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ABSTRACT

Receptor interactions with short linear peptide frag-
ments (ligands) are at the base of many biologi-
cal signaling processes. Conserved and information-
rich amino acid patterns, commonly called sequence
motifs, shape and regulate these interactions. Be-
cause of the properties of a receptor-ligand system or
of the assay used to interrogate it, experimental data
often contain multiple sequence motifs. GibbsClus-
ter is a powerful tool for unsupervised motif discov-
ery because it can simultaneously cluster and align
peptide data. The GibbsCluster 2.0 presented here
is an improved version incorporating insertion and
deletions accounting for variations in motif length
in the peptide input. In basic terms, the program
takes as input a set of peptide sequences and clus-
ters them into meaningful groups. It returns the opti-
mal number of clusters it identified, together with the
sequence alignment and sequence motif character-
izing each cluster. Several parameters are available
to customize cluster analysis, including adjustable
penalties for small clusters and overlapping groups
and a trash cluster to remove outliers. As an example
application, we used the server to deconvolute mul-
tiple specificities in large-scale peptidome data gen-
erated by mass spectrometry. The server is available
at http://www.cbs.dtu.dk/services/GibbsCluster-2.0.

INTRODUCTION

Peptide ligands are short amino acid sequences that play
fundamental roles in countless biological processes, from
molecular signaling to the regulation of immune responses.
Even when receptors are activated by full proteins, linear
components of the interaction with the ligand can often be
modeled with short peptides (1). Conserved sequence mo-
tifs ensure high receptor specificity toward their cognate lig-
ands, while avoiding as much as possible interference by un-
specific ligands. Binding specificity often manifests itself as

multiple distinct motifs, i.e. a poly-specificity of a single re-
ceptor (2). For instance, peptide recognition domains such
as SH3 and PDZ domains are known to accommodate their
binders in alternative conformations (3). Multiple specifici-
ties can also emerge as a result of assays interrogating sev-
eral receptors in a single experiment, for example in systems
where several receptor isoforms are expressed in vivo at the
same time (4) and the corresponding ligand pool will de-
scribe a mixture of multiple motifs. Identifying the sequence
motifs driving these interactions takes on additional levels
of complexity if the motifs are located at different locations
within the peptides (i.e. they require an alignment), or if
they have heterogeneous length (i.e. they contain insertions
or deletions (indels)).

The GibbsCluster server was created to deal with the
challenges mentioned above, aiding the identification of
motifs in peptides datasets that are in general unaligned,
consist of multiple specificities and may contain indels. In
simple terms, the program takes as input a set of peptide
sequences and clusters them into meaningful groups. Se-
quence alignment and clustering are performed simultane-
ously by sampling the space of possible solutions using a
Gibbs sampling strategy. Each cluster is represented by a
position-specific scoring matrix (PSSM), and the algorithm
aims to maximize the information content of individual ma-
trices while minimizing the overlap between distinct clus-
ters. Note that the algorithm detects at most one motif oc-
currence per peptide, hence assigning each peptide unequiv-
ocally to only one cluster. A trash cluster captures outliers
that cannot be clustered with other peptides and is useful to
filter out noise from raw data. The server returns a detailed
report on the optimal clustering solutions, including plots
of the optimal number of clusters and graphical representa-
tions of the identified sequence motifs as sequence logos.

Since the first GibbsCluster release and publication (5),
the method has been used in several independent studies, in
particular to deconvolute multiple specificities in major his-
tocompatibility complex (MHC) class I peptidome datasets
(6–8) but also on MHC class II data (9,10) and to aid the
identification of post-translational modification sites (11).
Large-scale studies of naturally presented MHC ligands, en-
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abled by recent advances in mass-spectrometry, generate ex-
tensive datasets of potential T cell epitopes. Albeit the MHC
genotype of a given cell line can be determined, the MHC
restriction of individual ligands is generally unknown. On
this kind of immuno-peptidomics data, GibbsCluster has
gained increasing attention due to its ability to cluster pep-
tides into multiple specificities and in this way infer their
MHC restrictions. Ritz et al. (7) found that consensus mo-
tifs produced by GibbsCluster on 9-mer ligands from sev-
eral cell lines showed ‘excellent agreement with published
HLA binding motifs.’ Mommen et al. (9) compared the
binding motifs of three HLA-DR molecules made by Gibb-
sCluster to the motifs derived with a predictor explicitly
trained on peptide-MHC binding data (NetMHCIIpan),
and concluded that the unsupervised clustering gave solu-
tions reasonably similar to the NetMHCIIpan motifs.

The previous version of the method was limited to contin-
uous, ungapped sequence alignments. Because of the nature
of the MHC-I molecule, closed at both ends and binding
long ligands by means of a central bulge (12), this restric-
tion effectively limited deconvolution analyses of MHC-I
ligands to peptides of a fixed length, typically 9-mers. In-
sertions and deletions (indels), now implemented as part
of GibbsCluster version 2.0, lift this important limitation.
Inspired by earlier work, binding of ligands with non-
conventional binding-core length is modeled using single in-
sertions (to model ligands with short binding-core length)
and deletions (to model ligands with extended binding-core
length) (13,14). Analyzing a large set of MHC-I ligands of
different lengths, we demonstrate how these can be effec-
tively clustered and analyzed using the updated GibbsClus-
ter method and that the clustering reveals allele-specific
preferences in terms of peptide length. With the updated
GibbsCluster server we provide a simple, effective tool to
detect multiple sequence motifs in peptide datasets. In this
paper, we describe the web interface, its output and provide
an example of usage.

WEB INTERFACE

Submission page

Input data. The essential input to the server is a list of pep-
tide sequences in standard one-letter amino acid code. An
optional label (text without spaces) can be included as a sec-
ond column in the input data. The labels are carried over
to the results, and may be useful for correlating a known
classification with the clustering solution produced by the
method. The submission page includes examples of peptide
data, labeled and unlabeled, and a button to automatically
upload sample data.

Options and parameters. Several parameters can be speci-
fied to customize the clustering analysis. A number of rec-
ommended parameter configurations for specific problems
can also be automatically uploaded by clicking on dedi-
cated buttons. Basic options include a textual identifier for
the run, the motif length and the number of clusters. If the
latter is provided as an interval (e.g. 1–8), the method will
suggest the optimal number of clusters as part of the out-
put. The parameter � (penalty for inter-cluster similarity)
specifies how similar different clusters are allowed to be.

For data containing multiple specificities with well-defined
motifs, � can be relatively high (e.g. � = 1); on the other
hand, if the aim is to detect subtle differences in mostly ho-
mogenous data, the parameter � should be set to a lower
value (e.g. � = 0.2). The weight on small clusters � deter-
mines whether clusters composed of few sequences should
be allowed or penalized in favor of larger, more general
clusters. The mathematical formulations of � and � are de-
scribed in detail elsewhere (5). Gibbs sampling is a heuristic
rather than a deterministic optimization procedure. There-
fore, it cannot guarantee that the optimal solution is always
reached from any starting configuration. A common proce-
dure to boost performance is to repeat the sampling from a
number of initial random configurations and select the solu-
tion that appears to be optimal in terms of the fitness func-
tion that governs the system. The number of initial seeds
for multiple sampling can be specified as a parameter for
the server. The cooling schedule can be customized by spec-
ifying initial Monte Carlo temperature, number of cooling
steps and relative frequency of the various moves of the al-
gorithm. By enabling the ‘trash cluster’, GibbsCluster can
also automatically filter outliers that do not match to any
of the clusters. This option can be very useful to remove po-
tential noise from the input data. If the feature is selected, a
scoring threshold for placing data into the trash cluster can
be customized. The methodological details and mathemat-
ical formulation of the algorithm are discussed thoroughly
in Andreatta et al. (5) and are substantially unchanged in
version 2.0. The essential new feature of GibbsCluster-2.0
is the implementation of insertions and deletions, enabling
the generation of gapped sequence alignments. Indel moves
(attempts to introduce an insertion or a deletion at any pos-
sible position of a given peptide), are performed at an inter-
val of iterations specified by the user, selecting the solution
with the highest peptide score. A detailed description of the
options, including guidelines and a basic glossary, can be
accessed by clicking on the ‘Instructions’ tab of the main
server page.

Output page

The preamble of the output page includes a summary of
the input data and the parameters specified for the run. If
a name was assigned to the job, it will be reported here.
Next, a barplot of the Kullback-Leibler Distance (KLD) as
a function of the number of clusters suggests the optimal
number of motifs in the data (Figure 1, left). The relative
size of each black block within a bar is proportional to the
size of each of the clusters. To the side of the barplot, the
sequence motifs derived from the best solution (i.e. the so-
lution with highest KLD) are displayed in the form of se-
quence logos generated with Seq2Logo (15). In the exam-
ple of Figure 1, the algorithm detected four clusters with
markedly different sequence motifs, with group 1 being the
smallest and group 3 the largest.

Because the ‘optimal’ number of cluster depends at least
partially on the job parameters and clustering granularity
required by the individual user, alternative solutions may
be relevant for the problem at hand. For this reason, the
clustering solutions and motifs for each initial number of
clusters are all included in the output page. Links to full
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Figure 1. Clustering results for the Fibroblast dataset. The solution with highest KLD consists of four clusters, and the corresponding sequence motifs are
shown as sequence logos.

alignment and clustering files in plain text provide detailed
information about the group assignment, scores and align-
ment core of each peptide. The sequence motifs for each
cluster can be inspected both in form of a PSSM and as se-
quence logos. Clicking on the LOGO button automatically
transfers the peptide data to the Seq2Logo server, allow-
ing further customization of the logos including alternative
color schemes and different logo types. Finally, a link for
bulk download at the bottom of the results page generates a
compressed folder containing all the results, including plots,
sequence logos and alignment/clustering files. A complete
description of file formats can be found at the ‘Output for-
mat’ link from the main server page.

EVALUATION AND CASE STUDY

To illustrate a typical application, we employed the Gibb-
sCluster server to identify multiple specificities in HLA-
I peptidomics data. The dataset consists of naturally pre-
sented ligands detected by mass spectrometry in six differ-
ent cell lines (6). Before submitting the data to GibbsClus-
ter, ligands of length outside the range 8–11 were excluded.
GibbsCluster was run with a motif length of 9, allowing up
to 2 deletions and up to 1 insertion, specifying an interval of
1–6 clusters. Because HLA-I ligand data are nearly aligned
and mostly composed of 9mers, we recommend activating
the option ‘make clustering move at each iteration’. The
trash cluster was used to remove all peptides with a score
lower than 2, and each clustering job was repeated from 5
alternative initial random configurations. All other param-
eters were left at default value.

The optimal solution identified by GibbsCluster for the
Fibroblast cell line consisted of four clusters (Figure 1),
with group 1 being the smallest (595 peptides) and group
3 the largest (2080 peptides). The four motifs have dis-
tinct and conserved preferences mostly at P2 and P9, with
group 1 showing also an informative P5. On different cell
lines, the method generally identified between 2 and 4 dif-

ferent clusters (Supplementary Figure S1). While the HLA
restriction of individual ligands is a priori unknown, the
HLA genotype of each cell line had been determined by
Bassani-Sternberg et al. (6). NetMHCpan-3.0 rank predic-
tion scores (14) were used to assign the most likely restric-
tion of each ligand among the HLAs expressed in a given
cell line. Based on these rank values, the dominant allele of
each cluster can be assigned using a majority vote. For the
Fibroblast dataset, the median percentage rank predicted
by NetMHCpan to the dominant cluster allele is lower
than 1% for all groups (Figure 2). In general peptides with
predicted binding rank values <2% are considered MHC
binders (13). In contrast, the majority of ligands assigned
to the trash cluster have rank >10% to all expressed HLAs
and are therefore likely to be incorrect measurements.

Looking at the composition of each cluster in terms of
known MHC alleles, we observed a remarkable correspon-
dence between the motifs identified by GibbsCluster and
HLA binding motifs from literature (Figure 2, right). How-
ever, predicted binders to one HLA-A and to two HLA-
C alleles were all clustered together into group 2. A to-
tal of 47% of the ligands in this cluster were predicted by
NetMHCpan to bind to all these three molecules with rank
<2 and 70% to at least two molecules. Because these three
alleles have very similar binding preferences, the method
cannot separate the three motifs and the six HLAs ex-
pressed in this cell line result in only four separate clus-
ters. As noted previously (6,17) and confirmed on other
cell lines (Supplementary Figure S2), unsupervised cluster-
ing tends to underestimate the number of specificities when
multiple HLAs have highly overlapping motifs, especially
in the case of HLA-C alleles, which have low expression
levels and redundant motifs (18). Overall these results are
in line with the recent findings by Bassani-Sternberg and
Gfeller (17), who applied an unsupervised approach based
on mixtures of weight matrices to deconvolute HLA I pep-
tidomes. Like the GibbsCluster, this mixture model does
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Figure 2. Comparison of unsupervised clustering to HLA restrictions assigned by NetMHCpan on Fibroblast data. Left: distribution of percentile rank
scores predicted by NetMHCpan for the allele dominating each cluster; for the trash cluster, the best predicted rank score to any of the six alleles was used.
Right: sequence logos from literature (made with MHCcluster (16)) of the alleles found in each cluster; group 2 is composed mostly of ligands predicted
by NetMHCpan to be restricted to three different alleles with similar binding motifs.

not rely on MHC binding predictions to assign HLA re-
striction. However, also using this approach, complete de-
convolution remains unachievable in situations where alle-
les have very similar motifs. The work by Bassani-Sternberg
and Gfeller suggests a solution to this problem by extending
the motif search to include additional unique motifs con-
tained within suboptimal KLD cluster solutions. Applying
a similar approach and investigating suboptimal KLD clus-
ter solutions obtained with GibbsCluster allows identifica-
tion of additional binding motifs. For instance, doing this
for the HCT166 dataset allowed us to identify five distinct
clusters with motifs corresponding to HLA-A*01:01, HLA-
A*02:01, HLA-B*1801, HLA-B*4501 and HLA-C*0501
molecules expressed by the cell line (data not shown), sug-
gesting that some additional visual and analytic analyses
of the GibbsCluster results beyond the automated KLD-
defined optimal solution in some cases can be beneficial.
Beyond this, it is important to underline two important dif-
ferences between the two methods; namely that the Gibb-
sCluster method can handle peptides of variable length, and
that GibbsCluster is publicly available as a web server.

As previously reported (19), MHC molecules exhibit dis-
tinct preferences in terms of ligand length. While in most
cases 9mer peptides are largely favored over other lengths,
binding preferences are skewed toward shorter or longer
ligands for different alleles. The ability to cluster peptides
of variable length allows the GibbsCluster to study these
length preferences. In the optimal solution generated by
GibbsCluster for the Fibroblast dataset, group 3 (mostly
composed of HLA-A*03:01 ligands) is relatively enriched
in 10mer and 11mer peptides, while it contains close to no
8mers. Group 1 (corresponding with the majority of HLA-
B*08:01 ligands) is composed mostly of 9mers, but has the
largest relative fraction of 8mers of the four clusters (Figure
3). Length preferences were also clearly observed on other
cell lines characterized by different sets of HLA alleles (Sup-
plementary Figure S3).

DISCUSSION

Clustering and alignment of amino acid sequences is an op-
timization problem with a very large search space and a so-
lution landscape characterized by many local optima. Gibbs
sampling is an efficient heuristic approach to navigate such
complex landscapes and approach the globally optimal so-
lution (20). Compared to other methods for motif discov-
ery, GibbsCluster is unique because it implements sequence
alignment and clustering as alternative sampling moves, si-
multaneously constructing sequence alignments and clus-
ters with distinct motifs. Deconvoluting ligand sequences
into multiple motifs can be extremely useful as a guide to
interpret the biological underpinning of receptor-ligand in-
teractions, both when the system under study contains mul-
tiple receptor variants or when a single receptor accommo-
dates multiple modes of binding.

As a case study, we reported the application of Gibb-
sCluster to the deconvolution of HLA-I peptidomes gener-
ated by mass-spectrometry for several cell lines. While Gibb-
sCluster has been previously employed to analyze this kind
of high-throughput data (e.g. (7)), its applications were in
these situations limited to binding motifs of a fixed length.
The introduction of insertions and deletions in the sequence
alignments generated by the method lifted this restriction
and allowed us to generate accurate clustering solutions and
binding motifs from HLA-I ligands of variable length. A
simple example running the GibbsCluster method with and
without indels on a set of 500 HLA-A01:01 restricted lig-
ands of length 8–11 can illustrate the impact of lifting this
restriction. Here, a run with the GibbsCluster excluding in-
dels can cluster only 311 (62%) of the peptides (the remain-
ing peptides are either excluded or placed in the trash clus-
ter) whereas by including indels this number is increased to
467 (94%).

In addition to a more complete picture of the repertoire of
naturally presented peptides, the inclusion of ligands of all
lengths in the cluster analysis can potentially detect allele-
specific preferences in terms of peptide length; such length-
profiles are obtained in a fully unsupervised manner and are
therefore not affected by potential bias toward certain pep-
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Figure 3. Length profile of peptides in the optimal Fibroblast clustering solution. Solid lines represent, for each group, the percentage of peptides with
a given length over the total number of peptides in the group. The stacked bar plot in the background is the corresponding length frequency (number of
ligands of a given length in a given group divided by the total number of peptides of that length in all groups).

tide lengths found in public databases. Beyond the MHC-
peptide system, there are several other examples of ligands
that bind to their cognate receptor with differentially spaced
motifs, as evidenced by the many motifs containing gaps of
variable length described in protein motif databases such as
ELM (21) and Prosite (22).

The optimal number of clusters in a set of sequences will
often depend on the level of resolution desired by the in-
vestigator. We have designed GibbsCluster with parame-
ters that allow easy customization of clustering analyses,
whether the method should tend to construct small, spe-
cialized clusters or larger, more general groups with coarse
specificities. A trash cluster can be optionally activated to
discard peptides that do not fit into any cluster and in this
way detect motifs in noisy sequence data. The sequence mo-
tifs identified by the method are displayed in the form of
sequence logos and as PSSMs, while alignment and cluster-
ing files provide detailed information about the group as-
signment, scores and alignment core of each peptide. With
the GibbsCluster web server we provide a simple and effec-
tive tool to analyze peptide datasets and identify multiple
receptor-ligand specificities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Gibson,T.J. et al. (2016) ELM 2016–data update and new
functionality of the eukaryotic linear motif resource. Nucleic Acids
Res., 44, D294–D300.

22. Sigrist,C.J., de Castro,E., Cerutti,L., Cuche,B.A., Hulo,N., Bridge,A.,
Bougueleret,L. and Xenarios,I. (2013) New and continuing
developments at PROSITE. Nucleic Acids Res., 41, D344–D347.

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/306185579_Unsupervised_HLA_Peptidome_Deconvolution_Improves_Ligand_Prediction_Accuracy_and_Predicts_Cooperative_Effects_in_Peptide-HLA_Interactions?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/306185579_Unsupervised_HLA_Peptidome_Deconvolution_Improves_Ligand_Prediction_Accuracy_and_Predicts_Cooperative_Effects_in_Peptide-HLA_Interactions?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/306185579_Unsupervised_HLA_Peptidome_Deconvolution_Improves_Ligand_Prediction_Accuracy_and_Predicts_Cooperative_Effects_in_Peptide-HLA_Interactions?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/306185579_Unsupervised_HLA_Peptidome_Deconvolution_Improves_Ligand_Prediction_Accuracy_and_Predicts_Cooperative_Effects_in_Peptide-HLA_Interactions?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/299529874_NetMHCpan-30_improved_prediction_of_binding_to_MHC_class_I_molecules_integrating_information_from_multiple_receptor_and_peptide_length_datasets?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/299529874_NetMHCpan-30_improved_prediction_of_binding_to_MHC_class_I_molecules_integrating_information_from_multiple_receptor_and_peptide_length_datasets?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/299529874_NetMHCpan-30_improved_prediction_of_binding_to_MHC_class_I_molecules_integrating_information_from_multiple_receptor_and_peptide_length_datasets?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/291330163_The_Length_Distribution_of_Class_I-Restricted_T_Cell_Epitopes_Is_Determined_by_Both_Peptide_Supply_and_MHC_Allele-Specific_Binding_Preference?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/291330163_The_Length_Distribution_of_Class_I-Restricted_T_Cell_Epitopes_Is_Determined_by_Both_Peptide_Supply_and_MHC_Allele-Specific_Binding_Preference?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/291330163_The_Length_Distribution_of_Class_I-Restricted_T_Cell_Epitopes_Is_Determined_by_Both_Peptide_Supply_and_MHC_Allele-Specific_Binding_Preference?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/291330163_The_Length_Distribution_of_Class_I-Restricted_T_Cell_Epitopes_Is_Determined_by_Both_Peptide_Supply_and_MHC_Allele-Specific_Binding_Preference?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/291330163_The_Length_Distribution_of_Class_I-Restricted_T_Cell_Epitopes_Is_Determined_by_Both_Peptide_Supply_and_MHC_Allele-Specific_Binding_Preference?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/283446015_Gapped_sequence_alignment_using_artificial_neural_networks_Application_to_the_MHC_class_I_system?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/283446015_Gapped_sequence_alignment_using_artificial_neural_networks_Application_to_the_MHC_class_I_system?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/283446015_Gapped_sequence_alignment_using_artificial_neural_networks_Application_to_the_MHC_class_I_system?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/266948146_Uncovering_the_Peptide-Binding_Specificities_of_HLA-C_A_General_Strategy_To_Determine_the_Specificity_of_Any_MHC_Class_I_Molecule?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/266948146_Uncovering_the_Peptide-Binding_Specificities_of_HLA-C_A_General_Strategy_To_Determine_the_Specificity_of_Any_MHC_Class_I_Molecule?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/266948146_Uncovering_the_Peptide-Binding_Specificities_of_HLA-C_A_General_Strategy_To_Determine_the_Specificity_of_Any_MHC_Class_I_Molecule?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/266948146_Uncovering_the_Peptide-Binding_Specificities_of_HLA-C_A_General_Strategy_To_Determine_the_Specificity_of_Any_MHC_Class_I_Molecule?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/266948146_Uncovering_the_Peptide-Binding_Specificities_of_HLA-C_A_General_Strategy_To_Determine_the_Specificity_of_Any_MHC_Class_I_Molecule?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/239734155_MHCcluster_a_method_for_functional_clustering_of_MHC_molecules?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/239734155_MHCcluster_a_method_for_functional_clustering_of_MHC_molecules?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/239734155_MHCcluster_a_method_for_functional_clustering_of_MHC_molecules?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/233538902_New_and_continuing_developments_at_PROSITE?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/233538902_New_and_continuing_developments_at_PROSITE?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/233538902_New_and_continuing_developments_at_PROSITE?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/225065475_Seq2Logo_A_method_for_construction_and_visualization_of_amino_acid_binding_motifs_and_sequence_profiles_including_sequence_weighting_pseudo_counts_and_two-sided_representation_of_amino_acid_enrichment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/225065475_Seq2Logo_A_method_for_construction_and_visualization_of_amino_acid_binding_motifs_and_sequence_profiles_including_sequence_weighting_pseudo_counts_and_two-sided_representation_of_amino_acid_enrichment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/225065475_Seq2Logo_A_method_for_construction_and_visualization_of_amino_acid_binding_motifs_and_sequence_profiles_including_sequence_weighting_pseudo_counts_and_two-sided_representation_of_amino_acid_enrichment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/225065475_Seq2Logo_A_method_for_construction_and_visualization_of_amino_acid_binding_motifs_and_sequence_profiles_including_sequence_weighting_pseudo_counts_and_two-sided_representation_of_amino_acid_enrichment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/225065475_Seq2Logo_A_method_for_construction_and_visualization_of_amino_acid_binding_motifs_and_sequence_profiles_including_sequence_weighting_pseudo_counts_and_two-sided_representation_of_amino_acid_enrichment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/14988418_Detecting_Subtle_Sequence_Signals_A_Gibbs_Sampling_Strategy_for_Multiple_Alignment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/14988418_Detecting_Subtle_Sequence_Signals_A_Gibbs_Sampling_Strategy_for_Multiple_Alignment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==
https://www.researchgate.net/publication/14988418_Detecting_Subtle_Sequence_Signals_A_Gibbs_Sampling_Strategy_for_Multiple_Alignment?el=1_x_8&enrichId=rgreq-a0d8010c9271691f1c3620fecd10f1cc-XXX&enrichSource=Y292ZXJQYWdlOzMxNjExMDcyNDtBUzo0ODM4ODA4NzM1MzM0NDBAMTQ5MjM3NzU5ODc1OQ==

