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a b s t r a c t

In this paper, a problem formulation and solution methodology for optimal design of thin-walled
composite beams is presented. The aim is to maximize the buckling load capacity and minimize the
weight of the beam. For this purpose, a theoretical model is developed for the analysis of thin-walled
composite beams under a state of arbitrary initial stresses. In order to find the optimal solution, Simu-
lated Annealing method is implemented. Design variables are taken as the stacking sequences of lami-
nate and the dimensions of the cross-section. The space of feasible solutions is constrained by strength,
displacements, global and local buckling and geometric conditions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are mostly used in applications where
stiffness-to-weight or strength-to-weight ratios are critical. The
design of composite structures is a difficult task due to the nu-
merous design variables which have to be simultaneously taken
into account. For example varying fiber orientation in each ply, or
in a certain number of plies, can produce a large number of ac-
ceptable designs that support a specific loading condition. Hence it
is necessary to find the structure with the best configuration for a
specific application. This can be achieved through a process of
optimization design. In the last years many works have been de-
veloped related to the optimization of composite structures [1–4].
In addition, another challenge to face is represented by the fact
that in engineering practice the design variables are not con-
tinuous. Thus, design variables can only take values from a pre-
defined discrete set. Therefore, in order to find the absolute opti-
mum of an objective function a global optimization method must
be employed. Stochastic optimization techniques are suitable for
this propose, because they can search into a large solution space
and escape from local optimum points.

The design of thin-walled composite beams is a very important
ones en Mecánica Teórica y
de Abril 461, B8000LMI Bahía

uera),
topic in construction engineering. One-dimensional models are
suitable for optimization problems since they capture the main
features of the structure behavior, while they are simple enough to
be employed in extensive computation. Many one-dimensional
models have been developed and implemented [5–9]. A very im-
portant aspect in the behavior of composite beams is the shear
flexibility due to non-uniform torsional warping. This has been
considered in a complete form in several works [10–13]. Ad-
ditionally, the local buckling must be regarded on the design
[14,15]. The local buckling analysis of composite beams is ac-
complished by modeling the flanges and the webs individually,
considering the flexibility of the flange-web connections. Qiao and
Shan developed analytical predictions for local buckling of some
FRP (Fiber Reinforced Plastic) beams considering the elastic re-
straints of the flange-web connections [16]. Tarján et al. extended
this work to include other boundary conditions and analyzed local
buckling analysis of orthotropic composite beams [17].

In the present study, a solution methodology for minimum
weight and maximum global buckling load of orthotropic thin-
walled beams, with open or closed cross-sections, is developed.
The corresponding design variables are given by the dimensions of
the cross-section, the thickness of each layer, the fiber orientation
of each layer and the number of layers of the laminate. The set of
constraints includes global and local stability conditions, strength
condition and technological and constructional requirements in
the form of geometric relations. A theoretical model for the sta-
bility analysis of composite thin-walled beams is proposed to find
these conditions. This model incorporates in a full form the shear
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flexibility (bending and non-uniform warping effects) and takes
into account an arbitrary state of initial stresses. Also, a finite
element with two nodes and seven degrees-of-freedom per node
is employed to solve the governing equations. Moreover, analytical
solutions of the problem of local buckling of orthotropic beams
subjected to linearly varying axial loads are employed to impose a
local buckling condition. Finally, Simulated Annealing method is
applied to find the optimal fiber orientation of the laminates and
the cross-section dimensions.
2. Optimal design

In order to find the optimal design which satisfies specific
structural conditions a mathematical model of the optimization
problem is proposed. The aim is to maximize the global buckling
load and minimize the weight of the beam at the same time. To
carry out both targets, a dimensionless objective function is as-
sumed to be in the following form [18]

( ) =
( )

F
E A

M
x ,

1cr

1
3/2

where x is the vector of the design variables, A is the cross-sec-
tional area, E1 is the Young's modulus in the x1 direction and Mcr is
the critical moment given by

λ= ( )M M , 2cr
ref
0

being Mref
0 a reference moment, which is function of the current

loading, and λ a dimensionless global load parameter. Multiplying
λ by the current loading, the critical load is obtained and the global
elastic instability of the structure is achieved.

The components of x are defined as: the fiber orientation of the
kth layer θk, the dimensions of the cross-section, b and h, the
thickness of each layer tc and the number of layers of the laminate
n. The magnitudes tc and n define the total wall thickness t (see
Fig. 1).

The structural constraints take into account the strength of
laminate, the global and local stability of the beam and the max-
imum allowed displacement. The structure must also verify the
condition of thin-walled beams. In addition, it is established that
Fig. 1. Detail of the dimension
the area of the cross-section does not overcome a maximum value
(Amax) according to the requirements of a preliminary design. In
summary, the complete optimization problem is written as follows
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where λL is the local load parameter and the ratios b/t and h/t
represent the slenderness of the beam. The displacement module
(δ) is defined as the square root of the sum of squared displace-
ment and must be less than the maximum displacement allowed.
In this case, we considered that limit as a standard value set to
2.5 per thousand of the beam length (L/400). Rmin is the lowest
safety factor, which is calculated at the points shown in Fig. 2. This
safety factor is obtained according to the Tsai-Wu failure criterion
[19]. To calculate Rmin, the stresses are needed. These are calcu-
lated employing the beam model presented in the next section.
3. Composite thin-walled beam model

A theoretical model is developed to find displacements, stresses
and global buckling loads which will be used to solve the optimization
problem. This model represents an extension of the work in reference
[11], in order to account an arbitrary state of initial stresses. The effect
of shear deformability due to both bending and non-uniform warping
is taken into account and the Hellinger-Reissner Principle is employed.
Composite thin-walled beams of closed and open cross-section sub-
jected to any boundary condition are considered. This theory is valid
only for FRP materials with orthotropic lamination (symmetric ba-
lanced, orthotropic and cross-ply laminates).

3.1. Displacement and strain fields

In the Fig. 3, B is a generic point in the middle line of the wall.
Two reference points are employed: the point C, coincident with
s of I, C and box profiles.
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Fig. 2. Points where the stresses are calculated for an I-beam.
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the centroid of the cross-section, and the point O, coincident with
the shear center of the corresponding isotropic cross-section, ac-
cording to the Vlasov theory [20]. Magnitudes V, L and S represent
the volume, the length and the perimeter of middle line,
respectively.

The Cartesian coordinates corresponding to a point on the cross
section are

( ) = ¯ − ( ) = ¯ −

( ) = − ( ) = +
( )

y s n y y z s n z z

y s n Y n
dZ
ds

z s n Z n
dY
ds

, , , ,

, , , ,
4

0 0

where Y and Z are the coordinates corresponding to points lying
on this middle line.

The present thin-walled beam theory is based on the following
two principal hypotheses: (1) the cross-section contour is rigid in
its own plane, although it is free to warp out of it, and (2) the
torsional warping distribution is assumed to be given by the Saint-
Venant function corresponding to the cross-section considered as
isotropic. According to these assumptions, the displacement field
is assumed to be
Fig. 3. Geometrical entities of the cross-section,
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where ω is the warping function (see [11]), u, v and w are the
displacements in x, y and z directions, respectively, θy and θz are
bending twists, ϕx is the torsional twist and θx is the warping
variable (see Fig. 3). The displacement field can also be expressed
in terms of the intrinsic system (B: x, s, n) as

⎛
⎝⎜

⎞
⎠⎟Φ Φ

= = + = − +

= = + = − +

= −
∂
∂

= ∂
∂

+
( )

U u V u
dY
ds

u
dZ
ds

W u
dZ
ds

u
dY
ds

U u V u
dY
ds

u
dZ
ds

W u
dZ
ds

u
dY
ds

u
n n

u
dY
ds

u
dZ
ds

, , ,

, , ,

, ,
6

L
x

L
y z

L
y z

NL
x
NL NL

y
NL

z
NL NL

y
NL

z
NL

x
x

s y z

where U, V and W are the shell displacement in x, s and n direc-
tions, respectively, and Φx and Φs are the bending twists with
respect to s and n directions, respectively.
coordinate systems and displacement field.



F. Reguera, V.H. Cortínez / Thin-Walled Structures 104 (2016) 71–8174
Strain components of first order due to linear and non-linear
displacement and strain components of second order due to linear
displacement are considered. Therefore, the components of the
Green-Lagrange tensor are expressed in the intrinsic system by
means of the following expressions
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Also, the linear strain components can be expressed in terms of
membranal strain and curvatures follows
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In above expressions (�)’ denotes derivation with respect to x.

3.2. One-dimensional variational equation of equilibrium

The principle of Hellinger-Reissner comprises two expressions
[21]. One represents the principle of Virtual Work while the other
is interpreted as a variational representation of the constitutive
equations expressed in terms of the linear strain components. Both
equations are written as
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where Aij and Dij are tensile and bending stiffness of a laminate. LS
and LS

0 are the virtual work of the first order strain due to incre-
mental stress and initial stress, respectively. LF and LF

0are the vir-
tual work of the linear and non-linear displacements due to cur-
rent and initial volumetric forces, respectively. LT and LT

0 are the
virtual work of the linear and non-linear displacements due to
current and initial surface forces, respectively. Finally, LR is the
virtual work of the displacements due to inertial forces. Integrat-
ing with respect to s, the one-dimensional expressions are ob-
tained as

)
(

( ) ( )
∫ ( )δ δθ δθ δθ δ θ

δ θ δ ϕ θ δϕ

= ′ − ′ − ′ − ′ + ′ − +

′ − + ′ − + ′ ( )

L N u M M B Q v

Q w T T dx, 12

S

L

y y z z x y z

z y w x x sv x

0

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

{
( )

( )

( )

}∫

∫

∫ ∫

∫ ∫

∫ ∫

δ δ δ δ ϕ δ ϕ

δϕ θ δϕ θ δ θ δϕ

δ ϕ δ θ ϕ δ θ δ θ

δϕ δ θ
δϕ θ

δθ

δϕ θ
δϕ δ θ δθ θ δθ θ

= ′ + ′ + ′ − ′ ′− ′ ′ +

′ + ′ − ′ ′ − ′ ′ +

′ ′ − ′ − ′ ′ − ′ ′ +

′ − ′ − − ′ +

− ′ − ′ + ′ − ′
( )

L
N

v w u z v y w dx

M
u v dx

M
w u dx B u dx

Q w u dx T u dx

Q v u dx
M

dx

2
2 2

2
2 2

2
2 2

2

2 2
,

13

S

L

x x

L y
x z x z y x

L
z

x y x z

L

x

L

y x z
x y L

w x

L

z
x z

x y

L
x

y z y z

0

0

0
2 2 2

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

( )
( )

∫

∫ ( )

δ δθ δθ δθ δ δ δϕ

δθ δθ δϕ

+ = − − − − + + +

− + + 14

L L q u m m b q v q w m dx

q q q dx,

F F

L

x z z y y x y z x x

L

z y x

0

0

0 2
0

3
0

4
0

( )
( )

( )

δ δθ δθ δθ δ δ δϕ

δθ δθ δϕ

+ = − ¯ − ¯ − ¯ + ¯ + ¯ + ¯ + ¯

− ¯ + ¯ + ¯

=

=

=

=

15

L L N u M M B Q v Q w M

N N N ,

T T z z y y x y z x x x

x L

z y x
x

x L

0
0

2
0

3
0

4
0

0

where (•0) refers to initial stress state. N, Qy, Qz, My, Mz, B, Tw and
Tsv are the generalized beam forces, N0, My

0, Mz
0, B0, Qy

0, Q z
0, Tw

0 and

Mx
0 are the initial beam stress resultants, qx, qy and qz are the ap-

plied forces per unit length in the directions x, y and z, respec-
tively, mx, my and mz are the applied couples per unit length about
the directions x, y and z, respectively, b is the applied bimoment
per unit length, q2

0, q3
0 and q4

0 are the volume initial forces (see

Appendix A). N̄ , M̄z, M̄y, B̄, Q̄y, Q̄ z and M̄x are the external gen-

eralized forces acting at the ends, N̄2
0, N̄3

0 and N̄4
0 are the surface

initial forces (see Appendix A). The beam forces have been defined
in terms of the shell stress resultants as
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The initial beam stress resultants are defined analogously to the
beam forces of Eq. (16), but related to the initial stresses.
3.3. Constitutive equations

For orthotropic and symmetric laminates, the constitutive
equations in terms of the shell stress resultants are
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Fig. 4. Local buckling analysis of FRP beams.
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The field of the shell stress resultants is proposed to satisfy Eq.
(18) and the shell equilibrium equations (see [11]). Thus, such field
is written as
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being χ 0 or 1 whether the cross section is open or closed, re-
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The constitutive equations in terms of the beam forces are
obtained by replacing the field of the shell stress resultants (20)
into the functional (11). Integrating with respect to s and taking
variations with respect to the beam forces, the following con-
stitutive equations are found

Δ= ⋅ ( )Q J , 23

where Q is the vector of the beam forces, Δ is the vector of the
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4. Solution methods

4.1. Finite element analysis

In order to solve the static and instability problems, a non-
locking finite element based on the present theory is employed.
This finite element has two nodes with seven degrees-of-freedom
per node and employs third-degree polynomial shape functions
[12].

For the case of static and buckling analysis, the general finite
element equation leads to the following eigenvalue problem

( )λ+ * = ( )K K W 0, 30G

where K and KG are global matrices of elastic stiffness and geo-
metric stiffness, respectively; whereas W* is the global incre-
mental displacement vector.

In order to obtain the initial stresses, the following finite ele-
ment form of the self-equilibrium condition of initial stresses and
initial volume and surface forces is employed

= ( )K W P , 310 0 0

where K0, W0 and P0 are the global matrix of initial elastic stiff-
ness, the global vector of initial nodal displacements and the
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global vector of initial volume and surface forces, respectively.
Once W0 is found, the global matrix of geometric stiffness can be
determined. This allows calculations of global buckling loads and
the vibration behavior under the presence of initial stresses.

4.2. Local buckling

The local buckling analysis is performed by modeling the wall
segments as long plates, assuming that the common edges of two
or more plates remain straight. In order to calculate the buckling
load, the wall segments are regarded as individual plates elasti-
cally restrained by their adjacent walls [22] (see Fig. 4).

To analyze the local buckling, a procedure similar to the one
developed in [17] is employed. Their expressions of the buckling
loads of long composite orthotropic plates are employed to de-
terminate the buckling loads of the web and flanges. First, the
edges of each pair of segments are regarded as simply supported
and two buckling loads are obtained. These loads are compared to
check which segment buckles first. Finally, the buckling load of
this segment is found, assuming restrained edges by taking into
account the stiffness of the adjacent wall.
n

F

[0 ]n

0.25

0.
10

Fig. 9. Dependence of the objective function F with r
4.3. Simulated Annealing algorithm

Simulated Annealing algorithm [23] is based on an iterative
procedure, in which a random point is chosen and updated until a
convergence criterion is fulfilled (see Fig. 5). For each iteration, a
random point is generated in the nearness of the current config-
uration. If this point produces a smaller value of the cost compared
to that of the current record, the point is accepted and replaces the
old one. On the other hand, if the new cost produces a bigger
value, the acceptability of the point is determined according to the
probability of Boltzmann distribution. This probability depends on
a parameter T, called ‘temperature’. The convergence of Simulated
Annealing is assured when the temperature tends towards zero. At
initial stages of the algorithm (at high temperatures), the prob-
ability of taking worse designs is higher. When the temperature is
decreases, this probability becomes smaller so that in the final
stages of the algorithm, solutions producing high costs are almost
not accepted. The cooling scheme proposed in [24] is employed
since it minimizes computational efforts compared with the clas-
sic geometric scheme. This scheme is given by
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Table 1
Comparison between optimal and standard (non-optimal) solutions, for SS beams.

Solution Load [kN/m] Cross-section Width b [mm] Height h [mm] Number of layers n Lay-up λ A [mm2] Cost

Optimal qy¼�50 Box 230 290 24 [(0/90)12]s 94 4992 26.92
Solution 1 220 220 24 [(0/90)12]s 59 4224 33.74
Optimal qz¼�50 Box 290 230 24 [(0/90)12]s 94 4992 26.92
Solution 2 200 300 24 [(0/90)12]s 68 4800 35.48
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The main characteristic of the method is that it achieves an
absolute minimum or a good relative minimum for the objective
function. Nevertheless, there exists a necessary (although in-
sufficient) condition, so that the optimization process does not get
trapped in a local minimum. For this reason, the initial tempera-
ture T0 must be sufficiently high so that, at the end of the first
stage, all the configurations can be obtained with the same
probability. A suitable expression of T0 is used in this work, given
by [25].

= ⋅Δ ( )T r F , 330 max

where r 41 and ΔFmax is the maximum value of the cost
variation.
5. Results and discussion

5.1. Overview

Clamped-clamped (CC) and simply supported (SS) box, C and
I-beams subjected to distributed loads in y and z directions are de-
signed. Fig. 6 shows the pre-established requirements of the designs.
The magnitude of the load is 50 kN/m and the maximum area
allowed is 0.005 m2. The material used is Graphite/Epoxy T300/5208,
whose properties are E1¼181 GPa, E2¼10.3 GPa, G12¼7.17 GPa,
υ12¼0.28, and strengths are given by +s1 ¼1500 MPa, −s1 ¼1500 MPa,

+s2 ¼40 MPa, −s2 ¼246 MPa, s12¼68MPa. The thickness of each layer
is considered to be constant (ts¼0.2 mm). The length of the beam (L)
is 2 m. The domain of the design variables is given by
h∈[0.1:0.01:0.3] m, b∈[0.1:0.01:0.3] m, n∈[1:1:50] and θk∈(0, 90)
such the possible laminates are [0n], [90n] or [(0/90)n/2]s.

5.2. Parametric analysis of the optimization problem

Before solving the optimization problem, a parametric analysis
is performed in order to understand the behavior of the objective
function and the restrictions, in terms of the design indicators.
This study provides more information about the problem to solve.
Fig. 7 shows the dependence of the objective function with respect
to the design variables b and h, while the other variables (n and θk)
remain fixed. The shaded zone indicates the feasible area, i.e. the
zone where the restrictions are fulfilled. This area is bounded by
the active restrictions, whose dependence on b and h is presented
in Fig. 8. For both dependences, the lower bound is defined by the
maximum displacement and the upper bound is imposed by the
restriction of maximum area.

Figs. 9 and 10 show respectively the objective function and the
active restrictions plotted as functions of the number of layers of
the laminate, n. It can be seen from Fig. 10 that for [0n] laminate,
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Fig. 12. Convergence of the SA algorithm for the design of a SS box-beam under qz
loading.
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the lower bound is delimited by the local buckling restriction in-
stead of maximum displacement.

5.3. Implementation of the design scheme

The optimal design proposed in Eq. (3) is applied in order to
find the optimal characteristics of composite thin-walled beams.
Tables 1 and 2 show the results obtained for the cases studied (see
Fig. 6). The optimal cross-sections which minimize the objective
function are found, reducing the weight and increasing the re-
sistance to global buckling. Table 1 show results for SS beams
under uniformly distributed load of intensity qy and qz. It can be
seen that the same optimal solution is obtained for both loads in
terms of the number of layers and the laminate stacking. Com-
paring both loading conditions, one can see that an appropriate
resistance to global buckling and the minimum cross-sectional
area are reached only by interchanging the dimensions b and h.
The optimal solutions obtained are also compared with other non-
optimal solutions that satisfy the conditions of the design (Solu-
tions 1 and 2). Of course, these solutions correspond to higher
values of the objective function, for both loading conditions. The
non-optimal solutions produce a lower weight, but at the expense
of a lower buckling strength. In these particular cases, the buckling
strength is not the maximum possible because the restriction of
maximum area is active. Therefore, there is no better solution that
maximizes the buckling strength without increasing the area over
the upper limit.

Table 2 shows results for CC beams under uniformly distributed
load of intensity qy and qz. Loading with qy, a box-beam provides
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the lowest cost. Therefore, the box section is the best solution if
the aim of the design is to maximize the resistance to buckling,
with minimum weight. That optimal solution also gives a higher
strength. The cost for a C-beam is always much greater than for
the other two beams. This is because the resistance to both global
and local buckling of the C-beam is lower with respect to a I or a
box-beam. For this loading case (qy), the local buckling and max-
imum area restrictions are active while the other conditions are
verified.

For CC box and I beams loaded with qz, the design is restricted
by the extreme values of the range in which b and h are defined.
Also for this loading case, Table 2 shows that resistance to buckling
is slightly lower for the I-beam than for the box-beam, but the
optimal cross-sectional area is considerably lower. Consequently,
the I-beam gives the minimum cost (see Eq. (1)) and it must be the
preferred design in this case. Note that for C-beams loaded with qz
the local buckling is an active restriction. This results in an optimal
section with a high thickness and the design is no longer con-
strained by the extreme values of the range in which b and h are
defined.

Fig. 11 shows the values of the objective function when the
solution is close to (but different from) the optimal solution. Only
the design variables varied from the optimal are indicated. It can
be seen that small changes in the variables b and h produce a si-
milar value of objective function (in that sense, the optimal solu-
tion appears to be robust). On the other hand, modifying the
number of layers or the fiber orientation produces a great variation
of the objective function. This is logical since changing the lami-
nate or the number of layers represents a much more dramatic
modification of the structure than changing b or h.

Total average computation time is around 50 min (Calculations
are performed with a Dual Core Intel Wolfdale 2533 MHz pro-
cessor with 2 Gb of RAM). For some cases, the design is only re-
stricted by the extreme values of b and h and therefore the range
of feasible solutions increases. This produces a more expensive
optimization problem, with increasing computation times (up to
130 min). The initial parameters of the SA algorithm are set as:
r¼100, Tmin∈(1 10�12, 110�16). Various calculations are performed
until the best converge is achieved. Convergence is reached for
each optimization scenario under study. As an example, Fig. 12
shows the best convergence of the algorithm for the design of a SS
box-beam under qz loading (First case of Table 1).
6. Conclusions

In this paper, a new methodology based in the Simulated An-
nealing method is presented to optimize the design of thin-walled
composite beams. The objective function is defined in order to
simultaneously maximize the global buckling load and minimize
the weight of the beam. The cross-section dimensions and the
laminate stacking sequence are optimized for particular design
requirements. A complete set of restrictions were considered, in-
cluding global and local buckling, strength condition and geo-
metric requirements.

As an example, box, C and I sections were studied, searching for
the optimal design which provides a high global buckling load
while afford low weight, considering different design conditions.
The optimal solutions are those which minimize an objective
function, and also verify the restrictions for every condition pro-
posed. It is shown that, given a specific design requirement, the
selection of the optimal configuration may be a complex problem,
involving several variables and possible solutions. Therefore, a
design scheme formulated as an optimization problem, such as
presented in this paper, represents a significant aid in the design
process of this kind of slender structures.
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Appendix A. Volume and surface initial forces.

The volume initial forces defined in Eq. (14) are expressed as
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where Fx
0, Fy

0 and Fz
0 are the initial forces per unit volume in the x, y

and z directions, respectively. Also, the surface initial forces de-
fined in Eq. (15) are expressed as
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where Tx
0, Ty

0 and Tz
0 are the initial applied forces per unit area in

the x, y and z directions, respectively.
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