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Abstract The concept of incoherence naturally arises in ontological settings, specially
when integrating knowledge. In the Datalog± literature, however, this is an issue that is
yet to be studied more deeply. The main focus of our work is to show how classical
inconsistency-tolerant semantics for query answering behaves when dealing with atoms
that are relevant to unsatisfiable sets of existential rules, which may hamper the quality
of answers and any reasoning task based on those semantics. We also propose a notion of
incoherency-tolerant semantics for query answering in Datalog±, and exemplify this notion
with a particular semantics based on the transformation of classic Datalog± ontologies into
defeasible Datalog± ones, which use argumentation as its reasoning machinery.

Keywords Incoherence · Inconsistency-tolerant semantics · Argumentation · Datalog±
ontologies
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1 Introduction and motivation

In recent times it is usual the development of applications capable to share and reuse data,
specially in environments like the Semantic Web, which provide an effective infrastructure
for data exchange. At the core of the Semantic Web knowledge is represented by means
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of ontological languages. These are powerful knowledge representation tools given their
decidability and tractability properties which make them attractive for handling practical
applications.

In such scenarios a preponderant problem is that of the inconsistencies that can arise in
ontologies. There are a number of works addressing this issue in both the Semantic Web
and Database Theory communities, and several methods have been developed to deal with
it, e.g., [1, 4, 6, 25, 26, 28]. Among the most important semantics developed for querying
inconsistent databases, consistent answers [1] (or AR semantics in [25] for ontological lan-
guages) is the most accepted one. Intuitively, this semantics uses a cautious approach that
yields the set of atoms that can be derived despite all possible ways of repairing the incon-
sistency. A common assumption regarding such semantics is that the intensional knowledge
(represented as a set of rules and/or constraints in Datalog± or a TBox in Description Log-
ics) correctly models the semantics of the data and this does not change over time. In
practice, such assumption have a twofold impact:

(a) First, the set of rules/constraints is always satisfiable, in the sense that their application
do not inevitably yield a consistency problem.

(b) Second, as a result of the previous observation, it must be the case that the conflicts
come from the data contained in the database instance (or ABox) and that is the part
of the ontology that must be modified in order to restore consistency.

To consider the set constraints as always satisfiable may be a reasonable assumption
to make. This is specially true in the case of a single ontology which in theory could be
assumed to be carefully designed and/or to be curated over time. Nevertheless, as noticed by
Schlobach and Cornet [36], incoherences do arise in real-world ontologies. An example of
such incoherent ontologies is DICE: in such ontology the definition of the “brain” concept is
incorrectly specified as both “central nervous-system” and “body-part” located in the head,
which is contradictory as nervous-systems and body-parts are declared disjoint in DICE
[36]. So, in this work we will consider this more general setting and consider that as knowl-
edge evolves, both data and constraints may change and become conflicting. The problem of
conflicts among constraints is known in the Description Logics community as incoherence
[21, 32, 36]. As we will see later in this work, several of the well-known inconsistency-
tolerant semantics for query answering fail at computing good quality answers in the
presence of incoherence.

In this paper we focus on a particular family of ontological languages, namely
Datalog±[8]. We show how incoherence can arise in Datalog± ontologies, and how the rea-
soning technique based on the use of defeasible elements in Datalog± and an argumentative
semantics introduced by Martinez et al. [28] can tolerate such issues, thus resulting in a
reasoning machinery suitable of dealing with both incoherent and inconsistent knowledge.

This work integrates three different building blocks:

• First, the notion of incoherence for Datalog± ontologies [15] is recalled, which relates
to the problem of satisfiability of concepts for Description Logics;

• second, we show how such notion affects most of well-known inconsistency-tolerant
semantics which, since they were not designed to confront such issues, can go up to the
point of not returning any useful answer;

• finally, we propose a definition for incoherency-tolerant semantics, and introduce
an alternative semantics for classic Datalog± ontologies based on an argumentative
reasoning process over the transformation of classic Datalog± ontologies to their cor-
respondent defeasible Datalog± ontologies [28]. We show how this semantics behaves
in a satisfactory way in the presence of incoherence, as the process can return as
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answers atoms that trigger incoherency, which we show that cannot be done by classical
inconsistency-tolerant semantics.

2 Preliminaries

First, we briefly recall some basics on Datalog±[8]. We assume (i) an infinite universe of
(data) constants � (which constitute the “normal” domain of a database), (ii) an infinite set
of (labeled) nulls �N (used as “fresh” Skolem terms, which are placeholders for unknown
values, and can thus be seen as variables), and (iii) an infinite set of variables V (used
in queries, dependencies, and constraints). Different constants represent different values
(unique name assumption), while different nulls may represent the same value. We assume
a lexicographic order on �∪�N , with every symbol in �N following all symbols in �. We
denote by X sequences of variables X1, . . . , Xk with k ≥ 0. We assume a relational schema
R, which is a finite set of predicate symbols (or simply predicates). A term t is a constant,
null, or variable. An atomic formula (or atom) a has the form P(t1, ..., tn), where P is an
n-ary predicate, and t1, ..., tn are terms. A database (instance) D for a relational schema R
is a (possibly infinite) set of atoms with predicates from R and arguments from �.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-order
formula ∀X∀Y�(X,Y) → ∃Z�(X,Z), where �(X,Y) and �(X,Z) are conjunctions of
atoms over R (without nulls), called the body and the head of σ , respectively. Satisfac-
tion of TGDs are defined via homomorphisms, which are mappings μ : � ∪ �N ∪V →
� ∪ �N ∪V such that (i) c ∈ � implies μ(c)= c, (ii) c ∈ �N implies μ(c)∈ � ∪ �N , and
(iii) μ is naturally extended to atoms, sets of atoms, and conjunctions of atoms. Consider a
database D for a relational schema R, and a TGD σ on R of the form ϒ(X,Y) → ∃Z�(X,

Z). Then, σ is applicable to D if there exists a homomorphism h that maps the atoms of
ϒ(X,Y) to atoms of D. Let σ be applicable to D, and h′ be a homomorphism that extends
h as follows: for each Xi ∈ X, h′(Xi) = h(Xi); for each Zj ∈ Z, h′(Zj ) = zj , where zj

is a “fresh” null, i.e., zj ∈ �N , zj does not occur in D, and zj lexicographically follows all
other nulls already introduced. The application of σ on D adds to D the atom h′(�(X,Z))

if it is not already in D. After the application we say that σ is satisfied by D. The Chase for
a database D and a set of TGDs �T , denoted chase(D,�T ), is the exhaustive application of
the TGDs [9] in a breadth-first (level-saturating) fashion, which leads to a (possibly infinite)
chase for D and �. Since TGDs can be reduced to TGDs with only single atoms in their
heads, in the sequel, every TGD has without loss of generalization a single atom in its head.

A conjunctive query (CQ) over R has the form Q(X) =∃Y�(X,Y), where �(X,Y) is
a conjunction of atoms (possibly equalities, but not inequalities) with the variables X and
Y, and possibly constants, but without nulls. In this work we restrict our attention to atomic
queries. A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as the set
of all its atoms, without quantifiers. The set of answers for a CQ Q to D and �, denoted
ans(Q, D, �), is the set of all tuples a such that a∈ Q(B) for all B ∈mods(D, �). The
answer for a BCQ Q to D and � is Yes, denoted D ∪ � |= Q, iff ans(Q,D, �) 	= ∅. It is
important to remark that BCQs Q over D and �T can be evaluated on the chase for D and
�T , i.e., D ∪ �T |= Q is equivalent to chase(D, �T ) |= Q [9].

Negative constraints (NCs) are first-order formulas of the form ∀X�(X) → ⊥, where
the body X is a conjunction of atoms (without nulls) and the head is the truth constant false,
denoted ⊥. Intuitively, the head of these constraints have to evaluate to false in D under a
set of TGDs �T . That is, an NC τ is satisfied by a database D under a set of TGDs �T iff
there not exists a homomorphism h that maps the atoms of �(X) to D, where D is such
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that every TGD in �T is satisfied. As we will see through the paper, negative constraints
are important to identify inconsistencies in a Datalog± ontology, as their violation is one
of the main inconsistency sources. In this work we restrict our attention to binary negative
constraints (or denial constraints), which are NCs such that their body is the conjunction
of exactly two atoms, e.g., p(X, Y ) ∧ q(X,Z) → ⊥. As we will show later, this class of
constraints suffices for the formalization of the concept of conflicting atoms.

Equality-generating dependencies (EGDs) are first-order formulas of the form
∀X�(X) → Xi = Xj , where �(X) is a conjunction of atoms, and Xi and Xj are variables
from X. An EGD σ is satisfied in a database D for R iff, whenever there exists a homomor-
phism h such that h(�(X)) ⊆ D, it holds that h(Xi) = h(Xj ). In this work we will focus
on a particular class of EGDs, called separable [8]; intuitively, separability of EGDs w.r.t.
a set of TGDs states that, if an EGD is violated, then atoms contained in D are the reason
of the violation (and not the application of TGDs); i.e., if an EGD in �E is violated when
we apply the TGDs in �T for a database D, then the EGD is also violated in D. Separabil-
ity is an standard assumption in Datalog± ontology, as one of the most important features
of this family of languages is the focus on decidable [10] (actually tractable) fragments
of Datalog±. In this work we will adopt this assumption as well and focus only on decid-
able fragments of the family. EGDs play also an important role in the matter of conflicts
in Datalog± ontologies. Note that the restriction of using only separable EGDs makes that
certain cases of conflicts are not considered in our proposal; the treatment of such cases,
though interesting from a technical point of view, are outside the scope of this work since
we focus on tractable fragments of Datalog± as the ones mentioned above. Moreover, as for
the case with NCs, we restrict EGDs to binary ones; that is, those which body ∀X�(X) is
such that �(X) is the conjunction of exactly two atoms, e.g., p(X, Y )∧q(X,Z) → Y = Z.
In this work we often use the terms constraints and/or dependencies indistinguishable when
referring to sets of TGDs, NCs, and EGDs.

We usually omit the universal quantifiers in TGDs, NCs and EGDs, and we implicitly
assume that all sets of dependencies and/or constraints are finite.

Datalog± Ontologies A Datalog± ontology KB = (D, �), where � =�T ∪ �E ∪ �NC,
consists of a database D, a set of TGDs �T , a set of separable EGDs �E , and a set of
negative constraints �NC.

Example 1 illustrates a simple Datalog± ontology.

Example 1 Consider the following KB.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D : {a1 : can sing(simone), a2 : rock singer(axl),
a3 : sing loud(ronnie), a4 : has fans(ronnie),

a5 : manage(band1, richard), a6 : sang in(axl, band2),
a7 : pop band(band2), a8 : invited guest(axl, band2)}

�NC : {τ1 : sore throat(X) ∧ can sing(X) → ⊥,
τ2 : unknown(X) ∧ famous(X) → ⊥,

τ3 : pop singer(X) ∧ rock singer(X) → ⊥,
τ4 : invited guest(X, Y ) ∧ sang in(X, Y ) → ⊥}

�E : {ν1 : manage(X, Y ) ∧ manage(X, Z) → Y = Z}
�T : {σ1 : rock singer(X) → sing loud(X),

σ2 : sing loud(X) → sore throat(X),
σ3 : has fans(X) → famous(X),

σ4 : rock singer(X) → can sing(X),
σ5 : sang in(X, Y ) ∧ pop band(Y ) → pop singer(X)}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Following the classical notion of consistency, we say that a consistent Datalog± ontology
has a non-empty set of models.

Consistency A Datalog± ontology KB = (D, �) is consistent iff mods(D, �) 	= ∅. We
say that KB is inconsistent otherwise.

3 Incoherence in Datalog±

The problem of obtaining consistent knowledge from an inconsistent knowledge base is
natural in many computer science fields. As knowledge evolves, conflicts and/or contradic-
tions are likely to appear, and these inconsistencies have to be handled in a way such that
they do not affect the quality of the information obtained from the knowledge base.

In the setting of Consistent Query Answering (CQA), database repairing, and
inconsistency-tolerant query answering in ontological languages [1, 25, 26], often the
assumption is made that the set of constraints � expresses the semantics of the data in the
component D, and as such there is no internal conflict on the set of constraints; further-
more, these constraints are not subject to changes over time. In this paper we will drop such
assumption and focus on the relationship between the set of TGDs and the set of NCs and
EGDs, as it could happen that (a subset of) the TGDs in �T cannot be applied without
always leading to the violation of the NCs or EGDs. This issue is related to that of unsat-
isfiability problem of a concept in an ontology and it is known in the Description Logics
community as incoherence [21, 32, 36]. Incoherence can be particularly important when
combining multiple ontologies since the constraints imposed by each one of them over the
data could (potentially) represent conflicting modellings of the application at hand. Clearly,
the notions of incoherence and inconsistency are highly related; in fact, Flouris et al. [21]
establish a relation between incoherence and inconsistency, considering the former as a
special case of the latter.

The notion of incoherence that we use here states that given a set of incoherent con-
straints �T ⊆ � it is not possible to find a set of atoms D such that KB = (D, �)

is a consistent ontology and at the same time all TGDs in �T are applicable in D [15].
This means that a Datalog± ontology KB can be consistent even if the set of con-
straints is incoherent, as long as the database instance does not make the set of conflicting
dependencies applicable. On the other hand, a Datalog± ontology KB can be inconsis-
tent even when the set of constraints is coherent. Consider, as an example, the following
KB = ({tall(peter), small(peter)}, {tall(X) ∧ small(X) → ⊥}), where the (empty) set
of dependencies is trivially coherent; the ontology is, nevertheless, inconsistent.

In the last decades, several approaches to handling inconsistency were developed in
Artificial Intelligence and Database Theory (e.g., [1, 16, 24]). Some of the best known
approaches deal with inconsistency by removing from the theory atoms, or a combination of
atoms and constraints or rules. A different approach is to simultaneously consider all pos-
sible ways of repairing the ontology by deleting or adding atoms, as in most approaches to
Consistent Query Answering [1] (CQA for short). However, these data-driven approaches
might not be adequate for an incoherent theory and may produce meaningless results. As we
stated before, an incoherent set of constraints � renders inconsistent any ontology whose
database instance is such that the incoherent (sub)set of TGDs are applicable; in particu-
lar cases, this may lead to the removal (or ignoring) of every single atom in a database
instance in an attempt to restore consistency, resulting in an ontology without any valuable
information, when it could be the case that it is the set of constraints that is ill defined.
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We will now recall from [15] the different concepts needed for the following sections.
Before formalizing the notion of incoherence that we use in our Datalog± setting we need
to identify the set of atoms that are relevant to a given set of TGDs. Intuitively, we say that
a set of atoms A is relevant to a set T of TGDs if the atoms in the set A are such that the
application of T over A generates the atoms that are needed to apply all dependencies in T ,
i.e., A triggers the application of every TGD in T . Formally, the definition of atom relevancy
is as follows:

Definition 1 (Relevant Set of Atoms for a Set of TGDs [15]) Let R be a relational
schema, T be a set of TGDs, and A a (possibly existentially closed) non-empty set of
atoms, both over R. We say that A is relevant to T iff for all σ ∈ T of the form
∀X∀Y�(X,Y) → ∃Z�(X,Z) it holds that chase(A, T ) |= ∃X∃Y�(X,Y).

When it is clear from the context, if a singleton set A = {a} is relevant to T ⊆ �T we
just say that atom a is relevant to T . The following example illustrates atom relevancy.

Example 2 (Relevant Set of Atoms) Consider the following constraints:
�T = {σ1 : plays(X, Y ) → musician(X),

σ2 : musician(X) ∧ compositor(X) → band leader(X,B),

σ3 : band(X) → plays in(X, B)}
First, let us consider the set A1 = {plays(jordan, keyboard), compositor(jordan),

band(dream)}. This set is a relevant set of atoms to the set of constraints �T =
{σ1, σ2, σ3}, since σ1 and σ3 are directly applicable to A1 and σ2 becomes applicable
when we apply σ1 (i.e., the chase entails the atom musician(jordan), which together with
compositor(jordan) triggers σ2).

However, the set A2 = {plays(jordan, keyboard), compositor(mike)} is not rele-
vant to �T . Note that even though σ1 is applicable to A2, the TGDs σ2 and σ3 are never
applied in chase(A2, �T ). For instance, consider the TGD σ2 ∈ �T . In the chase of �T

over D we create the atom musician(jordan), but nevertheless we still cannot trigger σ2
since we do not have and cannot generate the atom compositor(jordan), and the atom
compositor(mike) that is already in A2 does not match the constant value.

We now recall the notion of coherence for Datalog±, which adapts others introduced
previously for DLs [21, 36]. Our conception of (in)coherence is based on the notion of sat-
isfiability of a set of TGDs w.r.t. a set of constraints. Intuitively, a set of dependencies is
satisfiable when there is a relevant set of atoms that triggers the application of all depen-
dencies in the set and does not produce the violation of any constraint in �NC ∪�E , i.e., the
TGDs can be satisfied along with the NCs and EGDs in KB.

Definition 2 ((Satisfiability of a set of TGDs w.r.t. a set of constraints [15])) Let R be a
relational schema, T ⊆ �T be a set of TGDs, and N ⊆ �NC ∪ �E , both over R. The set
T is satisfiable w.r.t. N iff there is a set A of (possibly existentially closed) atoms over R
such that A is relevant to T and mods(A, T ∪ N) 	= ∅. We say that T is unsatisfiable w.r.t.
N iff T is not satisfiable w.r.t. N . Furthermore, �T is satisfiable w.r.t. �NC ∪ �E iff there is
no T ⊆ �T such that T is unsatisfiable w.r.t. some N with N ⊆ �NC ∪ �E .

In the rest of the paper sometimes we write that a set of TGDs is (un)satisfiable omitting
the set of constraints, we do this in the context of a particular ontology where we have a
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fixed set of constraints �NC ∪ �E . Also, through the paper we denote by U(KB) the set
of minimal unsatisfiable sets of TGDs in �T for KB (i.e., unsatisfiable set of TGDs such
that every proper subset of it is satisfiable). The following example illustrates the concept
of satisfiability of a set of TGDs in a Datalog± ontology

Example 3 (Unsatisfiable sets of dependencies) Consider the following sets of constraints.

�1
NC = {τ : drives car(P ) ∧ teenager(P ) → ⊥}
�1

T = {σ1 : taxist(P ) → drives car(P ), σ2 : in high school(P ) → teenager(P )}
The set �1

T is a satisfiable set of TGDs, and even though the simultaneous application
of σ1 and σ2 may violate τ ∈ �1

NC, that does not hold for every relevant set of atoms.
Consider as an example the relevant set D1 = {taxist (travis), in high school(rust)};
D1 is a relevant set for �1

T , however, as we have that mods(D1, �
1
T ∪ �1

NC ∪ �1
E) 	= ∅ then

�1
T is satisfiable.
On the other hand, as an example of unsatisfiability consider the following constraints:

�2
NC = {τ1 : sore throat(X) ∧ can sing(X) → ⊥}
�2

T = {σ1 : rock singer(X) → sing loud(X),

σ2 : sing loud(X) → sore throat(X),

σ3 : rock singer(X) → can sing(X)}

The set �2
T is an unsatisfiable set of dependencies, as the application of TGDs

{σ1, σ2, σ3} on any relevant set of atoms will cause the violation of τ1. For instance,
consider the relevant atom rock singer(axl): we have that the application of �2

T over
{rock singer(axl)} causes the violation of τ1 when considered together with �2

T , therefore
mods({rock singer(axl)}, �2

T ∪ �2
NC ∪ �2

E) = ∅. Note that any set of relevant atoms will
cause the violation of τ1.

With the presented elements we can have a formal definition of coherence for a Datalog±
ontology. Intuitively, an ontology is coherent if there is no subset of the set of TGDs that is
unsatisfiable w.r.t. the constraints in the ontology.

Definition 3 (Coherence [15]) Let KB = (D, �) be a Datalog± ontology defined over a
relational schema R, and � = �T ∪ �E ∪ �NC, where �T is a set of TGDs, �E a set of
separable EGDs and �NC a set of negative constraints. KB is coherent iff �T is satisfiable
w.r.t. �NC ∪ �E . Also, KB is said to be incoherent iff it is not coherent.

Example 4 (Coherence) Consider the sets of dependencies and constraints defined in
Example 3 and an arbitrary database instance D. Clearly, the Datalog± ontology KB1 =
(D, �1

T ∪ �1
NC ∪ �1

E) is coherent, while KB2 = (D, �2
T ∪ �2

NC ∪ �2
E) is incoherent.

Finally, we recall the relation between incoherence and inconsistency [15]. Looking into
Definitions 2 and 3 we can infer that an incoherent KB will induce an inconsistent KB

when the database instance contains any set of atoms that is relevant to the unsatisfiable sets
of TGDs. This result is captured in the following proposition.
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Proposition 1 ([15]) Let KB = (D, �) be a Datalog± ontology where � = �T ∪
�E ∪ �NC. If KB is incoherent and there exists A ⊆ D such that A is relevant to some
unsatisfiable set U ∈ U(KB) then KB = (D, �) is inconsistent.

Example 5 (Relating Incoherence and Inconsistency) As an instance of the relationship
expressed in Proposition 1, consider once again the ontology presented in Example 1. As
hinted previously in Example 3, there we have the set A ⊂ D = {rock singer(axl)} and
the unsatisfiable set of TGDs U ⊂ �T = {σ1 : rock singer(X) → sing loud(X), σ2 :
sing loud(X) → sore throat(X), σ4 : rock singer(X) → can sing(X)}. Since A is relevant
to U the conditions in Proposition 1 are fulfilled, and indeed the ontology KB = (D, �)

from Example 1 is inconsistent since τ1 ∈ �T is violated.

4 Incoherence influence on classic inconsistency-tolerant semantics

In the previous section we have established the relationship between incoherence and incon-
sistency. As explained, classic inconsistency-tolerant techniques do not account (by design)
for coherence issues. Nevertheless, if we consider that both components in the ontology
evolve (perhaps being collaboratively maintained by a pool of users) then certainly inco-
herence is prone to arise. In the following we show that it may be important for query
answering semantics to consider incoherence in ontologies besides inconsistency, since if
not treated appropriately an incoherent set of TGDs may lead to the trivial solution of
removing/ignoring every single relevant atom in D (which in the worst case could be the
entire database instance). While this may be adequate for some particular domains, it does
not seem to be a desirable outcome in the general case.

Although classical query answering in Datalog± is not tolerant to inconsistency issues,
a variety of inconsistency-tolerant semantics have been developed in the last decade for
ontological languages, including lightweight Description Logics (DLs), such as EL and
DL-Lite [5, 25], and several fragments of Datalog±[26]. In this section we analyze the influ-
ence of incoherence in several inconsistency-tolerant semantics for ontological languages:
AR semantics [25], CAR semantics [25], and provide some insights for sound approxima-
tions of AR and of CAR. We present the basic concepts needed to understand the different
semantics for query answering on Datalog± ontologies and then show how entailment under
such semantics behaves in the presence of incoherence. The notion of repair in relational
databases is a model of the set of integrity constraints that is maximally close, i.e.,“as close
as possible” to the original database.

Depending on how repairs are obtained we can have different semantics. In the follow-
ing we recall AR-semantics [25], one of the most widely accepted inconsistency-tolerant
semantics, along with an alternative to AR called CAR-semantics.

AR semantics The AR semantics corresponds to the notion of consistent answers in rela-
tional databases [1]. Intuitively, an atom a is said to be AR-consistently entailed from a
Datalog± ontology KB, denoted KB |=AR a iff a is classically entailed from every ontol-
ogy that can be built from every possible A-box repair (a maximally consistent subset of the
D component that after its application to �T respects every constraint in �E ∪ �NC).

We denote by KB �AR a the fact that a cannot be AR-consistently inferred from KB.
We extend entailment to set of atoms straightforwardly, i.e., for a set of atoms A it holds
that KB |=AR A iff for every a ∈ A it holds that KB |=AR a, and KB �AR A otherwise.
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CAR semantics As noted by Lembo et al. [25], the AR semantics is not independent
from the form of the knowledge base; it is easy to show that given two inconsistent
knowledge bases that are logically equivalent, contrary to what one would expect, their
respective repairs do not coincide. To address this, another definition of repairs was also
proposed by Lembo et al. [25] that includes knowledge that comes from the closure of
the database instance with respect to the set of TGDs. Since the closure of an inconsis-
tent ontology yields the whole language, they define the consistent closure of an ontology
KB = (D, �T ∪ �E ∪ �NC) as the set CCL(KB) = {α | α ∈ H(LR) s.t. ∃S ⊆
D and mods(S, �T ∪ �E ∪ �NC) 	= ∅ and (S,�T ) |= α}. A Closed ABox repair of a
Datalog± ontology KB is a consistent subset D′ of CCL(KB) such that it maximally pre-
serves the database instance [25]. It is said that an atom a is CAR-consistently entailed from
a Datalog± ontology KB, denoted by KB |=CAR a iff a is classically entailed from every
ontology built from each possible closed ABox repair. We extend entailment to set of atoms
straightforwardly, i.e., for a set of atoms A it holds that KB |=CAR A iff for every a ∈ A it
holds that KB |=CAR a, and KB �CAR A otherwise.

Incoherence has great influence when calculating repairs, as can be seen in the following
result: independently of the query answering semantics (i.e., AR or CAR) no atom that is
relevant to an unsatisfiable set of TGDs could belong to a repair of an incoherent KB.

Lemma 1 Let KB = (D, �) be an incoherent Datalog± ontology where � = �T ∪ �E ∪
�NC andR(KB) be the set of (A-Box or Closed A-Box) repairs ofKB. IfA ⊆ D is relevant
to some unsatisfiable set U ∈ U(KB) then A � R for every R ∈ R(KB).

The proof of Lemma 1 follows from Proposition 1, since any set of atoms relevant to an
unsatisfiable set of TGDs will be conflictive with �NC ∪ �E , thus not qualifying to be part
of a proper repair.

Proof Let A ⊆ D be a set of atoms relevant to some unsatisfiable set U ∈ U(KB). Suppose
by absurd that there exists an arbitrary R ∈ R(KB) such that A ⊆ R.

Since A is relevant to U then from Proposition 1 we have that mods(D, �) = ∅, and it
easy to show that mods(A,�) = ∅. However, since R ∈ R(KB) then by the definition of
repairs we have that mods(R,�) 	= ∅, and as A ⊆ R then mods(A,�) 	= ∅.

Then, we have that mods(A, �) = ∅ and mods(A,�) 	= ∅, an absurd coming from our
initial supposition that there exists an arbitrary R ∈ R(KB) such that A ⊆ R, and it holds
that if A ⊆ D is relevant to some unsatisfiable set U ∈ U(KB) then A � R for every
R ∈ R(KB).

Example 6 Consider the atom rock singer(axl) from the ontology presented in Exam-
ple 1. As we have explained in Example 5, such atom is relevant to U ⊂ �T =
{σ1 : rock singer(X) → sing loud(X), σ2 : sing loud(X) → sore throat(X), σ4 :
rock singer(X) → can sing(X)}.

It is easy to show that as a result of this the atom does not belong to any A-Box or
Closed A-Box repair. Consider the case of A-Box repairs. We have that they are maximally
consistent subsets of the component D. We have that mods(rock singer(axl),�) = ∅, as
the NC τ1 : sore throat(X)∧can sing(X) → ⊥ is violated. Moreover, clearly this violation
happens for every set A ⊆ D such that rock singer(axl) ∈ A, and thus we have that
mods(A,�) = ∅, i.e., rock singer(axl) cannot be part of any A-Box repair for the KB.

Analogously, we can show that for any D′ ⊆ D such that mods(D′, �) 	= ∅ it holds that
(D′, �T ) 	|= rock singer(axl), and thus it holds that rock singer(axl) /∈ CCL(KB). Then,



C. A. D. Deagustini et al.

since Closed A-Box repairs are subsets of CCL(KB) it cannot happen that rock singer(axl)

belongs to any of these repairs.

Then, we can extend the result in Lemma 1 and say that every atom that is relevant to an
unsatisfiable set of TGDs cannot be AR-consistently (resp, CAR-consistently) entailed.

Proposition 2 Let KB = (D,�) be an incoherent Datalog± ontology where � = �T ∪
�E ∪ �NC. If A ⊆ D is relevant to some unsatisfiable set U ⊆ �T then KB �AR A and
KB �CAR A.

Proof In this proof we focus on AR semantics, disregarding the proof for CAR as it is
analogous.

Consider A ⊆ D such that it is relevant to some unsatisfiable set U ⊆ �T , and any
arbitrary R ∈ R(KB). Since A is relevant to U then from Proposition 1 follows that
mods(A,�) = ∅. However, since R ∈ R(KB) then by the definition of repairs we have
that mods(R,�) 	= ∅. Since mods(A,�) = ∅ and mods(R,�) 	= ∅ we can conclude that
R � A. Then, since there exists a repair that does not entail A we have that

⋂

R∈R(KB)

R � A,

and thus KB �AR A.

As a corollary, in the limit case that every atom in the database instance is relevant to
some unsatisfiable subset of the TGDs in the ontology then the set of AR-answers (resp,
CAR-answers) is empty.

Corollary 1 Let KB = (D, �) be an incoherent Datalog± ontology where � = �T ∪
�E ∪�NC, and letAAR andACAR be the set of atoms AR-consistently and CAR-consistenly
entailed from KB, respectively. If for every a ∈ D there exists some U ∈ U(KB) such that
a is relevant to U thenAAR = ∅ andACAR = ∅.

Proof Since for every a ∈ D there exists some U ∈ U(KB) such that a is relevant to U ,
then from Lemma 1 we have that R(KB) = ∅. Thus, since the set of repairs are empty then
nothing could be inferred from them and we have that AAR = ∅ and ACAR = ∅.

Example 7 Consider the KB in Example 1, and the atom a2 : rock singer(axl) in
D. Atom a2 is relevant to the unsatisfiable set U ⊂ �T = {σ1 : rock singer(X) →
sing loud(X), σ2 : sing loud(X) → sore throat(X), σ4 : rock singer(X) → can sing(X)},
and indeed it holds that KB �AR rock singer(axl) and KB �CAR rock singer(axl). As
explained in Example 6, this is because rock singer(axl) cannot belong to any repair since
its consistent application to � is not feasible, i.e.,mods((rock singer(axl), �)) = ∅.

The results shown in Proposition 2 and Corollary 1 also hold for other inconsistency-
tolerant semantics based on repairs, such as IAR, ICAR and ICR [25]. The reason behind
this is that the IAR and ICR semantics are sound approximations of the AR semantics,
and the ICAR semantics is a sound approximation of the CAR semantics. Then, there is
no answer that could be provided by IAR, ICR, and ICAR that is not given by AR or
IAR. Thus, if no set of atoms relevant to unsatisfiable sets of TGDs could be entailed from
the latter semantics, then certainly they could not be entailed by the former; therefore, the
results shown hold also for IAR, ICAR, and ICR.
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5 Incoherency-tolerant semantics

We have shown how incoherence affects classic inconsistency-tolerant semantics up to the
point of not returning any meaningful answer (since they were not develop to consider such
kind of issues). In this section we propose the notion of tolerance to incoherence for query
answering semantics. Such semantics will allow to be able to obtain useful answers from
incoherent ontologies. We continue this section by showing an alternative semantics for
Datalog± based on the use of argumentative inference that is tolerant to incoherence. For
the elements of argumentation we refer the reader to [3, 33].

Definition 4 (Incoherence-tolerant semantics) A query answering semantics S is said to be
tolerant to incoherence (or incoherency-tolerant) iff for every Datalog± ontology KB =
(D, �) where � = �T ∪ �E ∪ �NC, there exists A ⊆ D and U ∈ U(KB) such that A is
relevant to U and it holds that KB |=S A.

Intuitively, a query answering semantics is tolerant to incoherence if it can entail atoms
that trigger incoherent sets of TGDs as answers. Clearly, from Proposition 2 it follows that
inconsistency-tolerant semantics based on repairs are not tolerant to incoherence.

Observation 1 AR and CAR semantics are not incoherency-tolerant semantics.

5.1 An incoherency-tolerant semantics via argumentative inference

We begin by recalling Defeasible Datalog±(for the interested reader, a more complete
presentation of the framework can be found in [28]), and then we move on to show the
behaviour of this semantics in the presence of incoherence.

Defeasible Datalog±[28] is a variation of Datalog± that enables argumentative reasoning
in Datalog± by means of transforming the information encoded in a KB to represent state-
ments whose acceptance can be challenged. To do this, a Datalog± ontology is extended
with a set of defeasible atoms and defeasible TGDs; thus, a Defeasible Datalog± ontology
contains both (classical) strict knowledge and defeasible knowledge. The set of defeasible
TGDs allows to express weaker connections between pieces of information than in a classi-
cal TGDs. Defeasible TGDs are rules of the form ϒ(X,Y) �– ∃Z�(X, Z), where ϒ(X,Y)

and �(X, Z) are conjunctions of atoms. As in DeLP’s defeasible rules [22], defeasible
TGDs are used to represent weaker connections between the body and the head of a rule.
Defeasible TGDs are written using the symbol “ �– ”, while the classical (right) arrow “→”
is reserved to strict TGDs and NCs.

Defeasible Datalog± Ontologies. A defeasible Datalog± ontology KB consists of a
finite set F of ground atoms, called facts, a finite set D of defeasible atoms, a finite set
of TGDs �T , a finite set of defeasible TGDs �D , and a finite set of binary constraints
�E ∪ �NC.

The following example shows a defeasible Datalog± ontology that encodes the knowl-
edge from Example 1 changing some of the facts and TGDs to defeasible ones.

Example 8 The information from the ontology presented in Example 1
can be better represented by the following defeasible Datalog± ontology
KB = (F,D, �′

T , �D,�NC), where F = {can sing(simone), rock singer(axl),
sing loud(ronnie), has fans(ronnie)} and D = {manage(band1, richard)}. Note that we
have changed the fact stating that richard manages band1 to a defeasible one, since it could
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be the case that we heard reports that indicate that the members of band1 are looking for a
new manager. The sets of TGDs, and defeasible TGDs are now given by the following sets;
note that we have changed some of the TGDs into defeasible TGDs to make clear that the
connection between the head and body is weaker.

�T ′ = {sing loud(X) → sore throat(X),

rock singer(X) → can sing(X)

�D = {rock singer(X) �– sing loud(X),

has fans(X) �– famous(X)}

Derivations from a defeasible Datalog± ontology rely in the application of (strict or
defeasible) TGDs. Given a defeasible Datalog± ontology KB = (F,D, �T ,�D, �NC), a
(strict or defeasible) TGD σ is applicable if there exist a homomorphism mapping the atoms
in the body of σ into F ∪ D. The application of σ on KB generates a new atom from the
head of σ if it is not already in F ∪ D, in the same way as explained in the preliminaries of
this work.

The following definitions follow similar ones first introduced by Martinez et al. [29].
Here we adapt the notions to defeasible Datalog± ontologies. An atom has a derivation from
a KB iff there is a finite sequence of applications of (strict or defeasible) TGDs that has the
atom as its last component.

Definition 5 Let KB = (F,D, �T ,�D,�NC) be a defeasible Datalog± ontology and
L an atom. An annotated derivation ∂ of L from KB consists of a finite sequence
[R1, R2, . . . , Rn] such that Rn is L, and each atom Ri is either: (i) Ri is a fact or defeasible
atom, i.e., Ri ∈ F ∪ D, or (ii) there exists a TGD σ ∈ �T ∪ �D and a homomorphism
h such that h(head(σ )) = Ri and σ is applicable to the set of all atoms and defeasible
atoms that appear before Ri in the sequence. When no defeasible atoms and no defeasible
TGDs are used in a derivation, we say the derivation is a strict derivation, otherwise it is a
defeasible derivation.

Note that there is non-determinism in the order in which the elements in a derivation
appear; TGDs (strict and defeasible) can be reordered, and facts and defeasible atoms could
be added at any point in the sequence before they are needed to satisfy the body of a TGD.
These syntactically distinct derivations are, however, equivalent for our purposes. It is pos-
sible to introduce a canonical form for representing them and adopt that canonical form as
the representative of all of them. For instance, we might endow the elements of the program
from which the derivation is produced with a total order; thus, it is possible to select one
derivation from the set of all the derivations of a given literal that involve the same elements
by lexicographically ordering these sequences. When no confusion is possible, we assume
that a unique selection has been made.

We say that an atom a is strictly derived from KB iff there exists a strict derivation for
a from KB, denoted with KB � a, and a is defeasibly derived from KB iff there exists a
defeasible derivation for a from KB and no strict derivation exists, denoted with KB ∼ a.
A derivation ∂ for a is minimal if no proper sub-derivation ∂ ′ of ∂ (every member of ∂ ′
is a member of ∂) is also an annotated derivation of a. Considering minimal derivations
in a defeasible derivation avoids the insertion of unnecessary elements that will weaken
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its ability to support the conclusion by possibly introducing unnecessary points of conflict.
Given a derivation ∂ for a, there exists at least one minimal sub-derivation ∂ ′ ⊆ ∂ for an
atom a. Thus, through the paper we only consider minimal derivations [28].

Example 9 From the defeasible Datalog± ontology in Example 8, we can get the following
(minimal) annotated derivation for atom sore throat(axl):

∂ = [
rock singer(axl),

rock singer(X) �– sing loud(X),

sing loud(axl),

sing loud(X) → sore throat(X),

sore throat(axl)
]

Then, we have that KB � rock singer(axl) and that KB ∼sore throat(axl).

Classical query answering in defeasible Datalog± ontologies is equivalent to query
answering in Datalog± ontologies. The next proposition shows that every atom that is defea-
sibly or strictly entailed by the defeasible ontology is classically entailed by a classical
Datalog± ontology that contains a strict version of the database instance and constraints
of the defeasible one. This proposition was previously only stated in [28], in this work we
show the formal proof.

Proposition 3 ([28]) LetL be a ground atom,KB = (F,D, �T , �D,�NC) be a defeasible
Datalog± ontology, KB ′ = (F ∪ D, �′

T ∪ �NC) is a classical Datalog± ontology where
�′

T = �T ∪{ϒ(X,Y) → ∃Z�(X,Z) | ϒ(X,Y) �–∃Z�(X,Z)}. Then,KB ′ |= L iffKB �
L or KB ∼L.

Proof The proof relies on the fact that if we have a (strict or defeasible) derivation for a
literal then the application of those TGDs over the atoms generates the literal, and viceversa.

⇒) Let L be such that KB ′ |= L. This means that chase(D, �′
T ) |= L, and thus there

exists a set S′ ⊆ �′
T such that the application of TGDs infers L, i.e., S′ |= L.

When considering the defeasible Datalog± ontology KB that originated KB ′ we can
have two different scenarios, either

(a) all TGDs in the set S ⊆ �T are classical TGDs, or
(b) at least a TGD in S is a defeasible TGD.

Let us consider these two cases separately.

(a) if all TGDs in S are classical, since we have that S′ |= L then we have a finite sequence
[R1, R2, . . . , Rn] where Ri is a TGD in S or an atom (either strict or defeasible) and
Rn = L. Then, if there is no Ri such that it is a defeasible atom then KB � L, and
otherwise KB ∼L.

(b) if at least one TGD in S is defeasible, since we have that S′ |= L then we have a finite
sequence [R1, R2, . . . , Rn] where Ri is a strict or defeasible TGD in S or an atom and
Rn = L. Then, we have that KB ∼L.

⇐) Now, consider KB such that KB � L or KB ∼L. Then, there exists a finite sequence
[R1, R2, . . . , Rn] where Ri is a strict or defeasible TGD in S or an atom (either strict or
defeasible) and Rn = L.
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Let KB ′ = (F ∪ D, �′
T ∪ �NC) be a classical Datalog± ontology where �′

T =
�T ∪ {ϒ(X,Y) → ∃Z�(X,Z) | ϒ(X,Y) �– ∃Z�(X,Z)}. Then, there exist a sequence
[R′

1, R
′
2, . . . , R

′
n] where

• every Ri in [R1, R2, . . . , Rn] that is a strict TGD is such that Ri = R′
i ,• for every defeasible TGD Ri = ϒ(X,Y) �– ∃Z�(X,Z) we have that there exists R′

i =
ϒ(X,Y) → ∃Z�(X,Z),

• every Ri in [R1, R2, . . . , Rn] that is an atom is such that Ri = R′
i ,• Rn = L.

Then, we have that [R′
1, R

′
2, . . . , R

′
n] is a derivation for L. Let S′ be the set of every R′

i

such that R′i is a TGD, and D′ the set of every Ri such that Ri is an atom. Clearly we have
that S′ ⊆ �′

T and D′ ⊆ D. Then, chase(D, �′
T ) |= L, and it holds that KB ′ |= L.

Proposition 3 states the equivalence between derivations from defeasible Datalog±
ontologies and entailment in traditional Datalog± ontologies whose database instance cor-
responds to the union of facts and defeasible atoms, and the set of TGDs corresponds to the
union of the TGDs and the strict version of the defeasible TGDs. As a direct consequence,
all the existing work done for Datalog± directly applies to defeasible Datalog±. In particu-
lar, it is easy to specify a defeasible chase procedure over defeasible Datalog± ontologies,
based on the revised notion of application of (defeasible) TGDs, whose result is an universal
model. Therefore, a (B)CQ Q over a defeasible Datalog± ontology can be evaluated by ver-
ifying that Q is a classical consequence of the chase obtained from the defeasible Datalog±
ontology.

5.1.1 Argumentation-based reasoning in defeasible Datalog±

Conflicts in defeasible Datalog± ontologies come, as in classical Datalog±, from the viola-
tion of NCs or EGDs. Intuitively, two atoms are in conflict relative to a defeasible Datalog±
ontology whenever they are both derived from the ontology (either strictly or defeasible)
and together map to the body of a negative constraint or they violate an equality-generating
dependency.

Definition 6 Given a set of NCs �NC and a set of non-conflicting EGDs �E , two ground
atoms (possibly with nulls) a and b are said to be in conflict relative to �E ∪ �NC iff
there exists an homomorphism h such that h(body(υ)) = a ∧ b for some υ ∈ �NC or
h(Xi) 	= h(Yj ) for some ν ∈ �E where h(Xi) is a term in a and h(Yj ) is a term in b.

In what follows, we say that a set of atoms is a conflicting set of atoms relative to �E ∪
�NC if and only if there exist at least two atoms in the set that are in conflict relative to
�E ∪ �NC, otherwise will be called non-conflicting. Whenever is clear from the context we
omit the set of NCs and EGDs.

Example 10 Consider the NC {sore throat(X)∧can sing(X) → ⊥} in �NC from the defea-
sible ontology in Example 8. In this case, the set of atoms {sore throat(axl), can sing(axl)}
is a conflicting set relative to �NC. However, this is not the case for the set S =
{rock singer(axl)}: even when such set generates a violation when applied to the set of
TGDs, it is not conflicting in itself.
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Fig. 1 An argument for sore throat(axl)

Whenever defeasible derivations of conflicting atoms exist, we use a dialectical pro-
cess to decide which information prevails, i.e., which piece of information is such that no
acceptable reasons can be put forward against it. Reasons are supported by arguments; an
argument is an structure that supports a claim from evidence through the use of a reason-
ing mechanism. We maintain the intuition that led to the classic definition of arguments by
Simari and Loui [37], as shown in the following definition.

Definition 7 Let KB be a defeasible Datalog±ontology and L a ground atom. A set A of
facts, defeasible atoms, TGDs, and defeasible TGDs used in an annotated derivation ∂ of L

is an argument for L constructed fromKB iff ∂ is a ⊆-minimal derivation and no conflicting
atoms can be defeasible derived from A∪�T . An argument A for L is denoted 〈A, L〉, and
AKB will be the set of all arguments that can be built from KB.

Example 11 Consider the derivation ∂ in Example 9; there, we have that
〈sore throat(axl), ∂〉 is an argument in AKB . Figure 1 shows the argument.

Answers to atomic queries are supported by arguments built from the ontology. How-
ever, it is possible to build arguments for conflicting atoms, and so arguments can attack
each other. We now adopt the definitions of counter-argument and attacks for defeasible
Datalog± ontologies from [22]. First, an argument 〈B, L′〉 is a sub-argument of 〈A, L〉 if
B ⊆ A. Argument 〈A1, L1〉 counter-argues, rebuts, or attacks 〈A2, L2〉 at literal L, iff there
exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that L and L1 conflict.

Example 12 Consider derivation ∂ from Example 9 and let A be the set of (defeasible)
atoms and (defeasible) TGDs used in ∂ . A is an argument for sore throat(axl). Also, we can
obtain a minimal derivation ∂ ′ for can sing(axl) where B, the set of (defeasible) atoms and
(defeasible) TGDs used in ∂ ′, is such that no conflicting atoms can be defeasibly derived
from B ∪ �T . As {sore throat(axl), can sing(axl)} is conflicting relative to �NC, we have
that 〈A, sore throat(axl)〉 and 〈B, can sing(axl)〉 attack each other.
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Fig. 2 Attack between arguments

Once the attack relation is established between arguments, it is necessary to analyze
whether the attack is strong enough so one of the arguments can defeat the other. Given
an argument A and a counter-argument B, a comparison criterion is used to determine if
B is preferred to A and, therefore, defeats A. For our defeasible Datalog± framework,
unless otherwise stated, we assume an arbitrary preference criterion � among arguments
where A � B means that B is preferred to A and thus defeats it. More properly, given two
arguments 〈A1, L1〉 and 〈A2, L2〉 we say that argument 〈A1, L1〉 is a defeater of 〈A2, L2〉
iff there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that 〈A1, L1〉 counter-argues 〈A, L〉
at L, and either 〈A1, L1〉 � 〈A, L〉 (it is a proper defeater) or 〈A1, L1〉 	� 〈A, L〉, and
〈A, L〉 	� 〈A1, L1〉 (it is a blocking defeater).

Finally, the combination of arguments, attacks and comparison criteria gives raise to
Datalog± argumentation frameworks.

Definition 8 Given a Defeasible Datalog± ontology KB defined over a relational schema
R, a Datalog± argumentation framework F is a tuple 〈LR,AKB,�〉, where � specifies a
preference relation defined over AKB .

To decide whether an argument 〈A0, L0〉 is undefeated within a Datalog± argumenta-
tion framework, all its defeaters must be considered, and there may exist defeaters for their
counter-arguments as well, giving raise to argumentation lines. The dialectical process con-
siders all possible admissible argumentation lines for an argument, which together form a
dialectical tree. An argument line for 〈A0, L0〉 is defined as a sequence of arguments that
starts at 〈A0, L0〉, and every element in the sequence is a defeater of its predecessor in the
line [22]. Note that for defeasible Datalog± ontologies arguments in an argumentation line
can contain both facts and defeasible atoms.

Different argumentation systems can be defined by setting a particular criterion for
proper attack or defining the admissibility of argumentation lines. Here, we adopt the one
from [22], which states that an argumentation line has to be finite, and no argument is a sub-
argument of an argument used earlier in the line; furthermore, when an argument 〈Ai , Li〉
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is used as a blocking defeater for 〈Ai−1, Li−1〉 during the construction of an argumentation
line, only a proper defeater can be used for defeating 〈Ai , Li〉.

The dialectical process considers all possible admissible argumentation lines for an
argument, which together form a dialectical tree. Dialectical trees for defeasible Datalog±
ontologies are defined following [22], and we adopt the notion of coherent dialectical tree
from [29], which ensures that the use of defeasible atoms is coherent in the sense that con-
flicting defeasible atoms are not used together in supporting (or attacking) a claim. We
denote with Args(T ) the set of arguments in T .

Definition 9 Let 〈A0, L0〉 be an argument from a Datalog± argumentation framework F.
A dialectical tree for 〈A0, L0〉 from F, denoted T (〈A0, L0〉), is defined as follows:

(1) The root of the tree is labeled with 〈A0, L0〉.
(2) Let N be a non-root node of the tree that is labeled 〈An, Ln〉, and C =

[〈A0, L0〉, 〈A1, L1〉, . . . , 〈An, Ln〉] be the sequence of labels of the path from the
root to N . Let 〈B1, Q1〉, 〈B2,Q2〉, . . . , 〈Bk, Qk〉 be all the defeaters for 〈An, Ln〉.
For each defeater 〈Bi ,Qi〉(1 ≤ i ≤ k), such that the argumentation line C′ =
[〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, . . . , 〈An, Ln〉, 〈Bi ,Qi〉] is admissible, the node N has
a child Ni labeled 〈Bi ,Qi〉. If there is no defeater for 〈An, Ln〉 or there is no 〈Bi ,Qi〉
such that C′ is admissible, then N is a leaf.

Argument evaluation, i.e., determining whether the root node of the tree is defeated or
undefeated, is done by means of a marking or labelling criterion. Each node in an argu-
ment tree is labelled as either defeated (D) or undefeated (U ). We denote the dialectical
tree built for the argument A supporting claim L as T (〈A, L〉), Args(T ) the set of argu-
ments in T , and the root of T (〈A, L〉) with root(T (〈A, L〉)). Also, marking(N), where N

is a node in a dialectical tree, denotes the value of the marking for node N (either U or D).
Deciding whether a node is defeated or undefeated depends on whether or not all its chil-
dren are defeated: (1) if node N is a leaf then marking(N) = U , (2) node N is such that
marking(N) = D iff at least one of its children that is marked with U , and (3) node N is
such that marking(N) = U iff all its children are marked with D.

By means of the marking procedure we can define when an atom is warranted in the
argumentation framework for a Defeasible Datalog± ontology.

Definition 10 (Query answering semantics in Defeasible Datalog±) Let KB be a Defeasi-
ble Datalog± ontology and F the corresponding Datalog± argumentation framework where
� ∈ F is an arbitrary argument comparison criterion. An atom L is warranted in F (through
T ) iff there exists an argument 〈A, L〉 such that marking(root(T (〈A, L〉))) = U . We say
that L is entailed from KB (through F), denoted with KB |=F L, iff it is warranted in F.

Example 13 Suppose that we have the query Q = can sing(axl), i.e., we want to know
whether or not Axl can sing. Consider the conflict between arguments A and B shown in
Example 12. As we have stated, we do not define any particular criterion � to solve attacks.
Nevertheless, for the sake of example assume now that we are indeed using a criterion �
that is such that B � A. Under such supposition we have the labelled dialectical tree shown
in Fig. 3.

As can be seen in the dialectical tree, if we assume that B � A then we have reasons to
think that Axl cannot sing due to its throat being sore.
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Fig. 3 A labelled dialectical tree for atom can sing(axl)

Now, we establish how a classic Datalog± ontology can be transformed to a defeasi-
ble one. Intuitively, the transformation of a classic ontology to a defeasible one involves
transforming every atom and every TGD in the classic ontology to its defeasible version.

Definition 11 (Transformation between ontologies) Let KB = (D, �T ∪ �E ∪
�NC) be a classic Datalog± ontology. Then, its transformation to a defea-
sible Datalog± ontology, denoted D(KB), is a defeasible ontology KB ′ =
(F,D′, �′

T , �D, �E ∪ �NC) where F = ∅, D′ = D, �′
T = ∅ and

�D = {ϒ(X,Y) �– ∃Z�(X,Z) | ϒ(X,Y) → ∃Z�(X,Z)}.

Finally, we define a query answering semantics for classical Datalog± ontologies for
atomic queries. The reason behind this choice is that we are relying on query answering
semantics as in logic programming and defeasible logic programming [22] as it seems to
be the more natural, simpler choice for defeasible Datalog±; of course, it will also be quite
interesting to explore different, more complex alternatives to expand the capabilities of the
system to answer queries more precisely, a line of work that we will leave for the future.
From now on we denote such semantics as D2 (Defeasible Datalog±). Intuitively, a literal is
an answer for a classical Datalog± ontology KB under the D2 semantics iff it is warranted
in the transformation of KB to a defeasible one.

Definition 12 (Query answering in classical Datalog± under D2) Let
KB = (D, �T ∪�E ∪�NC) be a classic Datalog± ontology, KB ′ = D(KB) its defeasible
transformation, Q a query and � a comparison criterion. Then, a ground atom L is an
answer for Q from KB under D2, denoted KB �D2� L, iff there exists a homomorphism h

such that h(Q) ⊆ D, h(Q) = L and KB ′ |=F L where F = 〈LR,AKB ′ , �〉.
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Note that the semantics is parametrized by the comparison criterion �, which helps to
solve conflicts when they arise.

5.2 Influence of incoherence in defeasible Datalog±

Now, we focus on the behaviour of Defeasible Datalog± regarding atoms relevant to
unsatisfiable sets of TGDs. It can be shown that the argumentation framework F =
〈LR,AD(KB),�〉 is such that one relevant atom L to an unsatisfiable set is war-
ranted (and thus an answer), provided that the comparison criterion � is such that
marking(root(TF(〈A, L〉))) = U for some dialectical tree TF(〈A, L〉) built upon F. It is
interesting to see that such comparison criterion can always be found: intuitively, it suffices
to arbitrary establish A as the most preferred argument in AD(KB) (note however that other
criteria can have the exact same result).

Proposition 4 Let KB be a Datalog± ontology defined over a relational schema R, and
KB ′ be a Defeasible Datalog± ontology such that D(KB) = KB ′. Finally, let L ∈ D

and U ∈ U(KB) such that L is relevant to U . Then, it holds that there exists � such that
KB �D2� L.

Proof Let L ∈ D and U ∈ U(KB) such that L is relevant to U . Since L is a literal
then there exists a derivation ∂ = L, i.e., the literal derives itself. Consider the argument
A = 〈∂, L〉. Now, let � be an argument criterion defined as follows: for any argument
〈B, L′〉 such that L and L′ are conflicting it holds that 〈B, L′〉 � 〈A, L〉. Then, we have
that T (〈A, L〉) where Args(T ) = {A} is a proper dialectical tree, since no defeater can be
found for A. Then, the root of T (〈A, L〉) is marked as undefeated, and then KB �D2� L.
Thus, it holds that there exists � such that KB �D2� L.

Corollary 2 (Corollary from Proposition 4) Given a Datalog±ontology KB there exists �
such that D2� applied to KB is tolerant to incoherence.

Proof Straightforwardly follows from Proposition 4.

As an example of the above corollary, consider again the running example.

Example 14 Let KB ′ = D(KB) be the defeasible transformation of KB in Exam-
ple 1, where the sets �E and �NC are the same, F = ∅, D = {can sing(simone),
rock singer(axl), sing loud(ronnie), has fans(ronnie),manage(band1, richard),
sang in(axl, band2), pop band(band2), invited guest(axl, band2)}, and

�D = {rock singer(X) �– sing loud(X),

sing loud(X) �– sore throat(X),

has fans(X) �– famous(X),

rock singer(X) �–can sing(X),

sang in(X, Y ) ∧ pop band(Y ) �–pop singer(X)}

Now, for the sake of example suppose that we define our comparison criterion to model
the fact that we trust the information that says that Axl had singed with the pop band Band2
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Fig. 4 A labelled dialectical tree for atom rock singer(axl)

over the mere fact that he is a rock singer, and that Axl was only invited to sing with them
at a certain time rather than he being the actual singer of Band2. Then, we have the dialec-
tical tree shown in Fig. 4, where the argument 〈[rock singer(axl)

]
, rock singer(axl)〉 is its

undefeated root.
Then, clearly KB ′ |=F rock singer(axl), and thus KB �D2� rock singer(axl).

6 Related work

In Artificial Intelligence, many efforts for dealing with potentially inconsistent information
have been developed in the last four decades. Frameworks such as default logic [34] can
be used to represent a database DB with integrity constraints IC as a default logic theory
where the background theory consists of the IC and the facts in D constitutes the defaults
rules, i.e., a fact in D is assumed to be true if it can be assumed to be true. Finally, argumen-
tation methods [18, 30, 37] have been used for handling uncertainty and inconsistency by
means of reasoning about how contradictory arguments defeat each other. In the database
community, the field of database repairing and consistent query answering (CQA) has
gained attention since [1], which provided a model-theoretic construct of a database repair.
The work of [12] addresses the basic concepts and results of the area of CQA. Recently,
Ontology-based Data Access approach to data integration, has led to a resurgence of interest
in this area as well, specially focusing on the development of efficient inconsistency-tolerant
reasoning and query answering semantics in DLs and other ontological languages. Lately,
several works have focused on inconsistency handling for different classes of DLs, adapt-
ing and specializing general techniques previously considered for traditional logics [23, 27,
31]. In [25], the adaptation of CQA for DL-Lite ontologies and several sound and com-
plete approximation are studied. The data and combined complexity of the semantics were
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studied in [35] for a wide spectrum of DLs. Computing consistent answers is an inherently
hard problem, [25] shows co-NP completeness even for ground atomic queries in DL-Lite,
though some works identify cases for very simple ontologies and restricted queries (within
the DL-Lite family) for which tractable results can be obtained [4]. In [35], the complexity
for query answering under inconsistency-tolerant semantics is provided for a wide spec-
trum of DLs, ranging from tractable ones (EL) to very expressive ones (SHIQ). In [26], an
alternative semantics called k-lazy is proposed, which relaxes the notion of repairs by adopt-
ing a compromise between quality of answers and tractability for fragments of Datalog±.
The work of [2] contains a survey of existing approaches for handling inconsistencies in
DL-based ontologies.

This work, however, focuses on the study of the effects of incoherence in query answer-
ing inconsistency-tolerant semantics. We show that the inconsistency-tolerant semantics
proposed in [4, 25, 26, 35] are not incoherent-tolerant semantics and their use in such sce-
narios may lead to useless answers. In general, all CQA-based proposals do not address the
issues of incoherence and inconsistency together by design. Instead most of the approaches
assume that the set of integrity constraints correctly defines the semantics of the database
instance, so there is no room for incoherence. In our case, both the information contained
in the database instance and whatever can be obtained from the application of TGDs are
defeasible. Though not analyzed in this work, the proposed framework is flexible enough
to implement different semantics depending on the particular transformation we apply to
a Datalog± ontology. For instance, one could assume that the information in the database
instance must be always considered correct, in which case that information is translated into
a set of facts instead of into a set of defeasible atoms as stated in Definition 11. Also, if only
the database instance is translated into defeasible atoms, then we obtain the ICR semantics
from [4] (or some approximation to it depending on the preference criterion used for the
argument comparison).

As mentioned in the introduction, incoherence has been studied recently in the Descrip-
tion Logics area [21, 32, 36]. In particular the notion of incoherence to which we attend in
this work is inspired by that analyzed in [21, 36]. In an ontological settings, incoherence
refers to a set of ontological rules that cannot be applied without leading to violations of
the constraints imposed on the knowledge, making them unsatisfiable. In [36] that paper the
authors focus on the definition of processes capable of detect unsatisfiabilities and incoher-
ences in DLs ontologies, introducing complete algorithms along with an empirical analysis
of the approach. The authors do not cover the issue of how to reason with a potential inco-
herent knowledgebase and what type of information can be obtained from one. On the other
hand, in [21] the authors introduce a general framework that aims towards a formalization
of dynamic processes in ontologies, where such dynamics is captured by Belief Revision
(BR) approaches. Since classical BR approaches rely on an assumption that the underlying
logic is capable of expressing negations (which ontologies like DL cannot), one of the main
contributions by Flouris et al. is introducing different ways of achieving negations in such
ontologies. A particularly interesting introduced negation for the purpose of our work is that
of coherence negation, which states that two atoms are the (coherence) negation of each
other if when considered together we have an unsatisfiable concept. In this way Flouris et
al. successfully shows how incoherence is of utter importance in ontologies.

An alternative way of looking into incoherences is provided by Qi and Hunter in [32].
Instead of going the classical direction of finding incoherences and solving them in some
way, in that work the authors propose different ways of measuring the level of incoher-
ence. They do this by defining two classes of measures for incoherent ontologies. The first
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measure is tailored towards for unsatisfiable concepts, whereas the second one is focused
on measuring incoherence for terminologies. The first class of measures gives us infor-
mation on comparing unsatisfiable concept names. The second class of measures gives us
information on comparing terminology axioms and comparing ontologies. Moreover, the
authors show some empirical results based on an implementation of the approaches. The
approaches proposed by Qi and Hunter can be very benefitial for argumentation-based
incoherent-tolerant semantics such as D2. Notice that, as explained before, argumentation-
based semantics need ways of defining which argument prevails when an attack between
arguments arise. In our work this is captured by using a general argument comparison
criterion �. As Qi and Hunter states, the proposed measures of incoherence can provide
important information for dealing with incoherence and evaluating ontologies. In our frame-
work this could translate to instantiations of � accounting for such measures. In particular,
the measure of incoherence of unsatisfiable concepts can be used to define an ordering
among different concepts regarding how much they influence incoherence (by using Shap-
ley Values, as stated by Qi and Hunter). Clearly, this ordering can in turn be used to define
a relation � in which arguments using concepts with a lower incoherence value are the pre-
ferred ones (for instance by using weakest link). This way is clear that the results shown in
[32] can be exploited to further refine the behaviour of argument-based incoherence tolerant
such as the one presented here.

An interesting, highly related work with our is [13]. In that work the authors aim to
find out the relation between two different classes of inconsistency-tolerant semantics,
namely argumentation-based semantics and inconsistent ontological KB query answering.
The authors focus on some really interesting research questions such as whether or not the
two classes of semantics can obtain the same results, and under which conditions this holds.
So, in a sense the strategy used in that work resembles ours: they compare the answers
that can be obtained by the different semantics to find out inclusions or equivalences. The
results shown by Croitoru and Vesic indicates that indeed there are several equivalences
between inconsistent ontological KB query answering and different instantiations of Dung’s
argumentation frameworks [18]. For instance, they show that AR semantics corresponds
to universal acceptance under stable / preferred argumentation semantics. In this work we
have taken a similar path, but considering a particular formalism (Defeasible Datalog±with
D2 semantics) which has a semantics that is instead closer to the grounded semantics [18].
Our results, however, indicates that there exists answers that can be obtained through argu-
mentation but cannot be obtained by repair-based semantics. This apparent contradiction
has a reason, and that is incoherence. As noticed, under an incoherence-free assumption the
semantics are equivalent, but once we drop the assumption the situation changes, because
of the difference in obtaining answers based on repairs or arguments. That is, as said before
repair based semantics such as AR are not tolerant to incoherence, whereas D2 is, and thus
the semantics are not equivalent for incoherent application domains.

In the field of Logic Programming an interesting work regarding incoherence is [17]. In
that work the case of unsatisfiable programs is studied, similar to the way we consider inco-
herence leaded by unsatisfiable sets of TGDs. Two different approaches for merging a set
of logic programs are studied. The first one follows an arbitration approach, selecting the
models of a program that differs the least w.r.t. the models of the other programs. The strat-
egy to solve unsatisfiability is simply leaving the unsatisfiable program out of consideration
for the merging, instead of trying to solve the conflict somehow. We can argue that this
approach is not technically tolerant to incoherence as the incoherent program is merely dis-
carded from consideration and thus query answering is no longer a problem in the merged
program. The second approach is based on the selection of the models of a special program
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P0, which can be thought as the constraints guiding the merging process, that has the least
variations w.r.t. the programs for the merging. This last approach though it is able to handle
incoherent information without getting rid of it completely also does not technically fit the
definition of incoherent-tolerant query answering semantics as it proposes changes in the
knowledge base(s); however, the rationale behind that particular incoherence/inconsistency
resolution method could in theory be exploited to develop new interesting query answering
semantics tolerant to incoherence. This particular study is left for future work.

Quite related to our work, [6] proposes an approach that is capable of using information
coming from several DL ontologies in order to answer queries, taking care in the process of
both incoherence and inconsistency. Their approach is based on agents with argumentative
capabilities, each one with a personal knowledge base in the form of a DL ontology. These
agents use dialogue games to interchange arguments until they reach an agreement about
the answer to a certain query. Thus, the agents can use the (possible incoherent/inconsistent)
union of the ontologies without merging them, and still obtain an answer influenced by
every ontology in play. Moreover, this approach has the advantage that no information is
lost, as no formula is deleted from the ontologies. A difference between their work and
ours is that in our work we use Defeasible Datalog±[28] which considers the application of
TGDs as defeasible, making the truth of every derived literal open to challenge. Neverthe-
less, the proposal in [6] is indeed tolerant to incoherences. Another multiagent framework
using argumentation-based reasoning is presented in [38]. Much like in [6], in this work
the authors enable agent to use argumentation to reach some consensus regarding a posted
query. The framework consists of several agents, and an special agent called the moderator,
which coordinates the argumentation process carried out by the rest of agents. Intuitively,
the moderator accepts a query, consisting of a single literal, and then proceeds to ask the
agents for reasons in favor or against it. Eventually, the system returns an answer to the ques-
tioner, according to the agents’ knowledge. Moreover, just as our proposed semantics D2,
the argumentation process is based on DeLP, which brings the work closer to our proposal.
Opposed to [6] and our semantics semantics D2, the framework presented in [38] was not
designed with an ontology environment in mind. Thus, the notion of incoherence (which as
said is almost exclusively considered within the ontologies community) is not considered in
the work. Nevertheless, since the DeLP-based reasoning process is similar to our semantics
then an adaptation of the framework to an ontology setting will render an incoherence-
tolerant semantics, further reinforcing our claim that our characterization is not tailored to
our particular proposal and that there exists other incoherence-tolerant semantics as well.

7 Conclusions

One problem that has been increasingly receiving attention in Knowledge Representation
and Reasoning is that of incoherence. Such problem is specially important for scenarios
where different sources of information need to be integrated, since such integration is prone
not only to errors at the database level but also at the constraints one. Nevertheless, since
incoherence is a fairly recent concept most of the works in query answering for Datalog±
ontologies and DLs have focused on consistency issues making the assumption that the set
of constraints correctly represents the semantics of the data and therefore any conflict can
only come from the data itself. Even when such assumption is reasonable in certain scenar-
ios, clearly in more general ones the assumption does not hold: there are known ontologies
such as the “Diagnoses for Intensive Care Evaluation” (DICE) ontology where incoherence
arises, as noticed by Schlobach and Cornet [36].
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We begin our work with a presentation of the concept of incoherence for Datalog±
ontologies, which is an adaptation to such language of efforts made in the Description Log-
ics community. In Datalog±, incoherence is related to the presence of sets of TGDs such
that their application inevitably yield to violations in the set of negative constraints and
equality-generating dependencies. Then, these sets of TGDs are in a sense in an “idle” state:
they may not be actually provoking a violation of a EGD or NC at the time, but neither can
they be applied at the same time. This is a clear indication that there is something wrong
with the set of TGDs as a whole (and perhaps with the knowledge the TGDs try to model).

After our presentation of the concept, we have shown how incoherence affects
inconsistency-tolerant semantics. The first important matter regarding this relation is that
when an ontology is such that some unsatisfiable set of TGDs is activated by the database
instance in the ontology then the knowledge base is imminently inconsistent. This means
that in such scenarios the knowledge base completely rule out the use of classic (i.e., non
inconsistency-tolerant) semantics, and thus we necessarily need to turn out to those that
can tolerate inconsistency. Nevertheless, we have shown in the paper that not every
inconsistency-tolerant semantics can deal with incoherence-driven conflicts in a satisfac-
tory way. Since they were not designed to address incoherence (or even acknowledge it for
that matter), then some of the most well known inconsistency tolerant semantics are greatly
affected by inconsistencies arising from the activation of unsatisfiable sets of TGDs, to the
point that for some incoherent ontologies these semantics may produce no useful answer at
all.

Considering all things mentioned, we have concluded our work proposing a further clas-
sification regarding query answering semantics, i.e., whether or not they can be seen as
tolerant to incoherence. We have analyzed a particular semantics satisfying that property.
Such semantics rely on the use of argumentation over Datalog± ontologies, and conflicting
pieces of information are warranted or not (thus being answer or not under the semantics)
after a dialectical process is carried out, which intuitively analyzes all reasons in favor and
against the atom in the query. To do this, in the current version of the framework the seman-
tics assume that there are no pieces of information in the ontology settled in stone, and
leaves all atoms and TGDs up to debate by transforming them to their defeasible versions.
Nevertheless, if it is required by the application at hand then it is certainly possible to alter
this behavior so more valuable information (under some criterion) is left as strict knowledge,
giving preponderance to them.

Through the years, various efforts have been carried out to establish the computational
complexity of argumentation [11, 19, 20, 39]. In particular, in [11] is proven that the deci-
sion problem “Is a set of defeasible rules an argument for a literal under a defeasible logic
program?” in DeLP [22] is P-complete; whilst the problem “Does there exist an argu-
ment for a literal under a defeasible logic program?” is proven to be in NP. Moreover, in
[39] authors explore equivalence relations for set of arguments, showing for instance that
to check such equivalence is co-NP-complete. Nevertheless, despite such results regarding
the intrinsic complexity of argumentation, that does not imply that argumentation cannot be
used for real-world applications, because such studies involve worst-case scenarios that may
greatly differ from the average case. In fact, it has been shown in [14] that defeasible argu-
mentation can be combined with relational databases as a provider of argument-supporting
information, and empirical results have indicated that execution times are often improved by
this when building arguments considering massive amounts of data; which was further evi-
denced by the development of a real-world recommender system based on such framework
[7]. It will be interesting then to analyze the relation between the complexity of a task such
as building an argument or establishing attack relations with the particular characteristics



Incoherence influence over inconsistency-tolerant semantics

of Datalog±, specially over the tractable fragments of the family; since it is possible that a
similar effect to that of the efficiency of database management systems may arise from the
use of mechanisms capable of dealing with massive information such as those in Datalog±.
Nevertheless, to perform a comprehensive study of such relation is beyond the scope of this
paper, and left for future work.

Finally, we would like to stress out that our definition of incoherence-tolerant seman-
tics is not tied to our particular proposal or the Datalog± language, and that there exists
other frameworks that also falls under our definition, as it is the case of the work (also
argumentation-based) by Black et al. [6] where dialogue games between agents are used to
solve queries under Description Logics ontologies that can be incoherent.
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