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Abstract We show that similarity (or equivalent) transformations enable one to construct
non-Hermitian operators with real spectrum. In this way we can also prove and gen-
eralize the results obtained by other authors by means of a gauge-like transformation
and its generalization. Such similarity transformations also reveal the connection with
pseudo-Hermiticity in a simple and straightforward way.

Keywords Similarity transformation · Equivalent operators · Isospectral operators ·
Pseudosymmetric operators

1 Introduction

In the last years there has been great interest in the mathematical properties of non-
Hermitian Hamiltonians, which was mainly aroused by the conjecture that the non-
Hermitian Hamiltonians with real spectra studied so far [1–3] exhibited PT symmetry [4].
There is a vast literature on non-Hermitian Hamiltonians, some of which is reviewed else-
where [5] (see also [6–14] and references therein). Later Mostafazadeh [15–17] showed that
every Hamiltonian with a real spectrum is pseudo-Hermitian and that all the PT-symmetric
Hamiltonians studied in the literature exhibited such property. On the other hand, the so-
called space-time symmetry did not prove to be so robust in producing non-Hermitian
operators with real spectra [18–21].
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Some time ago Ahmed [22] derived a family of one-dimensional non-Hermitian Hamil-
tonians with real spectrum by means of a gauge-like transformation. He argued that
the eigenfunctions of the resulting PT-symmetric Hamiltonian did not satisfy the PT-
orthogonality condition. Recently, Rath and Mallick [23] put forward a generalization of
the gauge-like transformation that involves both the coordinate and momentum operators
and leads to a non-Hermitian Hamiltonian that appears to be isospectral with the harmonic
oscillator.

The purpose of this paper is to discuss the gauge-like transformation in a more general
and rigorous setting. In Section 2 we outline the main ideas of the similarity (or equiva-
lent) transformation between a non-Hermitian and a Hermitian Hamiltonian. In Section 3
we discuss the gauge-like transformation introduced by Ahmed and in Section 4 the some-
what more general transformation proposed by Rath and Mallick. In Section 5 we show
how to generalize the latter. Finally, in Section 6 we summarize the main results and draw
conclusions.

2 Similarity or Equivalent Transformation

Let H be a Hermitian operator with a discrete spectrum

Hψn = Enψn, (1)

and a complete set of eigenvectors
∑

n

|ψn〉〈ψn| = I, 〈ψm|ψn〉 = δmn, (2)

where I is the identity operator. Its spectral decomposition reads

H =
∑

n

En|ψn〉〈ψn|. (3)

For every linear invertible operator U the similarity transformation

H̃ = UHU−1, (4)

yields a new operator H̃ that is not Hermitian unless U−1 = U†. We say that H and H̃ are
equivalent or similar. The transformed vectors

|ϕn〉 = U |ψn〉, (5)

are eigenvectors of H̃

H̃ |ϕn〉 = UHU−1U |ψn〉 = En|ϕn〉, (6)

whereas
|�n〉 = (U−1)†|ψn〉, (7)

are eigenvectors of the adjoint operator H̃ †

H̃ †|�n〉 = (U−1)†HU†(U−1)†|ψn〉 = En|�n〉. (8)

Both sets of vectors form a biorthonormal basis

〈�m|ϕn〉 = 〈ψm|ψn〉 = δmn, (9)

that enables us to write

H̃ =
∑

n

EnU |ψn〉〈ψn|U−1 =
∑

n

En|ϕn〉〈�n|. (10)
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The basis set {|ϕn〉} is orthonormal with the metric given by (U−1)†U−1:

〈ψm|ψn〉 = 〈ϕm|(U−1)†U−1|ϕn〉 = δmn. (11)

On the other hand, the standard inner product

〈ϕm|ϕn〉 = 〈ψm|U†U |ψn〉, (12)

is not necessarily finite.
It follows from (4) that

H̃ † = (U−1)†HU† = (U−1)†U−1H̃UU† = ηH̃η−1 (13)

where η = (U−1)†U−1 is Hermitian and positive definite. We say that H̃ is η-pseudo-
Hermitian [15–17] and (11) becomes

〈ϕm|η|ϕn〉 = δmn. (14)

If A and B are two linear operators then

[Ã, B̃] = U [A, B]U−1. (15)

In particular, the commutator [x, p] = iI between the coordinate x and momentum p is
conserved

[x̃, p̃] = iI. (16)

Summarizing A non-Hermitian operator H̃ that is similar or equivalent to an Hermitian
one H is pseudo Hermitian. In addition to it, both operators are isospectral. When the simi-
larity transformation is unitary (U−1 = U†) it conserves the norm (〈ϕm|ϕn〉 = δmn), η = I

and H̃ is obviously Hermitian.
The results developed above are not new since they are contained in Mostafazadeh’s

papers [15–17]. We simply derived them here from the point of view of a similarity trans-
formation in order to connect them with the papers of Ahmed [22] and Rath and Mallick
[23] in a clearer way.

3 Gauge-Like Transformation

The gauge-like transformation for one-dimensional operators

H = 1

2
p2 + V (x), (17)

discussed by Ahmed [22] is a particular case of the similarity transformation outlined in
Section 2. If we choose

U = eu(x), (18)

then [24]
p̃ = UpU−1 = p + [u, p] = p + iu′, x̃ = x, (19)

and

H̃ = 1

2
(p + iu′)2 + V (x). (20)

Therefore, H and H̃ are isospectral as discussed in Section 2.
The transformation of the non-Hermitian operator

Hβ = 1

2
[p + iβν(x)]2 + V (x), (21)
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yields

H̃β = 1

2
[p + iβν(x) + iu′(x)]2 + V (x). (22)

If ν(x) is real and

u′(x) = −2βν(x), (23)

then

H̃β = H
†
β . (24)

Since u(x) is real then U is Hermitian and positive definite; therefore Hβ is U -pseudo-
Hermitian.

In particular, Ahmed chose ν(x) = x and V (x) = (α2 + β2)x2/2 so that

Hβ = 1

2
(p + iβx)2 + 1

2
(α2 + β2)x2, (25)

and u(x) = u1(x) = −βx2 leads to (24). Note that if u2(x) = −βx2/2 then

eu2Hβe−u2 = 1

2
p2 + 1

2
(α2 + β2)x2 = HSHO (26)

from which we conclude that Hβ and the simple harmonic oscillator HSHO are isospectral.
In this case the eigenfunctions ϕn(x) of the former operator are square integrable provided
α �= 0 [22]. These results are particular cases of those derived in Section 2 (note that
eu2 (eu2)† = eu1 ).

Ahmed [22] also discussed the particular case β = iγ , γ real, that leads to the Hermitian
operator

Hγ = 1

2
(p − γ x)2 + 1

2
(α2 − γ 2)x2, (27)

and draw two curious conclusions. He stated that “Remarkably, the usual connection
between the nodal structure with the quantum number n does not hold any more. Even the
ground state may have nodes for some values of γ .” Since |ϕn(x)| = |ψn(x)| it is obvious
that both functions have the same number of nodes; in particular, the ground state ϕ0(x) is
nodeless in the interval (−∞,∞) as expected. He also said that “Eigenvalues (18) possess
an interesting feature of becoming complex (conjugate) at the cost of eigenfunction (19)
being delocalized as it would not vanish at x = ±∞. This interesting phase-transition of
eigenvalues from real to complex takes place when γ > γcritical (= α).” It is obvious that
this interesting phase transition is due to the force constant chosen for HSHO and has noth-
ing to do with the transformation of one oscillator into the other. To see this point more
clearly just choose

Hγ = 1

2
(p − γ x)2 + 1

2
kx2, (28)

and the phase transition does not take place for any value of γ if k > 0.

4 Transformation of Coordinate and Momentum

Recently, Rath and Mallick [23] proposed the following generalization of the gauge-like
transformation:

x → x̃ = 1√
1 + αβ

(x + iαp), p → p̃ = 1√
1 + αβ

(p + iβx), (29)

Author's personal copy



Int J Theor Phys

that converts

HHO = 1

2
(p2 + x2) (30)

into the non-Hermitian operator

H = 1

2(1 + αβ)
[(p + iβx)2 + (x + iαp)2]. (31)

They did not place any restriction whatsoever on α and β but it is obvious that at least
αβ �= −1. By means of a non-rigorous procedure based on second quantization, an
adjustable frequency and a truncated perturbation expansion the authors conjectured that
the eigenvalues of H appeared to be exactly those of HHO .

This conclusion follows straightforwardly from the similarity transformation

H = UHHOU−1, (32)

where U is given by
UxU−1 = x̃, UpU−1 = p̃ (33)

According to the results of Section 2 both operators are isospectral with eigenvalues

En = n + 1

2
, n = 0, 1, . . . , (34)

and H is η-pseudo-Hermitian. Clearly, no further calculation is required.
It only remains to determine whether the eigenfunctions of H are square integrable. To

this end we resort to the construction of the eigenvectors of HHO in second-quantization
form [24]:

a|ψ0〉 = 0, |ψn〉 = 1√
n! (a

†)n|ψ0〉, (35)

where

a = 1√
2
(x + ip), a† = 1√

2
(x − ip). (36)

It follows from (29), (33) and (35) that

ã|ϕ0〉 = 0, |ϕn〉 = 1√
n! (ã

†)n|ϕ0〉. (37)

Since

ã = 1√
2(1 + αβ)

[(1 − β)x + i(1 + α)p] , (38)

then the ground state ϕ0(x) is a solution of the first-order differential equation

ϕ′
0(x) = −1 − β

1 + α
xϕ0(x), (39)

that leads to

ϕ0(x) =
[

1 − β

π(1 + α)

]1/4

exp

[
− 1 − β

2(1 + α)
x2

]
. (40)

We appreciate that ϕ0(x) is square integrable (and, consequently, also all the other eigen-
functions ϕn(x)) provided that (1 + α)(1 − β) > 0. The square-integrability of the
eigenfunctions was not discussed by Rath and Mallick [23] in spite of the fact that the con-
ditions just given appear explicitly in the zero and pole of their chosen frequency ω for
Case II.
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The operator that carries out the transformation (29) is of the form [24]

U = exp(ax2 + bp2), (41)

where

iα = (e2
√−ab − 1)

√−ab

a(e2
√−ab + 1)

iβ = (1 − e2
√−ab)

√−ab

b(e2
√−ab + 1)

, (42)

that leads to α/β = −b/a.

5 A More General Coordinate-Momentum Transformation

A more general similarity transformation is given by [24]

x̃ = UxU−1 = U11x + U12p

p̃ = UpU−1 = U21x + U22p, (43)

where
U11U22 − U21U12 = 1, (44)

follows from the condition [x̃, p̃] = iI . Since the matrix elements Uij may be complex
numbers the transformation depends on eight parameters that should satisfy two equations;
therefore, there are only six independent parameters and the transformation is given by an
exponential operator of the form [24]

U = exp

[
a

2
x2 + c

2
(xp + px) + b

2
p2

]
, (45)

where a, b and c are complex numbers.
The application of this similarity transformation to the harmonic oscillator HHO (30)

yields the operator

H̃ = UHHOU−1

= 1

2

[(
U2

22 + U2
12

)
p2 +

(
U2

11 + U2
21

)
x2 + (U21U22 + U11U12) (xp + px)

]
. (46)

By means of well known operator formulas [24] it is not difficult to prove that

U11 = cosh(θ) − c

θ
sinh(θ)

U12 = −b

θ
sinh(θ)

U21 = a

θ
sinh(θ)

U22 = cosh(θ) + c

θ
sinh(θ)

θ =
√

c2 − ab . (47)

In general, any operator of the form (46) with matrix elements Uij that satisfy the condition
(44) is equivalent (and therefore isospectral) to the harmonic oscillator (30). It is always η-
pseudo-Hermitian and under certain conditions it may also be Hermitian or PT-symmetric.
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For example, if U2
22 + U2

12 and U2
11 + U2

21 are both real and (U21U22 + U11U12) purely
imaginary, then H̃ is PT-symmetric. The choice U11 = U22 = 1, U12 = 0, and U21 = iβ

yields one of the examples given by Ahmed [22]. On he other hand, when U11 = U22 =
1/

√
1 + αβ, U12 = iα/

√
1 + αβ, and U21 = iβ/

√
1 + αβ we obtain the model proposed

by Rath and Mallick [23]. Obviously, when the coefficients of p2, x2 and xp + px are real
H̃ is Hermitian.

Arguing as in Section 4 we conclude that the eigenfunctions ϕn(x) of H̃ are square
integrable provided that

	U11 + iU21

U22 − iU12
> 0 (48)

6 Conclusions

The purpose of this paper is to show that the results of Ahmed [22] and Rath and Mallick
[23] can be straightforwardly derived and proved by suitable similarity transformations. In
the former case there is no need of discussing the reality of the operator and its eigenfunc-
tions or the orthogonality conditions. In fact, the proposition enunciated by the author does
not explain the situation. Once we prove that a non-Hermitian operator is similar to an Her-
mitian one the reality of the spectrum of the former is certainly proved. Of course, caution
must be exercised with respect to the square-integrability of its eigenfunctions.

With respect to the latter paper [23] the similarity transformation is a much more rigorous
and straightforward way of proving that the non-Hermitian operator is isospectral with the
harmonic oscillator. The results of both papers are merely particular cases of the general
expressions derived by Mostafazadeh [15–17] and also of the equations derived in Section 2.

Finally, (46) with the restriction (44) enables us to construct a family of non-Hermitian
operators with real spectrum. If necessary we can enlarge the number of cases by choosing
HHO = p2 + kx2, k > 0, instead of the operator (30) thus having one more independent
parameter at our disposal.
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