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The Journal of Immunology

NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction
Predictions Integrating Eluted Ligand and Peptide Binding
Affinity Data

Vanessa Jurtz,* Sinu Paul,† Massimo Andreatta,‡ Paolo Marcatili,* Bjoern Peters,† and

Morten Nielsen*,‡

Cytotoxic T cells are of central importance in the immune system’s response to disease. They recognize defective cells by binding

to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective

step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC

molecules has attracted widespread attention. In the past, predictors of peptide–MHC interactions have primarily been trained

on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been

reported containing information about peptide-processing steps in the presentation pathway and the length distribution of

naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand

data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in

predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands,

cancer neoantigens, and T cell epitopes. The Journal of Immunology, 2017, 199: 000–000.

C
ytotoxic T cells play a central role in the immune reg-
ulation of pathogenesis and malignancy. They perform the
task of scrutinizing the surface of cells for the non-self

peptides presented in complex with MHC molecules. In cases in
which such peptides are recognized, an immune response can be
initiated, potentially leading to killing of the infected (malfunc-
tioning) cell. Binding to MHC is the most selective step in the
pathway leading to this peptide presentation.
Over the last decades, several efforts have been dedicated to the

development of computational methods capable of accurately
predicting this event. The accuracy of these methods has improved
substantially over the last years, and most recent benchmark results
demonstrate that .90% of naturally presented MHC ligands are
identified at an impressive specificity of 98% (1). This gain in
performance was achieved, in part, by the extended experimental
binding data sets made available in the Immune Epitope Database
(IEDB) (2) and, in part, by the development of novel machine-

learning algorithms capable of capturing the information in the
experimental binding data in a more effective manner. One such
novel method is NNAlign-2.0, allowing the integration of peptides
of variable length into the machine-learning framework (3). This
novel training approach allows the incorporation of a larger set of
training data and, maybe more importantly, enables the method to
directly learn the length preference of presented peptides for each
MHC molecule from the experimental binding data (4). Although
most presented MHC class I ligands are 9 aa in length, the ability
to incorporate length preferences directly into the model is criti-
cal, because experimental data demonstrate that the length profiles
of presented ligands can vary substantially between MHC mole-
cules. Prominent examples are the mouse H-2-Kb, with a preference
for 8 aa–long peptides (5), and HLA-A*01:01, for which nearly one
third of MHC-presented peptides have a length . 9 aa (6).
Some of the most well-documented and applied methods for

predicting peptide binding to MHC class I include NetMHC (4, 7)
and NetMHCpan (1, 8). Over the last years, these tools have gar-
nered increasing interest because of the recent focus on neoantigen
identification within the field of personalized immunotherapy (9,
10). However, as underlined in several studies, including the recent
Nature Biotechnology Editorial (11), “neoantigen discovery and
validation remains a daunting problem,” primarily as a result of the
relatively high false positive rate of predicted epitopes.
One potential cause for this relatively high rate of false positive

epitope predictions is the fact that most methods are trained on
binding affinity (BA) data and, as a consequence, only model the
single event of peptide–MHC binding. As stated above, this binding
to MHC is the most selective step in peptide Ag presentation.
However, other factors, including Ag processing (12) and the sta-
bility of the peptide–MHC complex (13), could influence the like-
lihood of a given peptide to be presented as an MHC ligand.
Similarly, the length distribution of peptides available for binding to
MHC molecules is impacted by other steps in the processing and
presentation pathway, such as TAP transport and ERAP trimming,
which are not reflected in binding data in itself (6). Advances in
mass spectrometry (MS) have allowed the field of MS peptidomics
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to move forward. In this context, recent studies (14–16) have sug-
gested that training prediction methods on such data, rather than BA
data, could improve the ability to accurately identify MHC ligands.
As such, MS peptidome data would contain the comprehensive
signal of Ag processing and presentation rather than just MHC BA.
Moreover, MS peptidome data generated by immunopeptidomic
studies would contain precise information about the allele-specific
peptide-length profile preferences that is not available in the MHC
BA data sets.
Thus, identification of MHC-bound peptides by MS holds great

promise for the generation of large-scale data sets characterizing
the peptidome specific for individual MHC molecules (15, 17) and
potentially for the identification of T cell epitopes (18). However,
it is clear that, within the foreseeable future, the number of MHC
molecules characterized by such MS studies will remain limited.
In this context, significant efforts over the last decades have been
dedicated to experimentally characterizing the peptide-binding
space of MHC molecules using semi–high-throughput MHC–
peptide BA assays (19, 20), enabling binding-specificity charac-
terization of a large set of MHC molecules from different species.
The IEDB contains a comprehensive set of MHC-binding and

eluted ligand (EL) data available in the public domain. Although
this data set contains BA data characterizing .150 MHC class I
molecules (from human, nonhuman primates, mouse, and live-
stock), at the onset of this study only 55 MHC class I molecules
were characterized by MS peptidome data. This imbalance caused
us to suggest a novel machine-learning approach integrating in-
formation from both types of data (BA and MS ligands) into a
combined framework benefitting from information from the two
worlds. The proposed framework is “pan specific,” because it can
leverage information across MHC molecules, data types, and pep-
tide lengths into a single model. Hence, we expect this approach to
achieve superior predictive performance compared with models
trained on the two data types individually, as well as achieve an
improved performance when it comes to predicting length profile
preferences of different MHC molecules.
Although recent studies have demonstrated the improved ability

to identify MHC ligands using methods trained on MS peptidome
data (14, 15), limited data are available with regard to their impact
for the identification of T cell epitopes. In this article, we focus on
demonstrating the improved prediction performance on large sets
of MS peptidome data, as well as on T cell epitope data inde-
pendent from the data used to train the new predictor.

Materials and Methods
Data sets

Data on all class I MHC ligand elution assays available in the IEDB da-
tabase (http://www.iedb.org) were collected, including the ligand sequence,
details of the source protein, position of the ligand in the source protein,
and the restricting allele of the ligand. There were 160,527 distinct assays
in total, and the length of the ligands ranged from 4 to 37 aa. All lengths that
were associated with $0.5% of total ligands were selected for further
analysis; this included lengths 8–15 aa and included 99% of the assay entries.

The restrictingMHCmolecule of the ligandswas analyzed, and entries with
alleles listed unambiguously were selected. For example, some entries for
which the HLA alleles are listed as just the gene name, as well as alleles from
chicken, horse, cow, and mouse for which we did not have binding prediction
algorithms, were excluded. Representative alleles were assigned for entries
where only supertypes were listed (e.g., HLA-A*26:01 for HLA-A26). Thus,
there were 127 class I molecules from human and mouse in the selected data
set. Redundant entries with the same ligand sequence and MHC molecule
were removed, and MHC molecules with $50 ligand entries were selected.
This included 55 class I molecules, and the number of available ligands per
molecule varied widely from 50 to 9500.

We hypothesized that some of the ligands could be artifacts of the elution
assays and, therefore, their source proteins could be false positive as Ags. A
protocol was designed to identify such false positive Ags and exclude them

from the final data selected. The protocol identified proteins that had a
significantly smaller number of predicted binders among ligands than
expected for random peptides using binomial probability distribution. Five
sets of random peptides were generated from the ligand sequences by
shuffling the amino acid residues within the ligands. BAwas then predicted
for the original ligands and random peptide sets for their corresponding
alleles. The median of the predicted percentile ranks of the five random sets
was estimated and assigned as the BA of the random peptides. Based on a
predicted BA cut-off of percentile rank 1.0, the number of predicted binders
among the original ligands and the random peptide sets was estimated.
Thus, five proteins were identified as false positives, and ligand entries from
these proteins were excluded from the data set.

The final data set had 85,217 entries in total, with ligand length ranging
from 8 to 15 aa. The ligands originated from 14,797 source Ags and were
restricted by 55 unique HLA molecules.

Random artificial negatives were generated for each MHC molecule
covered by EL data by randomly sampling 10*N peptides of each length
(8–15 aa) from the Ag source protein sequences, where N is the number of
9-mer ligands for the given MHC molecule.

Neural network training

The NNAlign training approach with insertions and deletions (3) was
extended by adding a second output neuron, as shown in Fig. 1. This was
done to allow combined training on BA and MS EL data. BA values are
measured as IC50 values in nanomolar (aff) and can be rescaled to the
interval [0,1] by applying 1 2 log(aff)/log(50,000), representing continuous
target values (21). For ELs, the strength of the interaction between peptide
and MHC molecules is unknown; therefore, a target value of 1 is assigned to
binders, and 0 is assigned to artificial negative peptides (see above).

In this network architecture, weights between the input and hidden layer
are shared between the two input types (BA/EL), and weights connecting
the hidden and output layer are specific for each input type. During neural
network training, an example is randomly selected from either data set and
submitted to forward and back propagation, according to the NNAlign
algorithm (3). In this setting, we define one training epoch as the average
number of iterations needed to process each data point in the smaller data
set once.

A neural network ensemble was trained, as described by Nielsen and
Andreatta (1), using 5-fold nested cross-validation. Networks with 60 and 70
hidden neurons were trained, leading to an ensemble of 40 networks in total.

The inputs to the neural networks consisted of the peptide and the MHC
molecule in terms of a pseudo-sequence (8). All peptides were represented
as 9-mer binding cores by the use of insertions and deletions, as described
by Andreatta and Nielsen (4), and were encoded using BLOSUM encoding
(21). As in the earlier work by Andreatta and Nielsen (4), additional
features for the encoding of peptides included the length of the deletion/
insertion; the length of peptide-flanking regions, which are .0 in the case
of a predicted extension of the peptide outside either terminus of the
binding groove; and the length (L) of the peptide, encoded with four input
neurons corresponding to the four cases L # 8, L = 9, L = 10, and L $ 11.

Performance

To benchmark the combined trainingmethod described above (referred to as
a model trained on BA and EL data [BA+EL]), additional methods with only
one output, but an otherwise identical setup, were trained on BA data only
(BA method) and EL data only (EL method). Performance was measured
as area under the receiver operating curve (AUC); AUC = 0.5 indicates
random model performance, whereas AUC = 1 represents a perfect model.
AUC values were calculated for each MHC allele separately; subsequently,
binomial tests were performed to compare the different models.

Length preference of MHC molecules

For all MHC molecules shared between the BA and EL data sets, we
generated predictions for 80,000 random natural peptides of lengths 8–15 aa
(10,000 of each length). From the top 2% of predictions, the frequency of
each peptide length was estimated. Subsequently, the Pearson correlation
coefficient was calculated between the frequencies observed in the EL data
set and the frequencies predicted by four models (BA method, EL method,
BA predictions of model trained on combined BA and EL data [BA+EL
BA], and EL likelihood predictions of model trained on combined BA and
EL data [BA+EL EL]).

Leave-one-out validation

Leave-one-out (LOO) experiments were performed for all MHC molecules
present in the EL data set. For this, a given MHC molecule was removed
from the EL data set and then the BA+EL method was trained in 5-fold
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cross-validation, as described above, omitting multiple random initializa-
tions, resulting in an ensemble of 10 networks. Performance of the LOO
models is compared with an ensemble of neural networks of the same size
trained on the complete data set. Further predictions are made for 80,000
peptides of lengths 8–15 aa derived from natural proteins to evaluate a
model’s ability to predict the length preference of an MHC allele that was
not part of the EL training data.

The final NetMHCpan-4.0 method implementation

The final neural network ensemble of the NetMHCpan-4.0 method is trained
on BA and EL data, as described above using 5-fold cross-validation.
Networks with 56 and 66 hidden neurons (in accordance with earlier
NetMHCpan implementations) were trained using 10 distinct random initial
configurations, leading to an ensemble of 100 networks in total.

Percentile rank scores were estimated from predicted EL and BA binding
values from a set of 125,000 8–12-mer random natural peptides (25,000 of
each length)

Validation on external data sets

A data set of ELs was obtained from Pearson et al. (17). Also, a set of
positive CD8 epitopes was downloaded from the IEDB. The epitope set
was identified using the following search criteria “T cell assays: IFN-g,”
“positive assays only,” “MHC restriction Type: Class I.” Only entries with
fully typed HLA restriction, peptides length in the range 8–14 aa, and with
annotated source protein sequence were included. Positive entries with a
predicted rank score . 10% using NetMHCpan-3.0 were excluded to filter
out likely noise (6). For the T cell epitope and EL data sets, negative
peptides were obtained by extracting all 8–14-mer peptides from the
source proteins of the ELs and subsequently excluding peptide–MHC
combinations found with an exact match in the training data (BA and EL
data sets). The final eluted data set contained 15,965 positive ligands re-
stricted to 27 HLA molecules, and the IEDB T cell epitope data set con-
tained 1,251 positive T cell epitopes restricted to 80 HLA molecules.

A Frank value was calculated for each positive HLA pair as the ratio of
the number of peptides with a prediction score higher than the positive
peptide/the number of peptides contained within the source protein. Hence,
the Frank value is 0 if the positive peptide has the highest prediction value of
all peptides within the source protein and a value of 0.5 in cases in which an
equal amount of peptides has a higher and lower prediction value compared
with the positive peptide.

An unfiltered EL data set was obtained from Bassani-Sternberg et al.
(22). This data set consisted of EL data from six cell lines, each with fully
typed HLA-A, -B, and -C alleles. A data set was constructed for each cell
line, including all 8–13-mer ligands (N) as positives, and five times N
random natural negatives for each length of 8–13 aa (i.e., if a data set
contained 5,000 ligands, 5 3 5,000 = 25,000 random natural peptides of
length 8, 9, 10, 11, 12, and 13 aa were added as negatives, arriving at a
final data set with 155,000 [5,000 + 6 3 25,000] peptides).

Results
We trained the NetMHCpan method version 4.0 for the prediction
of the interaction of peptides with MHC class I molecules inte-
grating BA and MS EL data. Combined training was achieved by

adding a second output neuron (see Fig. 1) to the NNAlign ap-
proach described previously (3). In this setup, the first output
neuron returns a score of BA, and the second output neuron
returns a score of ligand elution. As described in Materials and
Methods, the model parameters between the input and hidden
layer of the artificial neural network are shared between the two
input types. Thanks to this network architecture, we expect the
model to be able to combine informative patterns found in the two
data types, boosting performance for both output neurons. To
demonstrate this, we compared the performance of the BA+EL
method with the BA method trained only on BA data and the EL
method trained only on EL data. Fig. 2 shows the mean perfor-
mance per MHC allele of the four methods on four data sets given
in terms of AUC (for details see Supplemental Table I). From this
analysis, it is clear that the BA+EL EL method performs much
better on BA data than the EL method. This observation strongly
suggests that the EL method, as a result of the small number of
MHC molecules (55) included in the EL data set, has limited pan-
specific potential compared with the BA+EL EL method trained
on data from 169 MHC molecules included in the combined BA
and MS EL data set.

Peptide-length preference of MHC molecules

We next set out to investigate how well the different methods could
capture the peptide-length preferences of individual MHC mole-
cules. For this, we predicted binding scores for a set of random
natural peptides of lengths 8–15 aa and calculated the frequencies
of peptides of different lengths in the top 2% of predictions. In
Fig. 3A–C, we show examples of such peptide-length preference
profiles predicted by the BA, BA+EL BA, BA+EL EL, and EL
methods. The depicted MHC molecules are known to have pref-
erences for different peptide lengths. All HLAs have a preference
for 9-mer peptides. However, HLA-A*01:01 has an increased
preference for 10-mers compared with average, HLA-A*02:01 has

FIGURE 1. Visualization of the neural networks with two output neu-

rons used for combined training on BA and EL data.

FIGURE 2. Mean performance per MHC molecule measured in terms of

AUC for the four methods: BA, EL, BA+EL BA, and BA+EL EL. The

methods were evaluated on all BA (BA_all) data and all EL (EL_all) data,

including negative peptides derived from source proteins, and on data sets

restricted to alleles occurring in BA and EL data sets (BA_shared and

EL_shared).

The Journal of Immunology 3
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a strong preference for 9-mers only, and HLA-B*51:01 has an
increased preference for 8-mers compared with average (6). BA
predictors often overestimate the number of binding 10-mer
peptides because of their overrepresentation in the BA data set (4),
which is also shown in Fig. 3.
Next, we extended the analysis to all MHCmolecules included in

the EL data set, calculating the correlation between observed and
predicted length frequencies for each prediction method. This
analysis (Fig. 3D) clearly confirms the results obtained from the
three case examples (i.e., that the two methods BA+EL EL and EL
show significantly higher power for predicting the peptide-length
preference of individual MHC molecules compared with the two
methods trained to predict BA [BA and BA+EL BA]).
The predictions for the two EL likelihood models only show low

performance for one molecule: HLA-B41:04. However, this
molecule is only characterized by 52 ELs, whose length profile
forms an unusual bimodal distribution with peaks at 9 and 11 aa
(data not shown).

LOO experiments on EL data

In the above experiment, the MHC molecules used for the peptide-
length preference evaluation were also included as training data for
the EL prediction methods. This naturally leads to a bias in the
performance evaluation. To address this, as well as to access the
pan-specific potential of the BA+EL EL prediction method, we
conducted a LOO experiment. A given MHC molecule was re-
moved from the EL data set, and the BA+EL method was retrained,
as described in Materials and Methods. Next, the predictive per-
formance (estimated in terms of AUC for separating the known
ligands from the artificial negatives) and the ability to predict the

peptide-length preference were evaluated. The result of the bench-
mark is shown in Fig. 4. This figure clearly confirms the pan-
specific power of the BA+EL method. In terms of the predictive
performance (Fig. 4A), the LOO methods display, as expected, a
slight decrease in performance compared with a method trained and
evaluated on all data (the all-data method). When looking at the
performance for predicting the peptide-length profile (Fig. 4B), the
LOO methods display a very high performance. Only in one case
does the EL LOO method show a substantial drop in performance
for the left out MHC molecule. This case is H2-Kb, the only mouse
molecule in the MS ligand data set with a strong preference for 8-
mer ligands. The BA+EL EL LOO method is able to predict the
length profile of H2-Kb as a result of the H2-Kb affinity data pre-
sent in the BA training data set.

The NetMHCpan-4.0 method

Having demonstrated the increased predictive power of the BA+EL
method when it comes to prediction of peptide BA (BA+EL BA
model), the likelihood of being an EL (BA+EL EL model), and the
ability to capture the MHC-specific peptide-length binding pref-
erences (BA+EL EL model), we set out to construct the final
NetMHCpan-4.0 method. This method was trained as the BA+EL
method, using 5-fold cross-validation, as described in Materials
and Methods. The method is available at http://www.cbs.dtu.dk/
services/NetMHCpan-4.0. The functionality is identical to the
earlier NetMHCpan implementations, with the important addi-
tional function that two different output options (BA and EL
likelihood) are available. By default, the program returns EL like-
lihood scores. An example of the output of the method is shown in
Supplemental Fig. 1.

FIGURE 3. (A–C) Predicted length

preference of selected MHC mole-

cules according to different models.

Binding to selected HLA molecules

was predicted for 80,000 8–15-mer

peptides, and the frequency of pep-

tide lengths in the top 2% of pre-

dicted peptides was calculated. (D)

Correlation of predicted and observed

ligand length for different models.

Binding to all HLA alleles present in

both the BA and EL data sets was

predicted using the four prediction

methods for 80,000 8–15-mer pep-

tides. Subsequently, the occurrence of

different peptide lengths in the top

2% of predicted peptides for each

molecule was calculated, and the

correlation coefficient between these

frequencies and the length frequen-

cies in the EL data set was calculated.

4 IMPROVED PEPTIDE–MHC CLASS I INTERACTION PREDICTIONS
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Validation on external data sets

The performance of the updated NetMHCpan method was assessed
on two independent external data sets: one consisting of 15,965 ELs
covering 27 HLA molecules and another consisting of 1251 val-

idated CTL epitopes covering 80 HLA molecules reported in the

IEDB. The validation data sets were constructed as described in

Materials and Methods. The source protein sequence was identi-

fied for each ligand/epitope, and all overlapping 8–14-mer pep-

tides, with the exception of the ligand/epitope, were annotated as
negatives. All data points included in the BA and EL training data

sets were excluded from the validation data set. A Frank value was

calculated for each positive HLA pair, as described in Materials

and Methods, as the ratio of the number of peptides with a pre-

diction score higher than the positive peptide/the number of

peptides contained within the source protein. In this manner, we
can construct the sensitivity curves presented in Fig. 5. Two ob-

servations are striking from these results. First and foremost, the

results clearly demonstrated the increased predictive power of

integrating EL data into the training data of NetMHCpan. In

Fig. 5A (the analysis of the EL data), we can observe that the gain

in sensitivity at a Frank threshold of 1% for the EL models
(NetMHCpan-4.0 EL or EL only) compared with NetMHCpan-3.0

is 10% (95 versus 85%), and it is 15% at a Frank threshold of 0.5%

(90 versus 75%). These numbers mean that a ligand will have a

prediction score within the top 0.5% of its source protein peptides in

90% of the cases using the EL models, compared with only 75%

using NetMHCpan-3.0. However, the results shown in the left panel
of Fig. 5 also suggest that the two EL models achieve very similar

predictive performance when it comes to identification of ELs. This

is in strong contrast to the results obtained from the IEDB epitope

data set (Fig. 5B). In this case, only the NetMHCpan-4.0 EL model

demonstrates an improved predictive performance compared with

NetMHCpan-3.0.
There are several potential explanations for the improved per-

formance of the EL models on the EL evaluation data, including a

bias against cysteines specific for the EL training and evaluation

data; differences in the MHC-binding motifs contained within the

EL and in vitro binding data, as suggested earlier (15); and the
improved prediction accuracy of the ligand length preference (see

Fig. 3D). To investigate the first possibility, we repeated the ex-

periment displayed in Fig. 5, removing all peptides containing
one or more cysteines. If the bias against cysteines in the EL data
had any impact on the predictive performance of the proposed
method, the bias would be reflected in an altered predictive
performance on the reduced data sets. This turned out not to be
the case (data not shown), suggesting that cysteine bias is not
influencing the relative predictive performance of the different
methods. Looking into the differences in the binding motif de-
rived from BA and EL data for specific HLA molecules, we find
differences for most MHC molecules. A few examples are shown
in Fig. 6.
These results demonstrated that ELs tend to share more con-

served anchor motifs compared with affinity-defined binders. This
observation is in agreement with earlier findings suggesting that
ELs are bound more stably to MHC class I molecules compared
with other affinity-matched peptides (13, 23). In summary, these
analyses suggest that the gained predictive performance of the
EL method on the EL evaluation data is driven by at least two
factors: differences in binding preferences between EL and affinity-
defined peptide binders and the improved prediction accuracy of
ligand length preference of the EL methods.

To be or not to be a ligand

We investigated what prediction threshold to use to best separate
ligand from nonligand peptides. Our earlier work suggests that
different MHC molecules present peptides at different predicted
BA thresholds (1, 24). Given this, it was interesting to investigate
to what degree a similar observation could be made for the EL
likelihood predictions produced by the NetMHCpan-4.0 method.
To address the question, we compared the predicted ligand like-
lihood scores of all 15,965 ligands in the Pearson data set. The
result of this analysis is displayed as box-plots in the left panel of
Fig. 7.
This figure reveals that the likelihood prediction scores for

known ligands are very different for different HLA molecules.
The large difference in prediction values between HLA molecules
can be linked, to a high degree, to their absence from the EL
training data. The molecules with the lowest median EL likeli-
hood scores in this figure are molecules that are absent from the
EL training data set. However, as demonstrated in Figs. 4 and 5,
the fact that an HLA molecule has not been characterized with

FIGURE 4. EL LOO experiments. (A) Performance per MHC allele of a model trained on all data and a model in which the EL data of a given allele was

left out of the training process. (B) Correlation of predicted and observed ligand length for a model trained on all data and the LOO models.
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EL training data does not impair its predictability. Given this, a
natural measure to correct for this great imbalance in prediction

score is to use percentile rank scores to reconcile and make

prediction scores comparable between different MHC molecules.

The right panel in Fig. 7 shows the results of such a transfor-

mation. In this case, EL likelihood prediction values for each

ligand in the Pearson data are transformed to percentile rank

scores, and the score distribution is visualized as box plots for

each HLA molecule. Given that percentile rank values fall in the

range of 0–100%, it is apparent that transforming the prediction

values into such rank scores allows for a direct score comparison

between HLA molecules.
In light of these results, we next investigated which percentile

rank threshold to apply to optimally identify MHC ligands. We

assessed this by calculating sensitivity/specificity curves as a

function of the percentile rank score threshold for a balanced set

(maximum of 100 ligands per HLA) of ELs and source protein

negatives from the Pearson evaluation data set. The results are

shown in Fig. 8 and confirm earlier findings that the vast majority

(96.5%) of natural ligands are identified at a very high specificity

(98.5%) using a percentile rank threshold of 2%.

Evaluation of unbiased data sets

Most EL data potentially suffer from biases toward current
prediction methods. This is because many EL studies, including

the Pearson data used in this study, assign MHC restriction based
on predicted binding. To address the impact of this bias, we
benchmark our method against sets of unfiltered EL data. These
data sets were obtained from Bassani-Sternberg et al. (22) and

include ELs obtained from six cell lines, each with typed HLA
expression. From these data, we constructed six benchmark data
sets by enriching each positive EL data set with a set of random

natural negative peptides (for details see Materials and Meth-
ods). After filtering out data included in the training data of
NetMHCpan-4.0, we next benchmarked the predictive power of

the different prediction methods. The result of the benchmark is
shown in Fig. 9.
These results clearly confirm the improved performance of

the proposed NetMHCpan-4.0 EL likelihood predictions over the
NetMHCpan-4.0 and NetMHCpan-3.0 BA predictions. Also, the
results show that, in the majority of cases, the percentile rank
predictions achieve improved predictive performance compared
with the raw prediction scores.

FIGURE 5. Sensitivity of different models as a function of the Frank threshold on (A) ELs published by Pearson et al. (17) and (B) T cell epitope data

downloaded from IEDB.

FIGURE 6. Binding motifs for HLA molecules derived from in vitro BA data using a binding threshold of 500 nM (upper panels), and EL data (lower

panels). Binding motif plots were made using Seq2Logo with default parameters (30).
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Identification of cancer neoantigens

A research field in which prediction of naturally processed and
presented ELs has attracted significant recent attention is ratio-
nal identification of cancer neoantigens. In contrast with tumor-
associated self-antigens, cancer neoantigens are naturally presented
ligands containing tumor-specific mutations. Such neoantigens are
attracting great attention because these peptides are new to the
immune system and are not found in normal tissues; hence, they are
ideal potential cancer vaccine candidates or targets for adoptive
T cell therapy. Depending on the mutational load, the number of
potential tumor-specific neopeptides (peptides containing one or
more missense mutations) can be on the order of many thousands
(25). This large number of potential peptide candidates clearly
underlines the need for tools to rationally downsize the peptide
space in the search for cancer neoepitopes. A recent study by
Bassani-Sternberg et al. (14) demonstrated how this downsizing
could be effectively achieved by a prediction method trained on a
large set of MS ELs. In this study, we repeated this benchmark
analysis using NetMHCpan-4.0. The results are shown in Fig. 10
and confirm the findings by Bassani-Sternberg et al. (14) that, in
most cases, predictors trained on MS EL data show very high
predictive power for the identification of cancer neoantigens. Both
NetMHCpan-4.0 and the MixMHCpred method proposed by

Bassani-Sternberg et al. (14) identify the known neoantigens
within the top 25 peptides in 6 of 10 cases. NetMHCpan-3.0 only
achieves this in 2 of 10 cases. The results also confirm the earlier
findings presented in this article: that NetMHCpan-4.0 achieves
improved performance compared with that of version 3.0 and that
the ligands in all cases are predicted with very strong EL likeli-
hood values (all percentile rank values are ,1, and the majority
are #0.02).

Discussion
In this article, we have demonstrated how a relatively simple pan-
specific machine-learning method based on the NNAlign frame-
work can be constructed that integrates information from BA data
with MS peptidome data. Benefitting from the larger set of peptide
BA data with very broad MHC coverage (.150 molecules) and the
additional information contained within MS peptidome data (in-
formation about Ag processing and presentation, as well as allele-
specific peptide-length profile), we could demonstrate that the
proposed method, NetMHCpan-4.0, achieved improved predictive
performance with regard to characterizing the binding specificity
of a given MHC molecule, as well as for predicting the peptide-
length profile. Because of the pan-specific potential of the method,
the improved performance was extended beyond the relatively few
MHC molecules characterized by MS binding data included in the
training of the method. Given this, we conclude that the proposed
framework is able to benefit from the best of the two data sets:
MHC coverage from the BA data and Ag processing and pre-
sentation and allele-specific peptide-length profile from the MS
data.
Our benchmarks confirmed earlier findings that prediction values

for known ligands vary substantially between MHCmolecules (26)
and that predictions between different MHC molecules can be
readily compared only by the use of percentile rank scores.
The improved peptide–MHC tool is publicly available at http://

www.cbs.dtu.dk/services/NetMHCpan-4.0. The tool was bench-
marked on two large independent data sets: one consisting of
∼16,000 MS-identified MHC-restricted ligands (17) and one con-
sisting of .1,250 validated T cell epitopes described in the IEDB.
For both data sets, the updated version of NetMHCpan (4.0) sig-
nificantly outperformed the earlier NetMHCpan-3.0 method. In
particular, the benchmark on T cell epitope data demonstrated for
the first time, to our knowledge, how integration of MS peptidome
data into a prediction method of MHC peptide presentation can
lead to improved predictive performance for T cell epitope dis-
covery. The improved performance on this data set was only ob-
served for the method trained on the combined data; it was not
observed for the method trained on MS peptidome data alone.

FIGURE 7. Motivation for using percentile rank score predictions. Box-plot representation of prediction values for the ligands in the Pearson data set. EL

likelihood prediction scores (left panel) and percentile rank values (right panel).

FIGURE 8. Sensitivity and specificity performance curves for the

NetMHCpan-4.0 EL likelihood predictions. Curves are estimated from a

balanced set of ELs from the data set of Pearson et al. (17). The inset

shows the complete sensitivity and specificity curves as a function of the

percentile rank score. The main plot shows the curves in the high-scoring

range for 0–5 percentile scores. Dashed vertical and horizontal lines in-

dicate sensitivity and specificity and the 2% rank score threshold.
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This observation underlines the large benefit of merging the two
data types.
Investigating potential causes for the observed improved per-

formance of the proposed tool for identification of ELs confirmed
earlier findings that ELs share a reduced amino acid diversity at the
MHC anchor positions (13). This observation is consistent with the
notion that ligands are bound more stably to MHC class I mole-
cules compared with average affinity-defined bound peptides. We
postulate that this difference in binding preferences between EL
and affinity-defined peptide binders, combined with the improved
prediction accuracy of ligand-length preference of the EL meth-
ods, are the main factors driving the improved predictive perfor-
mance.
When benchmarking the predictive performance for identifica-

tion of T cell epitopes, we observed that only the NetMHCpan-4.0
EL model trained on the combined EL and BA data set demon-
strated an improved predictive performance compared with
NetMHCpan-3.0. This observation was surprising at first, because
we also would expect an improved performance by the method
trained on the EL only as a result of the reasons outlined above.
One likely explanation for this result is the bias in the T cell epitope
data toward predicted BA motifs. Most T cell epitopes have been
identified using some kind of HLA-binding predictions as a filter
prior to experimental validation, giving a bias toward prediction
methods trained based on BA data. Given this, the source of the
improved performance of the NetMHCpan-4.0 EL method com-

pared with NetMHCpan-4.0 BA on the T cell epitope benchmark
data set is primarily driven by its improved prediction of the ligand-
length preference.
It is clear that, even with the improved predictive performance

of the NetMHCpan-4.0 tool reported in this article, not all MHC
ligands and T cell epitopes will be captured by a prediction workflow.
Likewise, it is clear that very few, if any, experimental workflows
enable the exhaustive identification of the ligandome or epitope set
contained within a given sample. In silico predictions can be used
in concert with experimental approaches, effectively boosting the
sensitivity of the combined workflow. Such an approach where in
silico predictions were used to reduce the search space has been
successful in improving the sensitivity of MHC class I ligand
discovery (27), and we expect other similar applications to appear
in the future.
The machine-learning framework proposed in this article is not

limited to the integration of MHC class I peptide BA and MS
peptidome data. The approach can readily be extended to integrate
other types of relevant data, including MHC-binding stability (28)
and epitope data. Also, in its current form, the approach can be
directly applied to the MHC class II system. The only critical
limitation for such data integration is the criterion that each data
point must be associated with a specific MHC element. This in-
formation is not always readily available, but in most cases it can
be inferred by unsupervised clustering of the available data [using
GibbsCluster (29), position weight matrix mixture models (16), or

FIGURE 9. Predictive performance measured in terms of

AUC on the Bassani-Sternberg unfiltered EL data sets. Pre-

diction values are assigned to each peptide in a given data set

as the lowest percentile rank score/highest prediction score to

each of the HLA molecules expressed by the given cell line.

The six methods included are EL RNK (NetMHCpan-4.0

EL percentile rank), EL SCO (NetMHCpan-4.0 EL likelihood

score), BA RNK (NetMHCpan-4.0 BA percentile rank), BA

SCO (NetMHCpan-4.0 BA score), 3.0 RNK (NetMHCpan-3.0

percentile rank), and 3.0 SCO (NetMHCpan-3.0 BA score).

FIGURE 10. Predictive performance evaluated in terms of rank of neoantigens identified in four melanoma samples. A rank value of 1 corresponds to the

ligand obtaining the highest score (lowest percentile rank) of all peptides from the given sample. Data and performance values for MixMHCpred are from

Bassani-Sternberg et al. (14). NetMHCpan-4.0 and NetMHCpan-3.0 are performance values obtained by assigning to each peptide in the given data set the

lowest percentile rank score to each of the HLA-A and -B molecules expressed by the given cell line. The values in parentheses for NetMHCpan-4.0 are the

predicted percentile rank values. Lowest rank value for each ligand is highlighted in bold.
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similar approaches], and association of each cluster to an MHC
molecule of the given host.
In conclusion, we have described a new framework for training

of prediction methods for MHC–peptide presentation prediction
integrating information from two data sources (MS EL and pep-
tide BA). The framework was used to develop an updated version
of NetMHCpan (version 4.0, available at http://www.cbs.dtu.dk/
services/NetMHCpan-4.0) with improved predictive performance
for identification of validated ELs, cancer neoantigens, and T cell
epitopes.
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