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Abstract

Chlamydia trachomatis is the most commonly reported agent of sexually transmitted bacterial infections worldwide. This pathogen 
frequently leads to persistent, long-term, subclinical infections, which in turn may cause severe pathology in susceptible hosts. This is 
in part due to the strategies that Chlamydia trachomatis uses to survive within epithelial cells and to evade the host immune response, 
such as subverting intracellular trafficking, interfering signaling pathways and preventing apoptosis. Innate immune receptors such as 
toll-like receptors expressed on epithelial and immune cells in the genital tract mediate the recognition of chlamydial molecular 
patterns. After bacterial recognition, a subset of pro-inflammatory cytokines and chemokines are continuously released by epithelial 
cells. The innate immune response is followed by the initiation of the adaptive response against Chlamydia trachomatis, which in turn 
may result in T helper 1-mediated protection or in T helper 2-mediated immunopathology. Understanding the molecular mechanisms 
developed by Chlamydia trachomatis to avoid killing and host immune response would be crucial for designing new therapeutic 
approaches and developing protective vaccines. In this review, we focus on chlamydial survival strategies and the elicited immune 
responses in male genital tract infections.
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Chlamydia trachomatis and genital tract infections

Chlamydia trachomatis (CT) is the leading cause 
of sexually transmitted bacterial infections in both, 
developing and developed countries (Mylonas 2012, 
Gottlieb  et  al. 2013, WHO 2016). According to the 
World Health Organization, approximately 131 million 
new cases of chlamydial genital infections are diagnosed 
worldwide every year (WHO 2016).

CT infections mainly occur in young fertile women, 
who suffer from urethritis, cervicitis, endometritis, 
salpingitis to pelvic inflammatory disease (PID), 
ectopic pregnancy or tubal infertility (reviewed in 
(Haggerty  et  al. 2010, Kortekangas-Savolainen  et  al. 
2012, Refaat  et  al. 2016). The most important feature 

of CT genital infections is their asymptomatic nature, 
leading to long-term subclinical infections responsible 
for permanent sequelae in the female genital apparatus 
(Gottlieb et al. 2010). In men, CT infects urethra being a 
major cause of male urethritis, which usually constitutes 
an acute episode of an underlying chronic silent 
infection affecting prostate, seminal vesicles, epididymis 
and testis (Furuya et al. 2005, 2009, Motrich et al. 2012, 
Mackern-Oberti et al. 2013).

In this review, we discuss the current knowledge 
regarding chlamydial recognition by epithelial cells 
and how these bacteria invade and survive within 
them. In addition, we review chlamydial strategies to 
evade host immune response to develop male genital 
tract infections.
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Chlamydia trachomatis lifestyle

Attachment and invasion

CT is a gram negative bacterium that displays an obligate 
intracellular lifestyle involving a unique biphasic cycle 
with two clearly defined developmental stages (de 
Jesus De Haro-Cruz  et  al. 2011, Elwell  et  al. 2016). 
Infection starts by the bacterial-driven endocytosis of 
the quiescent, environmentally resistant and highly 
infectious elementary body (EB). Several virulence 
factors have been linked to EBs attachment to epithelial 
cells such as a new adhesin and invasin protein from 
CT serovar E Ctad1 (CT017) (Stallmann & Hegemann 
2016), major outer membrane protein (MOMP) (Su et al. 
1996), outer membrane complex protein B (OmcB) 

(Fadel & Eley 2007) and polymorphic membrane protein 
D (PmpD) (Wehrl et al. 2004).

Different host molecules have been associated to CT 
invasion such as heparan sulfate proteoglycans (HSPGs) 
(Kim et al. 2011), glycosaminoglycan (Menozzi et al. 
2002), mannose receptor (CD206) (Kuo  et  al. 2002, 
Campbell  et  al. 2006), protein disulfide isomerase 
(PDI) (Conant & Stephens 2007), platelet-derived 
growth factor receptor (PDGF-R), tyrosine kinase 
ephrinA2 receptor (EphA2) (Moorhead  et  al. 2010) 
and abelson kinase (Abl) (Elwell et al. 2008) (Fig. 1). 
Interestingly, EBs have the ability to directly bind to 
fibroblast growth factor 2 (FGF-2), which may enable 
their interaction with the FGF-2 receptor, triggering 
its activation that leads to the uptake of CT into  

Figure 1 Chlamydia trachomatis infection of an epithelial cell. Several bacterial factors have been linked to EBs attachment to epithelial cells 
such as major outer membrane protein (MOMP), outer membrane complex protein B (OmcB) and polymorphic membrane protein subtype D 
(PmpD). On the other hand, several eukaryotic molecules are involved in CT binding to host cells such as heparan sulfate proteoglycans 
(HSPGs), mannose receptor (CD206), fibroblast growth factor 2 receptor (FGF2-R), protein disulfide isomerase (PDI), platelet derived growth 
factor receptor (PDGFR) and EphrinA2 receptor (EphA2). Host cells may recognize CT by different patterns recognition receptors (PRRs) such as 
toll-like receptor (TLRs), stimulator of interferon genes (STING) and nucleotide oligomerization domain 1 (NOD1). In turn, PRRs trigger nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation, leading to Inhibitor of NF-kB (IkB) ubiquitination and NF-kB nuclear 
translocation. Chlamydial components such as ChlaDub1/2 (deubiquitinating enzymes) may interfere with this signaling pathway limiting 
apoptosis. Once inside the host cell, CT drives modifications of the Chlamydia-containing vacuole or ‘inclusion’ by the selective exclusion or 
retention of Rabs on the chlamydial inclusion membrane in order to manipulate host trafficking. In this way, CT avoids degradation by inhibiting 
fusion with lysosomes and redirects Golgi-derived vesicles and multivesicular bodies (MVBs) to the inclusion for the acquisition of sphingolipids 
and cholesterol. In addition, Chlamydia also recruits lipid-rich organelles from the host cytosol, such as lipid droplets, through chlamydial 
proteins like Lda3 (Lda are proteins secreted by chlamydia that bind to cytoplasmic lipid droplets, LDs). Green boxes indicate chlamydial 
molecules; green circles indicate EBs; green arrows indicate host proteins associated with chlamydia inclusion; black lines indicate intracellular 
pathways; red lines indicate signaling pathways modulated by chlamydia. Red blunt lines indicate inhibitory signals; green lines indicate 
activation signals; black lines indicate intracellular localization and traffic; and dotted black lines indicate theoretical mechanism.
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non-phagocytic cells (Kim et al. 2011). These data are 
summarized in Fig. 1.

Internalized EBs grow into a membrane-bound 
compartment known as the inclusion, in which they 
differentiate into larger, metabolically active and 
highly replicative reticulate bodies (RBs). After several 
rounds of replication, RBs are asynchronically turned 
back into EBs. At the end of the developmental cycle, 
which lasts 42–76 h, the inclusion occupies most of 
the cell cytoplasm and contains these new EBs, which 
are released to the extracellular environment either by 
cellular lysis or extrusion. Consequently, infection is 
spread into neighboring cells (Valdivia 2008). Along the 
developmental cycle, chlamydial lipopolysaccharide 
(cLPS) and other chlamydial molecules including c-di-
AMP are sensed by host receptors such as toll-like receptor 
4 (TLR4) and a cytosolic cyclic-nucleic acid-sensing 
protein named stimulator of interferon genes (STING) 
leading to NFκB and NLPR3-inflammasome activation 
(Barker et al. 2013, Finethy et al. 2015, Sixt et al. 2017, 
Webster et al. 2017). By these mechanisms, CT triggers 
host innate immune response and impairs mucosal 
homeostasis (Mackern-Oberti et al. 2011a, Barker et al. 
2013). On the other hand, chlamydial plasmid is crucial 
for inducing immunopathology, which may be mediated 
by a toll-like receptor 2 (TLR2)-dependent mechanism. 
In agreement, plasmid-free CT or Chlamydia muridarum 
(CM) displayed an attenuated infection (O’Connell et al. 
2007, 2011, Lei et al. 2014). Some Inc proteins such as 
incC, CT229, CT288, CT383 and CT449 are involved 
in bacterial replication contributing to inclusion 
membrane stability (Weber  et  al. 2017). Furthermore, 
these chlamydial proteins create a replicative niche that 
avoid innate immune recognition (Weber et al. 2017). 
A general view of bacterial and eukaryotic molecules 
involved in CT attachment to and invasion of host cells 
is shown in Fig. 1.

Chlamydia trachomatis and host signaling

CT has developed several molecular mechanisms to 
subvert or dampen the host immune response. Among 
them, CT prevents nuclear translocation of nuclear 
factor κ B (NFκB) by the release of the chlamydial 
proteins ChlaDub1 and ChlaDub2 (deubiquitinating 
enzymes) that in turn interfere with inhibitor of NF-kB 
(IkB) ubiquitination (Misaghi  et  al. 2006) (Fig.  1). 
Additionally, CT exerts anti-apoptotic activity by 
triggering a pathway driven by mitogen-activated 
protein kinases, originally called extracellular signal-
regulated kinases (MAPK/ERK signaling) (Kun  et  al. 
2013). Hence, CT ensures the survival of the infected 
cell. CT also modulates PLCγ1 (phospholipase Cγ1) and 
Akt (protein kinase B) signaling pathways to promote 
chlamydial attachment, internalization and inclusion 
formation (Subbarayal  et  al. 2015). Indeed, upon 
chlamydial infection, there is a strong and sustained 

infection-mediated ERK activation, which in turn leads 
to upregulation of EphrinA2 receptor (Subbarayal et al. 
2015). Although the mechanism is still unclear and 
controversial, the chlamydial secreted protease (CPAF) 
may also promote cell survival (Yang  et  al. 2016). In 
Fig.  1, we describe the main signaling pathways that 
are affected by chlamydial infection. Since most of 
them are also involved in the regulation of host immune 
response, it is likely that through common molecules, 
CT manipulates not only the intracellular environment 
of the infected cell but also overall host immunity.

Chlamydia trachomatis controls intracellular transport

CT has evolved highly specialized mechanisms to survive 
within human epithelial cells being able to scavenge 
nutrients from the host cell while being restricted into 
the inclusion (Saka & Valdivia 2010).

CT drives modifications in host vesicular transport 
by selective exclusion or retention of Rab GTPases 
(family of small Ras-like GTPases) on the chlamydial 
inclusion membrane (Hackstadt 2012, Damiani  et  al. 
2014). Rab5 and Rab7, which control transport in 
the phagocytic pathway, phagosome maturation and 
finally, the fusion with lysosomes, are conveniently 
excluded from the inclusion membrane (Rzomp et al. 
2003, Hackstadt 2012). On the other hand, Rabs 
belonging to the endocytic recycling pathway like Rab4 
and Rab11 are selectively retained on the chlamydial 
inclusion membrane. Furthermore, Rab6 and Rab14, 
GTPases that participate in intra-Golgi and post-Golgi 
transport, are recruited by CT to redirect endogenously 
synthesized host lipids (Rzomp  et  al. 2006, Rejman 
Lipinski  et  al. 2009, Capmany & Damiani 2010). 
In addition, chlamydial inclusions interact with 
multivesicular bodies (MVBs, host organelles rich in 
cholesterol and sphingomyelin) through a Rab39a-
mediated mechanism (Gambarte Tudela  et  al. 2015). 
Some Rab-interacting proteins have been found 
associated to chlamydial inclusions such as Rab6 
effector Bicaudal D1, a dual Rab11- and Rab14-binding 
protein known as family of interacting protein 2 (FIP2), 
and the oculocerebrorenal syndrome of Lowe protein 
1 (OCRL) that binds to multiple Rabs (some isoforms 
of Rab1, Rab3, Rab5, Rab6, Rab8, Rab13, Rab22 and 
Rab35) (Rzomp  et  al. 2006, Moorhead  et  al. 2007, 
2010, Leiva et al. 2013) (Fig. 1).

 Current evidence indicates that CT acquires lipids 
not only by hijacking Golgi-derived exocytic vesicles 
or multivesicular bodies (MVBs). Actually, CT has the 
ability to recruit lipid droplets (LDs, neutral lipid rich 
organelles) by the interaction with chlamydial protein 
Lda3 (Kumar  et  al. 2006, Cocchiaro  et  al. 2008). In 
agreement, in the absence of LDs, CT replication is 
significantly reduced (Saka  et  al. 2015). In fact, lipid 
droplet proteome in epithelial cells is modified in 
response to CT infection (Saka et al. 2015), (Fig. 1).
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 Interestingly, CT also takes advantage of non-
vesicular-mediated mechanisms for nutrient acquisition. 
Inclusion membrane protein IncD interacts with the 
endoplasmic reticulum (ER)-to-Golgi ceramide transfer 
protein CERT and the ER resident protein VAPB at 
ER-Chlamydia trachomatis inclusion membrane contact 
sites to acquire host sphingomyelin (Derre et al. 2011, 
Elwell et al. 2011). The main vesicular transport pathways 
and host lipid sources co-opted by CT are schematized 
in Fig. 1.

Chlamydia trachomatis and persistent infections

Interferon-γ (IFN-γ) has an important role in the immune 
response to CT (Johansson  et  al. 1997, Perry  et  al. 
1999, Gondek et al. 2009, Sherchand et al. 2016). The 
induction of indoleamine-2,3-dioxygenase 1 (IDO1) 
by this cytokine results in depletion of intracellular 
tryptophan, which in turn imposes nutritional stress to 
CT, given that these bacteria are tryptophan auxotrophs 
(Byrne  et  al. 1986). In response to the nutritional 
stress, also caused by sphingolipids deprivation, CT 
enters into a low replicative viable state identified by 

the presence of persistent or aberrant bacterial forms, 
which are able to resume normal replication as soon as 
conditions are favorable again. Persistent bacteria are 
linked to infection chronification (Beatty et al. 1994a,b, 
Wyrick 2010).

In summary, current knowledge supports the concept 
that CT ensures its survival, development and replication 
by hijacking multiple vesicle pathways to seize host cells 
for its own benefit. These findings have been achieved 
by in vitro studies in epithelial cells. However, whether 
similar mechanisms occur inside infected immune cells 
such as dendritic cells (DCs) and macrophages affecting 
T cell priming remain elusive.

Innate immune response against 
Chlamydia trachomatis

Epithelial cells as the first immune barrier

Urethra or vagina/endocervix epithelia are physical 
barriers in which takes place the first contact between 
the host and CT. Male (MGT) and female genital tract 
(FGT) epithelial cells can recognize CT through pattern 

Figure 2 Proposed mechanisms by which CT is recognized by epithelial cells and leukocytes. After ascending through the urethra, CT interacts 
and infects epithelial cells. Extracellular CT EBs are recognized by epithelial cells by toll-like receptors (TLR)1, 2, 4 and 6, thus triggering TLR 
signalling and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) nucleous translocation leading to proinflammatory gene 
expression and secretion. CT recognition by epithelial cells is strictly dependent on the adaptor molecule myeloid differentiation primary 
response 88 (MyD88), suggesting that other MyD88-dependent PRRs may be involved. It is believed that intracellular TLR2, TLR4 and TLR9 from 
epithelial cells may also have a role in CT recognition and so initiating TLR signaling from this compartment. In addition, CD45+ leukocytes 
may encounter and recognize CT mainly by TLR2, 1, 6 and 4 resulting in cytokine/chemokine secretion, immune cell recruitment and 
inflammation. Also, CT activated tissue resident CD45+ leukocytes may interact with epithelial cells in order to augment and coordinate an 
effective specific immune response driven by Neutrophils, NK cells, Th1 T cells and B cells. In contrast, a Th2 driven immune response may 
result in non-protective leading to pathology. Also, continuous activation of TLR on epithelial cells and CD45+ leukocytes by a chronic CT 
infection may cause a state of chronic inflammation of the male and female genital tract, which may impair tissue normal function and possibly 
trigger immunepathology process in susceptible individuals. Black lines indicate intracellular signaling and dotted black lines indicate 
theoretical mechanisms.
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recognition receptors (PRRs) leading to nuclear factor 
kappa-light-chain-enhancer of activated B cells (NFκB), 
p38 MAP kinase pathway (P38) and c-Jun N-terminal 
kinases (JNK) activation and the production of pro-
inflammatory cytokines and chemokines (Al-Mously & 
Eley 2007, Mackern-Oberti et al. 2013). These immune 
mediators may activate resident leukocytes and recruit 
others from the periphery, which in turn modulate the 
adaptive immune response (O’Neill 2002, Sellami et al. 
2014). These interactions between CT and the host are 
summarized in Figs 1 and 2.

Chlamydia trachomatis recognition by PRRs in the FGT 
has been extensively explored, whereas the knowledge 
about PRR expression and CT recognition in the MGT is 
limited. It has been proposed that PRRs signaling may 
converge in MyD88 and thus immunopathology would 
occur by this molecular signaling (Nagarajan  et  al. 
2005, Chen et al. 2010). MyD88-deficient mice failed 
to develop a protective immune response during 
Chlamydia muridarum (CM) genital tract infection, while 
mounting a specific T helper type 2 (Th2)-like immunity. 
As expected, female infected MyD88 KO mice showed 
increased bacterial burden in the upper genital tract 
with severe pathology, associated with a reduction 
in IFN-γ production by natural killer (NK) cells and 
decreased levels of IL-17, IL-18 and TNF-α (Chen et al. 
2010, Nagarajan et al. 2011). In addition, in vitro studies 
indicated that nucleotide-binding oligomerization 
domain-containing protein 1(NOD1) participates in CT 
recognition leading to IL-8 production by FGT epithelial 
cells, which in turn may collaborate in the recruitment 
of leukocytes initiating the immune response (Buchholz 
& Stephens 2008).

Different MGT tissues such as urethra, testis, 
epididymis, prostate and vas deferens express TLRs 
showing a specific tissue distribution (Al-Mously & Eley 
2007, Palladino et al. 2007, 2008, Mackern-Oberti et al. 
2011a,b, Winnall et al. 2011). Indeed, primary cultures 
of cells from different MGT tissues actively produce 
chemokines when stimulated with different TLR ligands, 
including polyinosinic:polycytidylic acid (Poly I:C), CpG 
oligodeoxynucleotides (CpG), E. coli LPS and chlamydial 
LPS (Mackern-Oberti  et  al. 2011a). Furthermore, 
prostate cell primary cultures from TLR2/4 double 
KO mice displayed an altered chemokine production 
in response to CM infection (Mackern Oberti  et  al. 
2011b). Interestingly, prostate cell primary cultures 
from MyD88 KO mice showed a more pronounced 
decrease in chemokine production than TLR2/4 double 
KO mice suggesting that an additional PRR is involved 
in CT recognition (Mackern Oberti et al. 2011b) (Fig. 2). 
Moreover, TLR2 and TLR4, but not TLR5, were recruited 
to the chlamydial inclusion vicinity, suggesting an active 
role of these receptors in bacterial recognition and 
activation of MGT epithelial cells (Mackern-Oberti et al. 
2006). Urethral and prostate epithelial cells respond to 

CT-producing IL-1α and IL-6 in a tissue-specific pattern, 
suggesting a differential sensitivity to CT recognition that 
may be due to a particular TLRs expression (Al-Mously 
& Eley 2007). These molecular mechanisms are 
summarized in Fig. 2 and Table 1.

Besides CT recognition by epithelial cells, it is 
important to consider bacteria recognition by resident 
leukocytes (Aflatoonian & Fazeli 2008, Mackern 
Oberti et al. 2011b). In the FGT, it has been reported that 
resident macrophages were the main source of IL-1β 
in response to CT infection, which may collaborate 
with epithelial cells in mounting an immune response 
(Prantner et al. 2009). Both prostate resident leukocytes 
(CD45+ sorted cells) and epithelial/stromal cells (CD45− 
sorted cells) express genes involved in TLR signalling 
but exhibit different responses to CT infection (Mackern 
Oberti  et  al. 2011b). In fact, CD45+ and CD45− cells 
from MyD88 KO mice do not respond to CT infection 
(Mackern Oberti  et  al. 2011b). However, while CT 
recognition by CD45+ cells is dependent on TLR2/TLR4, 
CD45− cells keep responding to CT, to a certain extent, 
independently of TLR2/TLR4, suggesting a crucial role of 
these cells in initiating an immune response against CT 
(Mackern Oberti et al. 2011b) (Fig. 2 and Table 1).

Chlamydia trachomatis infection of dendritic cells

CT can efficiently infect and replicate into human 
dendritic cells (DCs) leading to the production of pro-
inflammatory cytokines such as IL-1, IL-6, IL-8, IL-12, 
IL-18 and TNF-α (Gervassi  et  al. 2004, Agrawal  et  al. 
2013, Datta  et  al. 2014). Macrophages could also be 
infected by CT but displaying a different bacterial 
development such as non-conventional inclusion 
formation (Herweg & Rudel 2016, Zuck  et  al. 2016). 
Recently, it has been reported CT could also complete 
its replication cycle in induced pluripotent stem cell-
derived macrophages (Yeung et al. 2017).

Chlamydial LPS and heat shock protein 60 (HSP60) 
were the first antigens described to be recognized by 
TLR2 and TLR4 expressed on monocytes and DCs 
(Vabulas  et  al. 2001, Prebeck  et  al. 2003). Similarly, 
macrophage infectivity potentiator has also been reported 
to be recognized by TLR2 on macrophages leading to 
the production of IL-1β, TNF-α, IL-6 and IL-8 (Bas et al. 
2008). Interestingly, chlamydial MOMP, a surface-
exposed antigen, has the ability to signal via TLR2 in 
TLR-expressing transfected cells and in TLR2-competent 
endocervical End/E6E7 cells leading to IL-8 and IL-6 
production (Massari et al. 2013). Although the molecular 
mechanisms underlying cellular recognition remain to 
be determined, several polymorphic membrane proteins 
induce innate immune responses (Vasilevsky et al. 2016). 
Chlamydial lipoproteins D381, D541 and D775 induce 
the production of pro-inflammatory cytokines mediated 
by TLR1/2/MyD88 and TLR2/CD14/MyD88 signaling 
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but not by TLR4 pathway (Wang et al. 2017) (Table 1). 
Interestingly, vaccination with chlamydial membrane 
proteins such as highly conserved type III secretion 
system (T3SS) proteins CopB, CopD and CT584 and 
MOMP induce neutralizing antibodies, enhance T cell 
responses and reduce bacterial load from the vagina 
(Cheng et al. 2014, Pal et al. 2015, Bulir et al. 2016, de 
la Maza et al. 2017).

 When TLR4 engagement is abrogated by a blocking 
monoclonal antibody, DCs fail to produce IL-1, IL-6 
and TNF-α in response to CT (Gervassi  et  al. 2004). 
Surprisingly, adoptive transfer of mice with long-term 
infected DCs caused an in vivo infection showing 
that infective  CT also develops within DCs and may 
be a potential reservoir with still unknown evasion 
mechanisms (Rey-Ladino et al. 2007, Rescigno 2015).

Interestingly, only viable EBs induce DC maturation 
with classical upregulation of major histocompatibility 
complex 2 (MHC-II), CD40, CD80, CD83, CD86 and 
intercellular adhesion molecule 1 (ICAM-1) expression, 
production of high levels of IL-12, TNF-α, keratinocyte 
chemoattractant (KC), macrophage inflammatory 
protein 2 (MIP-2) and enhancing T cell priming (Rey-
Ladino et al. 2005, Zaharik et al. 2007, Agrawal et al. 
2013). Although much work has been done in mice 
and human monocytes, macrophages and DCs, it is 
important to note that resident myeloid cells from genital 
tract may display different immune response (Da Silva & 
Barton 2016).

Chlamydia trachomatis and the adaptive 
immune response

Although CT-infected hosts develop adaptive immune 
responses, the bacterium manages to evade host immune 
effectors by building a niche inside epithelial cells 
(Igietseme & Rank 1991, Bragina et al. 2001, Kokab et al. 
2010). As previously mentioned, epithelial cells and 
resident leukocytes could secrete a wide spectrum of 
pro-inflammatory chemokines after CT recognition 
leading to the local recruitment of leukocytes (Deruaz & 
Luster 2015). Both humoral and cell-mediated immune 
responses have been implicated in inducing protection 
against CT infection (Morrison  et  al. 2000, Loomis & 
Starnbach 2002). It has been extensively demonstrated 
that the T cell–mediated immune response is crucial for 
protection, as T cell or MHC-II-deficient mice develop 
more severe and long-lasting CT infections (Rank et al. 
1985, Morrison et al. 1995) (Table 2).

Most studies indicate that the Th1/IFN-γ response is 
crucial for controlling CT infection (Cocchiaro  et  al. 
2008, Li et al. 2008, Gondek et al. 2009). IFN-γR-deficient 
mice preferentially induce prominent Th2 responses and 
are susceptible to develop severe and long-lasting FGT 
infections (Gondek  et  al. 2009). In fact, macrophages 
from IFN-γR-deficient mice show increased numbers of 
intracellular CT inclusions and produce lower levels of 
nitric oxide (Johansson et al. 1997). Interestingly, in vitro 
studies suggest that IFN-γ is crucial in mounting effector 

Table 1 Innate immune mediators involved in CT infection of the genital tract.

Innate 
immunity

 
Tissue

 
Cell type Type of study

 
Response

 
References

TLR2 MGT; FGT; 
leukoctes

Epithelial cells; 
prostate; seminal 
vesicles; vas 
deferens; oviduct 
cells; cervical 
cells; leukocytes

in vitro; in vivo; mice; 
rat; human

Cytokine and chemokine 
production (TNF-α, IL1-β, IL-6, 
IL-8, KC, MCP1, IL-12); involved 
in immunity and 
immunopathology; binding of 
chlamydial LPS, HSP60, Mip 
and MOMP

Mackern-Oberti et al. (2006, 
2011a,b, 2013); Al-Mously 
and Eley (2007); Massari et al. 
(2013);  Bas et al. (2008); 
Sellami et al. (2014); 
Palladino et al. (2007,  2008); 
O’Neill (2002)

TLR4 MGT; FGT; 
leukoctes

Epithelial cells; 
prostate; seminal 
vesicles; vas 
deferens; oviduct 
cells; cervical cells; 
leukocytes

in vitro; in vivo; mice; 
human

Cytokine and chemokine 
production; no major impact 
in vivo; binding to LPS and 
HSP60

Mackern-Oberti et al. (2006, 
2011a,b); Al-Mously & Eley 
(2007); Sellami et al. (2014); 
O’Neill (2002)

TLR3 FGT Cervical cells in vitro; mouse Cytokine production; TLR3 
deficient leads to more 
suscptibility to replication

Aflatoonian & Fazeli (2008)

TLR5 MGT Prostate in vitro; rat No major impact in vitro Mackern-Oberti et al. (2006); 
Palladino et al. (2007, 2008)

MyD88 MGT; FGT Prostate; leukocytes; 
cervical cells, 
oviduct

in vitro; in vivo; mouse Involved in innate and adaptive 
immune response, oviduct 
pathology; MyD88 KO develop 
a Th2 immunity; IFN-g reduction

Mackern-Oberti et al. (2011a,b, 
2013); Nagarajan et al. (2005, 
2011); Chen et al. (2010); 
O’Neill (2002)

STAT1 FGT Cervical cells, oviduct in vitro; mouse Contribute to IL-1β response in CT 
infection

Prantner et al. (2009)

NOD1 
 
 

FGT 
 
 

Cervical cells 
 
 

in vitro; mouse; human 
genetic studies

Contribute to IL-8 response in CT 
infection; certain polymorphism 
may confer lower risk of 
infection

Buchholz & Stephens (2008)  
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mechanisms by promoting the accumulation of different 
interferon-γ-inducible regulatory immunity-related 
GTPase (Irg) molecules such as Irga6, Irgd, Irgm2 and 
Irgm3 at the chlamydial inclusion, targeting this vacuole 
to lysosomes for degradation (Al-Zeer  et  al. 2009) 
(Table 2). In mice, furthermore, Irga6-deficient cells are 
more susceptible to CT infection and fail to respond to 
IFN-γ indicating that Irga6 is crucial for mounting an 
IFN-γ response (Al-Zeer  et  al. 2009). Although studies 
evaluating cell-mediated immune responses to CT 
infection in humans are limited, a protective response 
associated to a reduced risk of pathology and reinfection 
is related to the Th1/CD4+ T cells/IFN-γ axis (Barral et al. 
2014). It has been reported that IFN-γ production 
by CD4+ T cells in response to chlamydial HSP60 is 
associated to protection against CT (Cohen et al. 2005) 
(Table 2). In MGT, it remains to be determined whether 
Th1/IFN-γ axis is involved in CT resistance (Pal  et  al. 
2010). Nevertheless, researchers must be cautious 
when interpreting data obtained from the mouse model, 
especially when using its natural pathogen CM instead 
of CT, because of differences in bacterial replication and 
host recognition (O’Connell et al. 2011).

Gradual loss of protective immunity against CT 
generally occurs and is consistent with decreased CD4+ 
T cell numbers in the genital tract (Ramsey et al. 1989, 
Kelly & Rank 1997). CD4+ T cells that are recruited 
to the female upper genital tract highly express a 
heterodimeric integrin receptor a4β7 and the blockage 
of this homing receptor leads to severe infection. The 
latter highlights the need of a vaccine that promotes 
a long-term expression of this adhesion molecule on 

CT-specific Th1 CD4+ cells (Davila  et  al. 2014). Th2-
specific T cells fail to induce protective immunity 
against CT displaying lower expression levels of this 
homing receptor (Hawkins et al. 2002). However, in an 
experimental model of CT infection of the MGT using 
C57BL/6 mice, it was reported that Th2-like cells transfer 
controls CT infection and prevents tissue damage 
(Sobinoff et al. 2015).

During the last years, the role for the Th17/IL-17 
axis in the resolution of CT infection has also been 
investigated (Scurlock  et  al. 2011, Andrew  et  al. 
2013, Frazer  et  al. 2013, Vicetti Miguel  et  al. 2013). 
Interestingly, IL-17-R-deficient mice showed a reduced 
Th1/IFN-γ response against CT although they efficiently 
cleared the infection and displayed a more robust TNF-
α-induced immune response with similar severity of 
oviductal pathology (Scurlock et al. 2011). By contrast, 
CT-infected IFN-γ-deficient mice showed a more severe 
immunopathology with higher levels of IL-17 that may 
contribute to misbalance the Th profiles (Scurlock et al. 
2011). Immunization protocols indicate that Th17 
responses collaborate with both, the induction of 
immune protection and development of FGT pathology 
(Yu et al. 2010, O’Meara et al. 2014).

Regarding cytotoxic T cells, it has been reported that 
CD8+ T cells are also recruited to the infected mucosa 
but their role in the infection resolution is still under 
debate (Mittal et al. 2004, Agrawal et al. 2009). After CT 
infection, CD8+ T cells contribute to oviductal pathology 
secreting TNF-α (Manam  et  al. 2015). In addition, 
adoptive CD8+ T cell transfer experiments showed that 
CT-specific CD8+ T cells mediate immunopathogenesis 

Table 2 Adaptive immune mediators involved in CT infection of the genital tract.

Adaptive 
immunity

 
Tissue

 
Cell type Type of study

 
Response

 
References

T cells FGT T cells; 
cervical, 
oviduct

in vivo; mouse T cells deficiency leads to CT 
chronic infection

Loomis & Starnbach (2002); Morrison et al. 
(1995); Rank et al. (1985)

Th1; CD4+ T 
cells; 
cytokines; 
IFN-g

FGT; 
MGT

CD4+ T cells; 
cervical, 
oviduct

in vivo; mouse; 
human; human 
genetic studies

IFN- is crucial for immune 
protection to CT infection by 
differrent mechanisms 
includding epithelial cell 
activation; certain IL-12 
polymorphisms confer more risk 
to infection; Th1 cells may reside 
indiffernt sites of FGT and also 
be modulated by Estrogen

Kokab et al. (2010); Deruaz & Luster (2015); 
Morrison et al. (2000); Johansson et al. 
(1997); Al-Zeer et al. (2009); Barral et al. 
(2014); Cohen et al. (2005); 
Cocchiaro et al. (2008); Gondek et al. 
(2009); Li et al. (2008); Pal et al. (2010); 
Davila et al. (2014); Su et al. (2004); 
Mackern-Oberti et al. (2011c); Shao et al. 
(2012)

Th2; IL-4 FGT CD4+ T cells; 
cervical, 
oviduct

in vivo; mouse; 
human

Th2 leads to developing unresolve 
infections; more susceptibility to 
tubal factor infertility

Johansson et al. (1997); Agrawal et al. 
(2009); Vicetti Miguel et al. (2013); 
Hawkins et al. (2002)

Th17; IL-17; 
IL23

FGT CD4+ T cells; 
cervical, 
oviduct

in vivo; mouse; 
human

IL-17 deficiency leads to a 
decreased Th1 immunity; TNF-α 
as a compensatory cytokine; 
partially involved in oviduct 
immunopathology; infection 
course unaffected

Scurlock et al. (2011); Nagarajan et al. 
(2011); Frazer et al. (2013); O'Meara et al. 
(2014); Yu et al. (2010); Andrew et al. 
(2013); Vicetti Miguel et al. (2013); 
Russell et al. (2016)

CD8+ T cells 
 
 

FGT 
 
 

CD8+ T cells; 
cervical, 
oviduct

in vivo; mouse; 
human

Controversial role of CD8+ T cells 
in CT immunity; involved in 
immunopathogenesis 

Deruaz & Luster (2015); Agrawal et al. 
(2009); Mittal et al. (2004); Vlcek et al. 
(2015); Manam et al. (2013, 2015); 
Nogueira et al. (2015)
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in the FGT during CT infection (Manam  et  al. 2013, 
Vlcek  et  al. 2015). However, immunization protocols 
indicate that CD8+ T cell response may mediate 
immune protection against CT (Nogueira  et  al. 2015). 
Additionally, women with lower FGT infection exhibit 
higher numbers of Chlamydia-specific CD8+ T cells 
than those with upper FGT infection (Russell et al. 2016) 
More compelling data are currently needed to ascertain 
the precise role of CD8+ T cells in CT infection of the 
genital tract (Table 2).

Pal and coworkers by inoculating male wild-type and 
severe combined immunodeficient mice showed the 
induction of a Th1 immune response and the requirement 
of the adaptive immune response to clear the bacterium 
from MGT (Pal et al. 2004, Su et al. 2004). CT infection 
of the MGT actively induces CD4+ and CD8+ T cell 
recruitment to the prostate gland, which is similar to 
that observed in infected women with PID (Mackern-
Oberti  et  al. 2011c, Shao  et  al. 2012). We have also 
reported for the first time that chronic MGT infection 
with CM may promote the loss of immune tolerance to 
prostate antigens (Mackern-Oberti et al. 2011c). These 
findings could help in understanding the underlying 
mechanisms of chronic pelvic pain syndrome and 
chronic prostatitis (Table 2).

Conclusions

CT modifies intracellular trafficking by modulating 
several host molecules in order to avoid degradation by 
phagocytosis, a major mechanism of the innate immune 
system. By using the same strategy, CT not only evades 
lysosome fusion but also redirects nutrient-rich vesicles 
to the chlamydial inclusion. CT also avoids degradative 
host cell response by inhibiting transcription factors 
and preventing apoptotic cell death. CT infection of 
the FGT and MGT induces the production of cytokines/
chemokines by epithelial cells and leukocytes that 
may initiate the specific adaptive immune response as 
well as drive immunopathology in susceptible hosts. 
Understanding Th1-driven immune response and 
identifying key CT targets at the genital tract are crucial 
for designing an efficient vaccine to control chlamydial 
transmission and disease, and thereby remain as major 
priority in CT research.
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