (rxy), between X
(centred) and Y (= PEARSON(Xvalues, Yvalues). Because the
methodology is basedon ‘correlation’betweenvariables, it is
advisable to test this coefficient for significance before the
next steps. See Testing correlation significance for details.

4. Estimate the average means of centred X (= AVERAGE
(Xvalues)) and Y (= AVERAGE(Yvalues)). They represent
coordinates of the data ellipse centroid (�X ; �Y ), through
which all possible regressions pass through.

5. Estimate a linear regression (Eqn 1) between X and Y values
(Fig. 2) by using the ordinary LS approach:

ŶiLS ¼ âLS þ b̂LS�Xi ð1Þ

where ŶiLS are the fitted LS values of ln(STV) and Xi are the
observed (and centred) X values (see step 2).

6. Estimate the bivariate equation between X and Y. This
step consists in rotating the LS regression (Eqn 1) about
the centroid of the data ellipse (step 4). The equation of
interest is called standardised major axis (SMA), which
describes a structural or bivariate relationship between
variables based on correlation. There is specific software
for fitting this type of regression (Warton et al. 2012).
However, the most direct and simplest method is to use a
mathematical property that relates slopes of LS and SMA

regressions (Eqn 2) (Legendre and Legendre 1998). Thus,
because all possible regressions of any data ellipse pass
through the centroid coordinates (�X ; �Y ) (Eqn 3), we can
estimate the SMA intercept (âSMA) by Eqn 4. Finally, we
obtain the complete SMA equation, which for the example
application is shown in Fig. 2b. Note that Eqn 2 is not
plausible when rxy = 0, so it is recommended to test the
correlation for significance first (see Testing correlation
significance section):

b̂SMA ¼ b̂LS
rxy

when rxy„0 ð2Þ

�Y ¼ âSMA þ b̂SMA��X ð3Þ

âSMA ¼ �Y � b̂LS
rxy

 !
��X

" #
ð4Þ

7. Estimate theCSTV.Wemust consider themodelwhenX = 0.
As in this example, the X values are centred on RY=90%,
the intercept represents the CSTV90%. Because the estimator
(âSMA) is expressed in logarithmic units (Eqn 5), it is
necessary to back-transform it to its original units (Eqn
6, = EXP(âSMA)):

âSMA ¼ ln CSTV90ð Þ ð5Þ

CSTV90 ¼ e âSMAð Þ ð6Þ

8. Estimate the confidence interval (CI) of the CSTV. To
estimate the confidence limits of the CSTV, we must use
Eqns 7 and 8, which have been described as the most
appropriate to estimate the CI of intercept for SMA
regression (Warton et al. 2006). Therefore, a CI with 95%
of confidence level equals approximately (depending on the
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Fig. 2. Linear relationships between soil test value (STV, Colwell P at 0–10 cm) and wheat relative yield
(RY) both as transformed variables of dataset 1. The same bivariate linear relationship (dotted lines) is
derived from two different data ellipses: (a) ordinary least-squares (LS) regression of Yr-modified values
(dotted line) for the original arcsine–log calibration curve (ALCC) (Dyson andConyers 2013); (b) bivariate
standardised major axis (SMA) regression (dotted line) for the modified ALCC, derived from the LS
regression of ln(STV) (not r-modified) on the arcsine of square root of centred RY. In both cases, the
intercept (â) of dashed lines represents the natural logarithm of CSTV.
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sample size, n)� 2SE, whereas a CI with 70% of confidence
level equals approximately� 1 SE. Equation 7 is:

where SEâSMA represents the standard error of the intercept, yi
are the observed Y values, ŷiSMA are the fitted SMA values
(¼ âSMA þ b̂SMA�Xi), n is the sample size, n – 2 is degrees
of freedom (d.f.), MSE is the mean square error of the model
(= (SUM((yi � ŷiSMA)^2))/(d.f.)), and SSx is the sum of squares
of centred X values (= VAR.S(Xvalues)*(n – 1)). Equation 8 is:

CIâSMA
¼ âSMA � SEâSMA�t 1�a

2;n�2ð Þ ð8Þ

where SEâSMA represents the standard error of the intercept
(Eqn 7), and t is the two-tailed Student-ta

2
value for an a

significance level and n – 2 d.f. (= TINV(a, d.f.)).

9. Draw the curve. To fit a RY v. STV curve, we must solve the
equation based on the ALCCmethod. TheALCC curve does
not describe a causal relationship (predictive) but a bivariate
relationship (back-transformed) instead. Fitted values of ln
(STV) are obtained by the SMA linear equation (Eqn 9) and
back-transformed STV values are obtained by Eqn 10.
Finally, for the same range of fitted values with Eqn 9, we
can also express the RY values (%) using the parameters
of the bivariate relationship (Eqn 11) âSMA and b̂SMA, and the
RYgoal for which we estimated the CSTV:

ŶiSMA ; ln STVð Þ ¼ âSMA þ b̂SMA

� arcsine

ffiffiffiffiffiffiffiffi
RYi

100

r
� arcsine

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RYgoal

100

r" #
ð9Þ

STViSMA ¼ e ln ŶiSMAð Þ½ � ð10Þ

RYiSMA;% ¼ 100�
�
sin

�
arcsine

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
RYgoal

100

r �

þ ŶiSMA � âSMA

b̂SMA

��2

ð11Þ

Results and discussion

Confidence intervals of CSTVs

Because both variables are inexact, Dyson and Conyers (2013)
emphasise finding a ‘major axis equation’ of the data ellipse.
However, the way they reach it has an impact on the error size of
the model. In order to get the major axis equation (in this case a
standardised major axis), they apply a second transformation
of the already transformed ln(STV). This step is designated as the

‘r-modification procedure’, but the specific equation used for this
second transformation is not described in detail in the paper. The
equation is described in the Eqn 12 (C. B. Dyson, pers. comm.).
This second transformation produces a new variable (Yr-modified),
which has a wider range of values than the original one (Y). Then,
by LS regression of Yr-modified values on X (Eqn 13), they reach
the structural relationship of interest. Even though the mean
values of intercept (âLSr) and slope (b̂LSr) parameters are
correct, the r-modification procedure generates an unnecessary
error overestimation of the model, and thus affects the precision
when estimating the CI of CSTV.

Yi�r modified ¼ �Yþ Yi � �Y
rxy

� �
ð12Þ

ŶiLSr ¼ âLSr þ b̂LSr�Xi ð13Þ
where ŶiLSr are the fitted r-modified values of ln(STV) and Xi

are the observed X values (centred).
In cases with wide CI95% for CSTV, Dyson and Conyers

(2013) suggest also to estimate theCSTVwith a lower confidence
level (CI70%) in order to achieve narrower estimates, especially
for the BFDC Interrogator (Conyers et al. 2013; Watmuff et al.
2013). However, this issue ofwideCI of CSTVs is a consequence
of the r-modification procedure, which generates a ‘wider in Y’
data ellipse (Fig. 2). The regression ofYr-modified values onX is not
actually based on the ‘true data ellipse’, where the bivariatemajor
axis regressions are based on (Jolicoeur 1990; Sokal and Rohlf
1995;Warton et al.2006). In this sense,we suggest this procedure
bemodified to obtain thebivariate relationshipof interest between
transformed variables without the error overestimation.

Instead of using the r-modification of Y values, we propose
to use a bivariate approach called ‘standardised major axis
regression (SMA)’. This approach is not a prediction of Y
depending on X as usual. It is based on representing in one
dimension—or axis—data that vary in two dimensions, which
could be called a bivariate relationship (Warton et al. 2006). The
model assumptions are the same as usual: independency, normal
distribution of error andhomoscedasticity. Transformation seems
to play an important role for fulfilling the last two assumptions,
which is exemplified for dataset 1 (Fig. 3). In addition, correlation
between variables, and whether data follow a distribution that
approximates a bivariate normal, should be checked.

In the case of interest (describing a relationship between RY
and STV), there are three main characteristics that determine the
usefulness of the SMA approach: (i) RY and STV represent two
observed variables or dimensions of the same experiments;
(ii) standardisation allows the use of variables that do not have
comparable scales of measure; and (iii) the independence from
any causal relationship between variables means that the X–Y
direction of regression is functional to the objectives of the
researcher.

With the SMA regression approach, we can estimate exactly
the same equation as the original ALCC algorithm but avoiding
the CI overestimation of the intercept parameter (â), which is the
CSTVestimator (Fig. 2).Consequently, keeping the same level of
confidence (e.g. 95%), the CIs of the modified ALCC algorithm
are always more accurate than the original ALCC. For dataset 1,
the SMA equation showsmore accurate estimates of the intercept
(âSMA; CI95% = 2.963–3.198) compared with the LS regression

SEâSMA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi �ŷiSMA

	 
2
n� 2

� 1
n
þ �x2Pn

i¼1 xi � �xð Þ2
" #vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE� 1

n
þ �x2

SSx

� �s
ð7Þ
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of Yr-modified values used by the original ALCC method (âLSr ;
CI95% = 2.819–3.341). These results are also observed for dataset
2, with CSTV estimates 30.3–61.4% more accurate for the
modified ALCC than the original ALCC algorithm (Table 1).

Based on a comparison of 60 datasets (dataset 3), we also
observed that the overestimation of the SEâ (Eqn 14) was
inversely proportional to the correlation coefficient (rxy) of
a dataset (Fig. 4). For the analysed cases (n= 60), the
overestimation varied from 10.6% to 222.5% for datasets with
rxy of 0.245 and 0.875, respectively. This inverse relationship is
explained by the r-modification procedure, which retransforms
the ln(STV) values based on the rxy coefficient (Eqn 12).
However, the relationship described in Fig. 4 might also allow
a relatively simple and reliable (r2 = 0.99) correction of previous
estimations based on the original ALCC algorithm (e.g. for the

BFDC Interrogator) just by using the rxy coefficient of the
dataset and Eqn 8. Equation 14 is:

Testing SMA slopes

Because the ALCC curve (back-transformed) comes from a
bivariate linear relationship, the SMA slope (b̂SMA) can also be
compared among datasets (Fig. 5a, b). It might be considered
an index of the ALCC curvature (Fig. 5c, d). Following Eqn 10,
back-transformed in terms of RY, a greater b̂SMA results in a
less steep curve. By contrast, a smaller b̂SMA results in a steeper
curve. This behaviour was observed in dataset 2 for wheat RY
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Fig. 3. Residual distribution for testing normality (a) and homoscedasticity (b) for the standardised major axis
(SMA) regression model of transformed variables applying the modified arcsine–log calibration curve (ALCC)
methodology of dataset 1 (Fig. 2b). STV, Soil test value. The skewness and kurtosis values indicate the level of
asymmetry and bias of dataset. Vertical dotted lines indicate percentiles 25, 50 (median) and 75 of distribution.
Significance of the D’Agostino–Pearson normality test is indicated with the P-value (D’Agostino et al. 1990).
Homogeneity of variances of SMA regression is tested visually against the fitted axis as described by Warton et al.
(2006).

Table 1. Comparison of confidence limits of critical soil test value (CSTV) estimates using themodified arcsine–log calibration curve (ALCC) and the
original ALCC methods at two levels of confidence (95% and 70%)

Calculationsweremade for soil Colwell-P at 0–10 cm (mg/kg) at three levels ofwheat relative yield (RY: 80%, 90%and 95%).Datawas gathered from theBFDC
Interrogator database (dataset 2)

80% RY 90% RY 95% RY
Lower Upper Lower Upper Lower Upper

Grey Vertosol (n = 103, rxy = 0.33)
CSTV: 13.5 17.8 21.4

95% Confidence Modified 11.9 15.3 16.0 19.8 19.1 24.1
Original 9.9 18.3 13.6 23.2 16.0 28.7

70% Confidence Modified 12.7 14.4 16.8 18.8 20.1 22.8
Original 11.5 15.9 15.4 20.5 18.4 25.0

Black Vertosol (n= 180, rxy= 0.62)
CSTV: 16.3 25.0 33.3

95% Confidence Modified 14.5 18.4 22.8 27.4 30.5 36.4
Original 13.7 19.4 21.9 28.5 29.3 37.9

70% Confidence Modified 15.3 17.3 23.8 26.2 31.8 34.9
Original 14.9 17.9 23.3 26.8 31.1 35.7

SEâoverestimationð%Þ ¼ 100� SEâoriginal � SEâmodified

SEâmodified

� �
ð14Þ
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related to soil Colwell-P level at 0–10 cm, where Black Vertosol
soils showed a greater b̂SMA (b̂Black�CI95% ¼ 2:671� 3:370)

than Grey Vertosol soils (b̂Grey�CI95% ¼ 1:610� 2:333), which
also means different fitted ALCC curve shapes (Fig. 5).

Dyson and Conyers (2013) proposed an estimation of the
average slope (and its SE) from50% to80%ofRYas the deficient
zone of the curve. However, the formula is not specified for users
who wish to apply the technique. Moreover, even if detailed, the
comparison of slopes of SMA regressions does not follow the
same formula as the LS regression, as Dyson and Conyers (2013)
followed with the r-modification procedure. In fact, as well as for
the intercept, the ŶLSr regression (Eqn 13) also overestimates
the error of the slope (b̂LSr) compared with the SMA approach
(b̂SMA, Fig. 2). For dataset 1, the modified ALCC approach
showed a 62.6% more accurate estimation for the slope (b̂SMA;

CI95% = 1.502–2.147) than the original ALCC method (b̂LSr;
CI95% = 0.933–2.659).

The SMA regressions have been used to study allometric
relationships where the slope b̂SMA is the main parameter of
interest (Warton andWeber2002). The confidence interval for the
b̂SMA can be estimated at a predetermined confidence level, and
checked for whether a value of interest lies inside or outside
the confidence limits. The formula to compute CI for SMA is
different from the LS regression (Eqn 15) (Jolicoeur and
Mosimann 1968; Jolicoeur 1990; Sokal and Rohlf 1995). A
peculiarity of SMA regression is that the slope cannot be
tested for significance (Legendre and Legendre 1998). This is
a trivial case because b̂SMA (Eqn 2) cannot be zero unless the
standarddeviationofY (sy) is equal to zero. For this reason, among

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

200

250

Correlation coefficient (rxy)

S
E

α 
ov

er
es

tim
at

io
n 

(%
)

y = 615.6 e–4.278x

r2 = 0.99
n = 60

Fig. 4. Relationship between the correlation coefficient (rxy) of a dataset and
the relative overestimation of the standard error of the intercept (SE), using the
original arcsine–log calibration curve (ALCC) method compared with the
modified ALCC (Eqn 14). The overestimation is related to the r-modification
procedure that the original ALCC algorithm requires to estimate the bivariate
equation of interest (standardised major axis). In total, 60 datasets with
different rxy were used (dataset 3).
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Fig. 5. Relationships betweenwheat relative yield (RY) and soil test value (STV;Colwell P concentration
at 0–10 cm) for two soil types in Australia (dataset 2). Data were gathered from the BFDC Interrogator
filtering by P-response trials in cereal wheat under dryland conditions in (a, c) Black Vertosol (n= 180) and
(b, d) Grey Vertosol soils (n= 103). (a, b) Bivariate linear regressions (standardised major axis) between
transformed variables; (b, d) the same relationships, back-transformed to the original units. Critical values
(CSTV) and their confidence intervals (CI, grey vertical strips) were estimated for 90% of RY with a 95%
confidence level.
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others, the importance of testing the correlation for significance is
discussed below. Equation 15 is:

CI^bSMA

¼ b̂SMA�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 1ð Þ

p
�

ffiffiffi
b

p� �
;where b ¼ t2�1� rxy2

n� 2
ð15Þ

where b̂SMA represents the slope value, rxy is the correlation
coefficient of the dataset, Y represents a two-tailed Student’s ta

2

value for an a significance level, and n – 2 is degrees of freedom.

Testing correlation significance

A criterion to exclude a dataset based only on its correlation
strength was established by Dyson and Conyers (2013). In the
BFDCInterrogator, estimationswill not befitted if a dataset has an
rxy <0.2. Despite this criterion being reasonably valid, it could not
be enough for potential users of themethod. The significance of the
correlationcoefficient rxy shouldbe testedfirst inorder todetermine
if a relationship between variables is supported (McArdle 1988).
A relationship could beweak but significant or could be strong and
yet not significant, where the sample size (n) might play a key role.
For large sample sizes, it is easy to achieve significance, and so one
should consider the strength of correlation to determine whether
the relationship explains very much, or not. Conversely, for small
sample sizes, it could be easy to produce a strong correlation by
chance andone should consider its significance to prevent rejecting
a true null hypothesis. Additionally, as discussed above, the SMA
slope is only meaningful when rxy is different from zero (Eqn 2).
Therefore, it is advisable to evaluate not only the correlation
strength but also its significance for a better interpretation of
data. Because correlation between STV and RY is normally
expected to be positive (rxy >0), the command to test it in
a spreadsheet is =TDIST(tr, df, 1), where tr is the t-statistic
(Eqn 16) and df is degrees of freedom:

Conclusions

The ALCC algorithm is an interesting approach for estimating
CSTVs, which copes with problems usually faced when using
traditional regressionmethods for calibrating soil test data (i.e. lack
of normality and homoscedasticity, both variables measured with
error). The modified ALCC method described in this paper, even
when it requires some additional steps (and probably adds
complexity), also incorporates comparative advantages over the
original ALCCmethod. Based on the SMA regression, it produces
more accurate estimates of CSTVs and their confidence intervals,
as well as more reliable comparisons between datasets.
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