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HIGHLIGHTS 

- The use of goldfish in comparative endocrinology research is rapidly growing. 

- Goldfish offers several advantages as an animal model for comparative 

endocrinology. 

- A great number of scientific techniques have been validated in goldfish. 
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ABSTRACT 

Goldfish has been used as an unconventional model organism to study a number 

of biological processes. For example, goldfish is a well-characterized and widely used 

model in comparative endocrinology, especially in neuroendocrinology. Several 

decades of research has established and validated a number of tools to study hormones 

in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus 

is an invaluable tool for the neuroanatomic localization and central administration of 

endocrine factors. In vitro techniques, such as organ and primary cell cultures, have 

been developed using goldfish. In vivo approaches using goldfish were used to measure 

endogenous hormonal milieu, feeding, behaviour and stress. While there are many 

benefits in using goldfish as a model organism in research, there are also challenges 

associated with it. One example is its tetraploid genome that results in the existence of 

multiple isoforms of endocrine factors. The presence of extra endogenous forms of 

peptides and its receptors adds further complexity to the already redundant 

multifactorial endocrine milieu. This review will attempt to discuss the importance of 

goldfish as a model organism in comparative endocrinology. It will highlight some of 

the merits and challenges in employing goldfish as an animal model for hormone 

research in the post-genomic era.  

 

Keywords: goldfish, model organisms, comparative endocrinology, 

neuroendocrinology, advantages, tools, techniques.  
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1. Introduction 

Fishes represent the oldest, largest and most diverse class of vertebrates, 

comprising around 48% of the known member species of the subphylum Vertebrata. 

They live in a wide variety of habitats; from fresh to salt water, from cold polar seas to 

warm tropical reefs, and from shallow surface waters to the intense pressures of the 

ocean depths (Helfman et al., 2009). This ability to adapt to a wide variety of 

environments together with their evolutionary position relative to other vertebrates 

make them ideal for studying both organismic and molecular evolution. A number of 

other characteristics make fish an excellent experimental model in other research areas, 

including embryology, neuroendocrine signalling, neurobiology, endocrinology and 

environmental biology, among others. In addition, fish share many anatomical and 

physiological characteristics with mammals, including humans, which make them an 

important complement to mammalian models of disease. Ease to handle, commercial 

availability and relative low costs of rearing and maintenance are turning fish into the 

research model chosen by a growing number of researchers. Due to these reasons, and 

to a large extent due to the rapid expansion of the fish farming industry, the use of fish 

as research animal model has significantly increased worldwide over recent decades. 

While not a commercial species reared by aquaculture industry, the goldfish (Carassius 

auratus) found its solid place in comparative endocrinology, and helped reveal myriads 

of facts about the endocrine system. The use of this unconventional model also raises a 

routine question: “Why goldfish?”, or “Why are you using goldfish in your research?”. 

These questions are routinely posed to in-training students and established researchers 

using goldfish. The answer to this question is very complex. The intention behind this 

review is to provide a one-stop article to learn more about goldfish as an experimental 

model. Earlier, Popesku et al. (2008) provided an elegant review that solely focused on 
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goldfish as a model for studying neuroendocrine signalling. Our aim is to provide a 

comprehensive article enabling the readers to become more knowledgeable about 

goldfish, and answer the above-mentioned questions. It could be used as a reference tool 

for all goldfish users. In addition to that, this review would offer a wider aspect on the 

importance of goldfish being considered as an important model for comparative 

endocrinology research. 

Goldfish is a freshwater fish that belongs to the family Cyprinidae of order 

Cypriniformes (Table 1), native to East Asia. As a member of the Cyprinidae family, 

goldfish is related to important ecological and genetic models, including zebrafish, and 

to carp, an economically important cultured species. Selective breeding over centuries 

has led to numerous breeds of goldfish, which vary in size, body shape, colouration, and 

fin and eye configuration (Smartt, 2001; Walker and Johansen, 1977). These breeds 

include the common and comet varieties used for research, and other fancy varieties 

such as the black telescope, fantail, bubble eye, celestial eye and butterfly tail goldfish, 

to name a few. There are several theories available about the origin and evolution of 

goldfish breeds. It appears that China, Japan and the USA contributed heavily to 

goldfish breeding. However, authentic information to safely conclude on the origin and 

breeding timeline of currently available strains of goldfish is missing. Goldfish 

generally reach 15–20 cm, weigh 100 – 300 g (Szczerbowski, 2001) and live typically 

for 6-7 years. Their natural habitat includes the quiet backwaters of streams and pools, 

especially those with submerged aquatic vegetation (Hensley and Courtenay, 1980). 

Goldfish prefers pH levels of 5.5–7.0 (Szczerbowski, 2001), although pH tolerance 

levels between 5.4-10.5 have been reported. It is also tolerant of high levels of turbidity 

(Wallen, 1951), temperature fluctuations (Spotila et al., 1979), and low levels of 

dissolved oxygen (Walker and Johansen, 1977). Adults thrive equally well in salinities 
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between 0–6 ppt (Canagartnam, 1959), and can survive water temperatures between 0–

41 °C (Carlander, 1969). 

The use of goldfish in scientific works goes as far back as 1901, when W. L. 

Underwood first described the role of goldfish in devouring mosquito larvae 

(Underwood, 1901). Since then, the use of goldfish in research has been increasing 

considerably over the years, and a steep increase in using goldfish was noted between 

1960 and 1980 (Figure 1A). A search in PubMed using the term “goldfish” resulted in 

more than six thousand publications, arising from all parts of the globe (Figure 1B). 

Most of these articles describe endocrinology and how the interactions between brain 

and peripheral organs regulate growth, appetite behaviour, energy homeostasis, 

metabolism, reproduction, gonadal physiology and stress response. However, goldfish 

also serves as useful model organism in cell biology, immunology, toxicology, 

molecular evolution and comparative genomics, neurobiology, olfaction, vision and 

taste. Behavioural aspects such as locomotor activity have also been extensively studied 

using goldfish as animal model, and recently diverse behavioural tests for anxiety, fear 

and stress were proposed using this teleost species (Maximino et al., 2015). 

One of the main and simpler advantages of using goldfish is its capability to 

thrive under laboratory conditions and ease in handling and sample collection. In this 

regard, its availability in desirable sizes compared to other commonly used teleosts, 

including salmon and zebrafish, makes it easier for maintenance and suitable for the 

collection of considerable amounts of blood and other tissues to perform in vivo, and in 

vitro biochemical and molecular analyses. In addition, multiple, sequential blood 

sampling is also possible with goldfish. Several decades of research has established and 

validated a number of research tools for use in goldfish. For example, the brain atlas and 

the stereotaxic apparatus are invaluable tools for the neuroanatomic localization of 
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hormones and its receptors, and for the central administration of peptides (Peter and 

Gill, 1975). Goldfish is equally suitable for both in vivo and in vitro studies. This 

include primary cell and tissue cultures and organ baths systems, which are well-

established for goldfish and have offered tremendous knowledge on the physiology of 

central and peripheral organs (Grey and Chang, 2011; Kobayashi et al., 2014; Tinoco et 

al., 2015; Velarde et al., 2010; Volkoff, 2014). Additionally, different techniques are 

available to study goldfish behaviour, including locomotor activity (Azpeleta et al., 

2010; Nakamachi et al., 2014; Vera et al., 2007; Vivas et al., 2011; Yahashi et al., 

2012). This review will attempt to discuss the importance of goldfish as a model 

organism in integrative physiology, neuroendocrinology and comparative 

endocrinology. We will approach this by reporting the most important characteristics of 

the goldfish. A separate section on the use of goldfish for behavioural studies is also 

included.  

2. Anatomy 

 The goldfish body shape is relatively short and compact, and possesses five sets 

of fins following the pattern of most of the Cyprinidae family: dorsal fin on the back, 

caudal (tail) fin, anal fin, ventral or pelvic fins and pectoral fins (Figure 2A-C). The 

scales are large, uniform in both size and shape, and overlap in a regular pattern. The 

eyes are situated on both sides of the head with little movement possible; indeed, 

goldfish are considered short-sighted, relying on other senses to find food and warn of 

danger. On each side of the head, a hard bony flap (operculum), open in the back for the 

release of water, covers and protects the gills. Goldfish have a continuous lateral line 

canal system that consists of supraorbital, infraorbital, operculomandibular and 

supratemporal commissural canals on the head, and a trunk canal extending the length 
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of the trunk. The goldfish lateral line is extremely sensitive, and can detect motion, 

current, pressure, temperature and sound. 

 Internal goldfish anatomy shows all organs found in vertebrates, as can be seen 

in Figures 2 A-C. The brain is a highly complex and organized system divided into 

discrete areas involved in the regulation of the different physiological and behavioural 

functions. The primary olfactory structures, the paired olfactory bulbs, are prominent, 

and the lateral and medial olfactory tracts (which contain the secondary olfactory 

projections originating in the olfactory bulbs) form relatively long stalks (Rupp et al., 

1996). The rest of the telencephalon, the optic tectum, the hypothalamus and the 

cerebellum follow the same pattern as in other related fish, including zebrafish. 

However, in contrast to that species, the paired vagal lobes in goldfish form a large, 

separate brain part caudal to the cerebellum (Rupp et al., 1996). 

Below the brain lies the pituitary gland or hypophysis. Morphologically, the 

pituitary gland is typically divided in two regions, the adenohypohypophysis and the 

neurohypohysis. Teleost adenohypophysis can be likewise divided in three conserved 

lobes: the proximal pars distalis, the rostral pars distalis and the neurointermediate 

lobe. The proximal pars distalis contains gonadotrophs and somatotrophs. The most 

abundant class of cells in the rostral pars distalis are lactotrophs, but also thyrotrophs 

and corticotrophs are present at the border between the rostral and proximal pars 

distalis. The neurointermediate lobe contains the pars intermedia, which is innervated 

by the homologue of the caudal neurohypophysis. The anterior neurohypophysis 

(homologous to the median eminence) innervates the rostral and proximal pars distalis 

(Kaul and Vollrath, 1974). The teleostean pituitary gland possesses important 

differences in relation to mammalian pituitaries. First, the distribution of endocrine cells 

within the pituitary is highly regionalized in teleosts compared to mammals, in which a 
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dispersed organization of endocrine cells is found. Second, the teleostean pituitary lacks 

a functional hypothalamo-hypophyseal blood portal system and instead its endocrine 

cells are directly innervated. Anglade and coworkers (1993) were able to precisely 

determine the entire hypophysiotrophic inputs to the pituitary in fish using neuronal 

tract-tracing techniques. In mammals and other tetrapods, the presence of the 

hypothalamic-hypophyseal blood portal system makes it more complicated due to the 

multiple neurotransmitter and neuropeptidergic inputs converging at the median 

eminence (Popesku et al., 2008). 

The goldfish heart is constituted by the typical four chambers, i.e. sinus venous, 

atrium, ventricle and bulbus arteriosus, and also contains an atrio-ventricular region and 

a muscularized conus arteriosus supporting the conus valves (Garofalo et al., 2012). 

Various studies have been performed to review the internal organization of fish heart 

chambers and their cardiac activity (Santer 1985., Satchell 1991., Burggren et al., 1997). 

Based on their external shape, fish heart ventricle has been classified into three major 

categories, i.e. sac-like, identified by its round and blunt apex; tubular, characterized by 

cylindrical structure; and pyramidal, with a triangular base (Santer, 1985). However, 

according to the myocardial arrangement, four ventricle types can be distinguished 

(Farrell and Jones, 1982; Tota et al., 1983). In Type-I, the myocardial arrangement of 

the ventricle is avascular and trabeculated. Type-II has a ventricular myocardium that 

has both outer vascularized and inner spongiosa. The Type-III has ventricular vessels 

present both at outer vascularized and inner spongiosa. Finally, Type-IV has ventricles 

that are characterized by its vascularized myocardium. Goldfish possesses a Type-II 

heart ventricle, which has a thin vascularized layer that extends towards the avascular 

spongy heart. With respect to ventricular arrangement, goldfish has a sac shaped heart, 

when compared to zebrafish which has a more pyramidal heart (Grivas et al., 2014). 
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The abdominal cavity of goldfish is mainly filled with the gastrointestinal tract, 

an elongated, relatively undifferentiated long tube. The most notable feature of this tract 

is the lack of a stomach comparable to that of other vertebrates. Instead, an enlargement 

of the intestine, known as the intestinal bulb, replaces stomach. The digestive tract 

could thus be divided into mouth, buccal cavity, pharynx, oesophagus, intestinal bulb, 

intestine, and rectum. The different regions are not very well demarcated, but can be 

distinguished by changes in the character of the epithelial lining, or by valve-like 

structures at the junctions between the adjoining regions (Sarbahi, 1951). The 

esophagus is a short tubular structure, adjacent to the pericardial activity, upholstered by 

a mucous membrane characterized by prominent longitudinal folds. Although no well-

marked indication of the oesophagus passage into the intestinal bulb can be seen 

externally, a valve-like structure separate each other internally (McVay and Kaan, 1940; 

Sarbahi, 1951). The intestinal bulb is a thickened straight tube, capable of great 

expansion, which extends into the posterior end of the abdominal cavity. This portion is 

larger and straight at its anterior end, and narrows gradually until it merges into the 

intestine proper, which occupies the ventral portion of the abdominal cavity (McVay 

and Kaan, 1940). The folds of the intestinal mucous membrane present a zig-zag 

pattern, which in the anterior region is characterized by straight lines and angles, while 

in the posterior portion is produced by a convoluted lining (Sarbahi, 1951). 

The gastrointestinal tract is in tight relationship with the liver, the spleen and 

part of the adipose tissue. The goldfish liver is diffused and formed by narrow right and 

left hepatic lobes, extending on each side of the intestinal bulb. The two lobes join at 

their anterior and posterior ends to form the anterior median and posterior median 

hepatic lobes. The anterior median lobe is attached to the posterior face of the transverse 

septum separating the pericardial and abdominal cavities, while the posterior median 
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lobe is extended beyond the limit of the bulb. Embedded in the parenchyma of the liver 

lie the rudimentary pancreas (Sarbahi, 1951), thus forming a structure that some authors 

have referred to as a hepatopancreas. Two main differences were found between the 

liver of goldfish and other vertebrates. The first one is that goldfish liver is composed 

mainly by hepatic plates that are two cells in thickness, while the hepatic plates of 

several other non-fish species were primarily one-cell thick (Elias and Bengelsdorf, 

1952). This tissue in goldfish does not show the typical lobulation or arrangement into 

plates found in the mammalian liver, but instead goldfish liver cells are closely packed 

between the capillaries (sinusoids) which are irregularly distributed (Yamamoto, 1965). 

The second difference lies in the occurrence of true intracellular bile canaliculi (tubes 

that collects bile secreted by hepatocytes) in goldfish, which consist entirely of 

intracellular channels inside the liver cells. However, no intercellular bile canaliculi are 

formed in goldfish liver cells (Yamamoto, 1965).  

The spleen, consists primarily of red pulp and is normally an elongated organ 

lying inside the serosal lining of the intestine. It acts primarily as a blood filter, 

expressing high levels of thrombopoietin (TPO) which play an important role in 

regulation of platelet production, progenitor cell proliferation and differentiation of 

megakaryocytes contributing to immune system (Katakura et al., 2015). The fish 

adipose tissue differs in their localization and their morphological characteristics. 

Although goldfish is not characterized by having large amounts of adipose tissue, fat 

depots can be found in the abdominal cavity around the digestive tract (visceral or 

mesenteric fat) or all around the body of the fish (subcutaneous fat) (Weil et al., 2013). 

The goldfish kidney, like in many other fish, is a distinctly bilobed organ 

consisting of a cranial and a caudal kidney. The cranial or head kidney is an immune 

and endocrine organ containing hematopoietic and endocrine tissue, which is placed 
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around the posterior cardinal vein (Sampour, 2008). The hematopoietic tissue consists 

of cells that play an important role in producing lymphoid (B- and T-lymphocytes) and 

myeloid (phagocytic) cells, which forms an integral analogue of the mammalian bone 

marrow. The endocrine tissue is composed of interrenal cells (interrenal tissue; cortical) 

producing cortisol and chromaffin cells (medullary) producing catecholamines, making 

it the functional analogue of the mammalian adrenal gland (Verburg-Van Kemenade et 

al., 2009). For its part, the caudal kidney is formed by nephrons surrounded by 

hematopoietic and lymphoid tissue dispersed throughout the organ. Nephrons typically 

have a well-vascularized glomerulus, a ciliated neck segment, two proximal segments, a 

ciliated intermediate segment, a distal segment, and a collecting duct system 

(Reimschuessel, 2001).  

Teleosts possess loosely organized thyroids that may occur in locations other 

than in the throat or lower jaw. In the case of the goldfish, apart from containing a 

pharyngeal thyroid, it has normal thyroid follicles in the head kidney (Chavin, 1956). 

The epithelial heights of such follicles were found to respond to physiological 

alterations similar to those of the normally located thyroid. Indeed, it has been 

demonstrated that the goldfish head kidney thyroid accumulates about twice as much 

radioiodine as does the pharyngeal thyroid (Chavin and Bouwman, 1965).  

Finally, the gonads of goldfish, like other teleosts, lack medullary tissue, thus 

corresponding only to the cortex of other vertebrates. Morphologically, male gonads 

(testes) are elongated paired organs attached to the dorsal body wall. A main sperm duct 

arises from the posterior mesodorsal surface of each elongated testis and leads to the 

urogenital papilla located between the rectum and the urinary ducts. The testes are 

composed of numerous lobules, which are separated from each other by a thin layer of 

connective tissue. Based on the arrangement and distribution of stem spermatognia, 
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spermatogenesis in goldfish is classified as tubular (non-restricted), thereby producing 

free spermatozoa during spermatogenesis. Spermatogenesis occurs within the lobules, 

and then the sperm is liberated into the lobular lumen, which is continuous to the sperm 

duct (Nagahama, 1983). In females, the ovary consists of oogonia, oocytes and their 

surrounding follicle cells, supporting tissue or stroma, and vascular and nervous tissue. 

Goldfish ovary is asynchronous, which means that it contains oocytes at all stages of 

development. This type of ovary is frequent in fish such as goldfish, which spawn many 

times during a prolonged breeding season (Nagahama, 1983). 

 

3. A system approach for the consideration of goldfish as a model organism  

3.1. Brain 

One of the main advantages the goldfish brain offers to researchers in terms of 

handling is its size, which makes it possible to carry out studies using both the whole 

brain as a single unit or to identify and dissect the different areas separately. The use of 

the goldfish brain and/or brain sections has led to important contributions to scientific 

knowledge. For example, the cDNA encoding some hormones and their receptors in 

goldfish, such as kisspeptins (Li et al., 2009) and neuromedin U (Maruyama et al., 

2008), have been isolated from whole brain samples. Discrete areas of the goldfish brain 

have been subject to a large numbers of studies, mainly focused on the expression 

profile and regulation by different factors of transcripts of genes encoding 

neuroendocrine hormones or enzymes (Bertucci et al., 2016; Blanco et al., 2016a; 

Popesku et al., 2012; Volkoff, 2013). Expression studies using goldfish brain areas have 

also been carried out to study interactional aspects between the circadian and endocrine 

systems (Feliciano et al., 2011; Iigo et al., 1994; Nisembaum et al., 2014; Tinoco et al., 

2014). 



  

14 

 

Goldfish brain sections have also been examined under tissue culture conditions, 

validating in vitro approaches that offer an important tool to be applied to studies in 

different fields. Examples include the study of neurophysiological and biochemical 

properties of a discrete brain area (Teyler et al., 1981), the activity of enzymes and its 

regulation by external factors (Hall et al., 1982), the modulation of respiratory activity 

(Côté et al., 2014), and the role of hormones (Volkoff, 2014). Some researchers have 

successfully developed a method for isolating and culturing specific brain cell types, 

such as astrocytes (Sivron et al., 1993), and microglia-like cells (Houalla and Levine, 

2003). These approaches provide important knowledge on the maintenance of brain 

homeostasis, protection of neurons and control of neuronal proliferation.  

The nuclear organization of the goldfish brain is described in the brain atlas 

(Peter and Gill, 1975) that offers an invaluable tool for neuroanatomical studies. This 

has made available the brain mapping of a large number of hormones, receptors, and 

enzymes in goldfish (Blanco et al., 2016b; Canosa et al., 2004; Cerdá-Reverter et al., 

2003a; Giraldez-Perez et al., 2009; Kojima et al., 2010; Sánchez-Bretaño et al., 2015b, 

2015c; Wang et al., 2000). Numerous works have also been focused on the neural 

connections existing among the different areas of the goldfish brain, and important and 

abundant information is available in the literature on the projections within the goldfish 

brain and the pathways involved in the different sensory systems and physiological 

actions (Ikenaga et al., 2002; Kato et al., 2012, 2011; Luque et al., 2008; Northcutt, 

2006; Uezono et al., 2015).  

Among the diverse types of neurons present in the goldfish brain, the Mauthner 

cells are a pair of big and easily identifiable neurons located in the hindbrain of most 

fish and amphibians (Zottoli and Faber, 2000). Due to its large size and prominent roles 

in the initiation of swimming, equilibrium maintenance and initiation of startle reflex in 
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goldfish, the Mauthner cell is one of the most studied vertebrate neurons and has 

provided an impetus for an extraordinary array of interdisciplinary studies focused on a 

single reticulospinal neuron. Indeed, many first discoveries in vertebrate neuroscience 

were based on Mauthner cells. Examples include the electronic transmission and 

neuronal gap junctions (Furshpan, 1964; Robertson et al., 1963), the remote dendrite 

inhibition (Diamond and Huxley, 1968), and the correlation of a single cell activity with 

a defined response in a free-swimming animal (Eaton et al., 1981; Zottoli, 1977). A 

significant part of the up-to-date knowledge on the functioning of Mauthner cells is 

derived from studies on goldfish, which has served as a model organism for studying 

this type of cell in terms of structure (Robertson et al., 1963), mechanism of action 

(Diamond and Roper, 1973; Faber and Korn, 1988; Furukawa, 1966; Hatta et al., 2001; 

Kono, 1970; Lin and Faber, 1988a, 1988b; Pereda et al., 1994), inputs/outputs (Fay, 

1995; Gotow et al., 1990; Mirjany and Faber, 2011; Nissanov et al., 1990; Scott et al., 

1994; Zottoli et al., 1987) and regulation (Cachope and Pereda, 2015). 

The goldfish brain is a great model for intracerebroventricular (icv) injections to 

test the central effects of hormones and drugs. Several variants of this method of drug 

administration have been described. For instance, Peter and co-workers performed 

stereotaxic apparatus-based injections into the third ventricle after exposing the brain by 

cutting the roof of the skull along three sides of a square and folding the skull bone flap 

to one side (Narnaware et al., 2000). De Pedro and colleagues, instead, do not expose 

the brain and perform freehand injections directly through the central junction between 

the parietal and frontal bones (De Pedro et al., 1993). Some scientists, including the 

laboratories led by Volkoff (Hoskins et al., 2008), Matsuda (Matsuda et al., 2006a), 

Himick (Himick and Peter, 1994) and Unniappan (Gonzalez and Unniappan, 2010), 

placed the fish in a stereotaxic apparatus and, after exposing the brain, perform the 
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injections into the third ventricle according to coordinates taken from the stereotaxic 

atlas of the goldfish brain (Peter and Gill, 1975). ICV injections in goldfish was also 

used to study behavorial and neuroendocrine aspects in addition to food intake (Bernier 

et al., 2004; Cerdá-Reverter et al., 2003b; de Pedro et al., 2000; De Pedro et al., 1998; 

Gonzalez et al., 2010; Matsuda et al., 2006b; Nakamachi et al., 2006; Narnaware and 

Peter, 2001; Unniappan et al., 2004; Volkoff et al., 2003). The possibility of carrying 

out ICV injections allows the comparison between the effects of peptides directly 

injected into the brain versus injected peripherally by intraperitoneal (ip) injection, and 

so crossing the blood-brain barrier. Some additional examples include the study of the 

neuroendocrine regulation of food intake, in which goldfish served as a teleost fish 

model to compare and contrast information that was previously collected from 

mammals (Blanco et al., 2016a; Cerdá-Reverter and Peter, 2003; Gonzalez et al., 2010; 

Matsuda et al., 2009; Sánchez-Bretaño et al., 2015b; Tinoco et al., 2012). 

Another important technique that has been used in goldfish brain is the recording 

of electrical responses. This technique has been employed, for instance, in several 

studies on the olfactory system of goldfish and its behavioural responsiveness to sex 

pheromones and food odours. In this sense, it has been demonstrated that the medial 

olfactory tract responds to pheromones and both the medial and lateral sub-tracts are in 

charge of the responses to food odours (Sorensen, 1996; Sorensen et al., 1991). 

Moreover, this type of studies have allowed scientists to determine that sex pheromones 

and bile steroids elicit relatively small responses in comparison to amino acids, which 

produce large responses. The results of such studies also suggest that vertebrate 

pheromones are discriminated by a distinctive subcomponent of the vertebrate olfactory 

system which is comprised of a relatively small number of olfactory neurons (Hanson et 

al., 1998).  
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The goldfish brain has also been the subject of numerous lesion studies. This 

type of studies has offered valuable seminal information on many physiological aspects 

of brain functioning in goldfish. For example, in the late 70’s it has been reported that 

lesions of the lateral areas of the hypothalamus cause the cessation of operating feeding, 

thus suggesting these hypothalamic areas as key areas involved in the regulation of food 

intake (Peter, 1979; Roberts and Savage, 1978). The involvement of the olfactory tracts 

on feeding responses, as well as on sexual behaviour in goldfish, has also been 

suggested by transection of the different subdivisions of the olfactory tract (Stacey and 

Kyle, 1983). Lesion techniques have been also used to study the ultrastructure of 

specific areas of the brains, such as the olfactory epithelium (Hansen et al., 1999). In the 

recent past, studies using the ablation of different areas of the goldfish brain have 

demonstrated the specific involvement of the different areas in more behavioural 

aspects, such as taste aversion learning (Martín et al., 2011), memory (Broglio et al., 

2010), spatial and temporal cognition and learning (Durán et al., 2010; Portavella et al., 

2002; Saito and Watanabe, 2006; Vargas et al., 2006), emotional and motor response 

conditioning (Gómez et al., 2010; Rodríguez et al., 2005), and the shoaling behaviour 

(Shinozuka and Watanabe, 2004).  

In addition to that, researchers have also studied the caudal neurosecretory 

system of goldfish. The caudal neurosecretory system of goldfish consists of complex 

secretory neurons that have been differentiated as large, medium and small Dahlgren 

cells (neurosecretory cells) leading to a neurohaemal tissue arranged as a neurosecretory 

releasing organ termed as urophysis (Cioni et al., 1998; Fridberg and Bern, 1968). In 

goldfish, small cells were localized in the spinal cord dorsal to urophysis, whereas 

medium-sized neurosecretory cells are located in the anterior part of urophysis, and the 

large sized cells are further anterior to the medium sized Dahlgren cells (Owada et al., 
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1985). The neurosecretory cells/Dahlgren cells originate from the ependymal cells, 

which play an important role in development and regeneration of caudal system in 

goldfish. It has been shown that when a cut proximal to the urophysis is done in the 

neurosecretory tract, the neurohemal area regenerates at the site of transection, allowing 

the survival of the neurosecretory cells proximal to the cut. Additionally, it was reported 

that ependymal cells can transform into Dahlgren cells on regeneration after total 

extirpation of the caudal neurosecretory system in some teleostean species (Kobayashi 

et al., 1986). Apart from this important feature, the urophysis has been notably linked to 

osmoregulation and ionic regulation. In this regard, it has been shown that 

administration of urophysial extract results in an increase in the uptake of sodium by the 

gills of goldfish (Fridberg and Bern, 1968).  

In the last decade, teleosts, including goldfish, have been employed to study 

regenerative processes within the brain. One particularly notable case in the 

completeness and fidelity of regeneration is the retinotectal system of the goldfish 

(Matsukawa et al., 2004). In this species, when the optic nerve was severed, all retinal 

ganglion cells survived, and after about a week, commenced to regenerate past the 

injury and began to invade the tectum. By 3–4 weeks, regenerating fibers encompassed 

the entire tectum. Using an in vivo imaging technique, Dawson and Meyer (2008) 

succeeded in analysing the dynamic behaviour and morphology of regenerating axons in 

the goldfish optic tectum. The dynamic behaviour of axons in systems that normally 

regenerate may provide clues for promoting regeneration in humans.  

3.2. Pituitary 

The pituitary gland of goldfish has been the subject of a wide variety of research 

studies. Goldfish pituitary has been also used to study the neuroendocrine regulation of 

fish growth (Azuma et al., 2013, 2012; Grey and Chang, 2009; Matsuda et al., 2008). 



  

19 

 

Moreover, since the discovery of gonadotropic hormones I and II (GTH-I and GTH-II, 

respectively) (Querat, 1994; Yoshiura et al., 1997) and its receptors (Yan et al., 1992), 

which are structurally similar to the follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH) systems from mammals, fish became a good model for comparative 

studies on the neuroendocrine regulation of reproduction. Both GTH-1 (FSH) and GTH-

II (LH) are secreted from the pars distalis of goldfish. GTH-1 has been shown to 

stimulate gonadal steroidogenesis. However, the most relevant of these hormones seems 

to be GTH-2, which has been shown to stimulate gonadal steroidogenesis, 

gametogenesis and ovulation, thus being a key regulator of fertility (Peter et al., 1991; 

Trudeau, 1997). Goldfish has been extensively used to study the hypothalamus-

pituitary-gonadal axis (Hontela and Peter, 1980), the regulation of gonadotropic 

hormones release (Chang et al., 1983; Trudeau, 1997; Wong et al., 2001) and the 

influence of environmental factors such as temperature (Fraser et al., 2002; Hontela and 

Peter, 1978; Sohn et al., 1998) and photoperiod (Hontela and Peter, 1978) on pituitary 

functions. Many of the studies mentioned above were performed in vitro, thanks to the 

relative big size of this tissue (compared to other fish species) and the possibility to 

isolate it properly and easily. A number of in vitro techniques have been validated for 

studies on goldfish pituitary. This ranges from the culture of pituitary fragments (Peng 

et al., 1993, 1990), to a dispersed pituitary cell system in static primary culture or in 

perfusion culture (Grey and Chang, 2009; Lee et al., 2000; Tanaka et al., 2009; 

Unniappan and Peter, 2004; Yunker et al., 2000). Since the pituitary fragments contain 

nerve endings containing pituitary regulatory hormones (e.g. the gonadotropin-releasing 

factor, GnRH), the use of dispersed pituitary cells is relatively more appealing to 

scientists. The establishment of pituitary cell/organ in vitro culture defined the 
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remarkable progress made in understanding the complex regulation of pituitary 

hormones in fish. 

3.3. Gastrointestinal tract 

The goldfish gastrointestinal tract has been the subject of large number of 

studies. Mainly two types of cells with endocrine functions are found within the 

intestinal epithelium of fish, including goldfish. These types of mucosal cells are open-

type or columnar cells, and closed-type or goblet cells, wherein the former cell type is 

more abundant and characterized by having their base at the basal lamina and an apical 

process that reaches the lumen, and the latter cells are big and round, and located away 

from and not adjacent to the inner surface. In addition to an apical process, some 

endocrine cells also have basal processes that reach out and make contact with 

neighbouring cells, giving them a paracrine function (Holmgren et al., 1986). A great 

number of brain-gut peptides have been localised in goldfish endocrine cells. Examples 

include gastrin and cholecystokinin (CCK) (Himick and Peter, 1994; Kiliaan et al., 

1992), ghrelin (Arcamone et al., 2009; Sánchez-Bretaño et al., 2015b), neurotensin 

(Kiliaan et al., 1992), somatostatin (Canosa et al., 2005), and peptide YY (Gonzalez and 

Unniappan, 2010b), to name of a few. Numerous studies involving these peptides have 

been performed in goldfish to determine their role in regulating feeding and other 

physiological processes. For instance, ghrelin is known to be a potent stimulator of food 

intake in this species (Unniappan et al., 2004), as well as an important enhancer of 

growth hormone release by pituitary (Unniappan and Peter, 2004). On the other hand, 

CCK has been shown to have an anorexigenic effect on goldfish after 

intracerebroventricular administration (Himick and Peter, 1994). It was also 

demonstrated that this hormone mediate the actions of leptin and some orexigens, such 

as neuropeptide Y (NPY) and orexin-A, in goldfish (Volkoff et al., 2003). 
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As in the case of the gut of other vertebrates, the goldfish gut, has the ability to 

receive food, process it physically and chemically, absorb nutrients and dispose off the 

wastes. The control of these functions relies on the enteric nervous system and 

substances released from the endocrine and paracrine cells of the gut mucosa, which 

affects mainly secretion and motility. In this regard, experiments on isolated strip 

preparations of intestine have shown that substances including CCK (Tinoco et al., 

2015), substance P (Kitazawa et al., 2012) and neurotensin (Kitazawa et al., 2012) 

modify gut contractility by exerting an excitatory or inhibitory effect on the smooth 

muscle. Furthermore, using the Ussing-type chamber technique, the goldfish intestine 

has been employed to study the effects of this type of substances on 

electrophysiological parameters of the gut, such as the ion selectivity of the intestinal 

epithelium (Kiliaan et al., 1992). In addition to that, goldfish intestine secretes serum 

amyloid A (SAA), which plays an important role in stimulating pro- and anti-

inflammatory cytokine expression (IL-10, TGF-β) in monocytes and macrophage 

development. Also, recombinant SAA have been shown to downregulate nitric-oxide 

production and induced chemotaxis of neutrophils and macrophages in goldfish 

(Kovacevic and Belosevic, 2015). Goldfish intestine is an important site of interferon 

gamma (IFNγ) release, and plays an important role in the regulation of proinflammatory 

cytokines, enhanced respiratory burst responses, increased phagocytic and nitric oxide 

production in goldfish macrophages (Grayfer and Belosevic, 2009).  

3.4. Liver or hepatopancreas 

In fish, as in other vertebrates, the liver is the key organ controlling many 

functions in anabolism and catabolism, and the fish liver also plays an important role in 

vitellogenesis. This latter process has been studied in the goldfish liver to test the 

hypothesis that it might be influenced by thyroid hormones. In this respect, it was 
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reported that the thyroid hormone triiodothyronine (T3) increases vitellogenin in 

cultured hepatocytes from female, but not male, goldfish (Nelson and Habibi, 2016). 

Since fish are more susceptible to environmental variations than mammals, their liver is 

a very useful model to study interactions between environmental factors and hepatic 

structures and its functions (Bruslé and Anadon, 1996). Very recently, results from in 

vitro studies on tissue culture have identified the liver of goldfish as an important 

component of the circadian system of this species (Sánchez-Bretaño et al., 2016, 

2015a).  

3.5. Adipose tissue 

Adipose tissue is an important site for the regulation of steroid homeostasis in 

fishes. Indeed, studies performed in another teleost species, the largemouth bass, have 

shown that an excess in mesenteric adipose tissue leads to an alteration of the 

reproductive cycle, marked by reduced testosterone and estradiol levels during early 

recrudescence, and a delay in spawning (Rosenblum et al., 1994). Using goldfish 

mesenteric adipose tissue culture, it has been suggested that this tissue is capable of 

converting testosterone to several metabolites, including estrogen (Moore et al., 2002).  

3.6. Head Kidney 

The goldfish head kidney offers a tool to study stress and immunity. However, 

only limited number of studies using this tissue was reported. Among them, and 

considering the endocrine portion of the head kidney, some studies are available on the 

role of cortisol (Bernier et al., 1999, 2004, Chasiotis and Kelly, 2011, 2012; Fryer et al., 

1984; Wang and Belosevic, 1995)  and the control of its release (Azpeleta et al., 2010; 

Eslamloo et al., 2014; Fryer et al., 1983; Fryer and Leung, 1982; Jung et al., 2016; Vera 

et al., 2007; Woo et al., 1985), most of them based on the analysis of the effects of 

cortisol injections and/or the determination of circulating cortisol levels. However, 
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probably due to its anatomy, very few studies using the goldfish head kidney in vivo 

(Kobayashi et al., 2011; Lim et al., 2013) or in vitro (Kobayashi et al., 2014) have been 

conducted. Studies related to fish immunology using goldfish are extensive. 

Macrophage colony stimulating factor (CSF-1) is considered to be an important factor 

in macrophage development. Goldfish CSF-1 functionally appears to act similar to the 

mammalian CSF-1 in the regulation of monocytes and macrophages. In addition to that, 

infusion of recombinant CSF-1 to goldfish macrophage cultures resulted in their 

stabilization and in an increase in the longevity of functional macrophage production, 

thereby leading to a stimulated respiratory burst and production of nitric oxide response 

upon activation with goldfish recombinant TNF-α (Hanington et al., 2009; Grayfer et 

al., 2009). CSF-1 has been identified as a key regulator of pro-inflammatory and 

phagocytic responses in goldfish (Grayfer et al., 2009). These studies have paved way 

in the use of goldfish as a model organism to study immunology and immune-endocrine 

interactions in fish. 

 

3.7. Caudal Kidney 

The caudal kidney, for its part, has been used as a model for studying renal 

injuries, especially those induced by exposure to toxicants (Munkittrick et al., 1985; 

Reimschuessel et al., 1990; Reimschuessel and Williams, 1995). However, its more 

remarkable characteristic is its ability to repair injured nephrons. This response occurs 

in multiple fish, including goldfish, zebrafish, catfish, trout and tilapia, placing the fish 

kidney as a unique model for investigating renal injury, repair, and development. The 

repair is marked by replacing the injured cells with new epithelial cells, restoring tubule 

integrity (Reimschuessel, 2001). In addition, fish have the ability to respond to renal 

injury by de novo nephron development (Reimschuessel et al., 1990; Reimschuessel and 
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Williams, 1995; Salice et al., 2001), a response that is not observed in mammals. This 

nephrogenic response, apart from providing a more abundant source of developing renal 

tissue compared with fetal mammalian kidneys, may also help to identify novel genes 

involved in nephrogenesis, information that could eventually be used to develop 

alternative renal replacement therapies. 

3.8. Gonads 

A large focus on fish endocrinology is on reproduction, and goldfish has been 

widely used to investigate the hormonal regulation of reproduction. Goldfish possesses 

an XX–XY sex determination system (Yamamoto and Kajishima, 1968), but it has been 

demonstrated that it is possible to manipulate its phenotypic sex by temperature (Goto-

Kazeto et al., 2006). In fact, temperature and photoperiod seem to be the major 

regulators of gametogenesis in goldfish reproduction. In temperate climates in the 

northern hemisphere, cyprinid fish spawn in spring when the water temperature reached 

between 18-21°C (Razani et al., 1987). A great number of the studies using goldfish 

gonads are focused on the influence of gonadotrophins and/or other pituitary and 

hypothalamic hormones on gonadal development and function of both females and 

males (Ge et al., 1993; Habibi et al., 1989; Peter and Crim, 1978; Trudeau, 1997). The 

influence of season and environmental factors on gonadal growth and function in 

goldfish has also been widely studied (Delahunty and de Vlaming, 1980; Spieler et al., 

1977). In the last decade, there has been increasing evidence that thyroid hormones 

influence reproduction in vertebrates. The goldfish has served as a valid model to offer 

information on the mechanisms by which this regulation occurs (Nelson et al., 2010, 

2011). Finally, goldfish is commonly used to test the role of some water contaminants 

as potential neuroendocrine disruptors, and their influence on gonadal function 

(Nadzialek et al., 2008; Spanò et al., 2004). 
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Ovary 

The relationship between body weight and the weights of ovary, liver and 

visceral lipid stores in goldfish was examined at different times of the year (Delahunty 

and de Vlaming, 1980). The authors found monthly differences in the ovary weight 

relative to body weight, with a peak in April. Also, Gillet and coworkers (1978) have 

shown that temperature might have a direct effect on gonads by modifying ovarian 

responsiveness to GtH. Ovarian maturation in goldfish has also been studied in relation 

to photoperiod, and it has been observed that an increase in light exposure stimulates 

ovarian maturation although the efficacy of this increase is subject to the time of the 

year (Fenwick, 1970). In terms of the role of thyroid hormones on reproduction, it has 

been shown that the three estrogen receptor subtypes, as well as the expression of 

gonadal aromatase, are downregulated by the thyroid hormone T3 in the ovary of 

goldfish (Nelson et al., 2010). Furthermore, female goldfish has been used to test the 

potential role of certain substances as endocrine disruptors, measuring the effect of 

these compounds on the ovarian production of estradiol, 11-ketotestosterone and 

aromatase (Nadzialek et al., 2008).  

Testis 

The goldfish testis has served as a model to study the effects of polyunsaturated 

fatty acids on steroidogenesis in vitro. For instance, it has been reported that arachidonic 

acid and eicosapentaenoic acid stimulate testicular testosterone production (Wade and 

Van Der Kraak, 1993; Wade et al., 1994). As in the case of females, an increase in 

photoperiod stimulates goldfish testis maturation and this effect seems to be related to 

the seasonal stage (De Vlaming and Vodicnik, 1978). Goldfish testis were also used to 

study the role of thyroid hormones on reproduction, obtaining similar results to those 

described for the ovary (Nelson et al., 2010). The observations made from the 
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mentioned study suggest that T3 acts to diminish steroidogenesis, decrease estrogen 

synthesis from androgens and decrease sensitivity to estrogen in the gonads. Finally, as 

mentioned above, goldfish testis has been used as a target tissue to test the role of some 

water contaminants as endocrine disruptors (Mennigen et al., 2010). 

3.9. Heart 

One notable feature of the goldfish (and fish in general) heart is that it exhibits 

an impressive morpho-functional flexibility in response to developmental stages and 

ecological conditions (Cerra, 2004; Tota and Gattuso, 1996). This cardiac morphology 

depends on structural arrangements of the ventricular pump and the mechanical function 

of the heart, and is proportional to the pressure and volume work to the stroke work 

(Tota and Gattuso, 1996). Based on this feature, goldfish has been studied for cardiac 

regeneration and remodelling (Grivas et al., 2014). Furthermore, this fish species has 

been shown to have the capacity to tolerate/sustain severe hypoxic conditions and 

remain active even during winter in ponds (Bickler and Buck, 2007), actions that 

require the molecular machinery which sustains myocardial contractility to preserve its 

function. In order to sustain the condition of hypoxia, lactate is converted to ethanol and 

carbon-dioxide thereby preventing lactic acidosis and hypoxic/anoxic conditions in 

goldfish (Bickler and Buck, 2007). Studies related to survival and heart function 

preservation regardless of oxygen availability has been widely performed using goldfish 

as a model (Garofalo et al., 2012; Pedersen et al., 2010). Goldfish has also served as a 

model organism in understanding the hormonal regulation of cardiac functions. For 

instance, nesfatin-1 has been demonstrated to be a positive inotrope towards the control 

of cardiac activity in this teleost species (Mazza et al., 2015).  
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3.10. Gills 

The fish gill is an important site for respiratory gas transfer and is dependent on 

metabolic demand in the environment. It also participates in the uptake of oxygen and 

release of carbon-dioxide from the body during respiration (Perry et al., 2012). Fish gill 

has the ability to sustain increased rates of metabolism by regulating larger amounts of 

gas transfer (Evans et al., 2005). In addition to that, gills contribute to the regulation of 

other physiological functions, such as ionic and osmotic regulation (Randall et al., 

1972). In the case of freshwater fishes, such as goldfish, the maintenance of body fluids 

is dependent on the environmental conditions and is directly related to the regulation of 

continuous entry of water and loss of ions facilitated by water to blood diffusion barrier 

across the gill (Evans et al., 2005). The stimulation of gas transfer and lowering of ion 

loss is known as osmorespiratory compromise, and can be lowered by dynamically 

altering the branchial surface area (Randall and Daxboeck, 1984; Sollid et al., 2003). In 

goldfish, chronic adjustments of functional surface area can be achieved by the presence 

of an intralamellar cell mass between two lamellae thereby minimizing the impact of 

osmorespiratory compromise leading to gill remodelling (Sollid et al., 2005). Goldfish 

has also been considered as a major model organism for understanding the relationship 

between branchial gas transfer and lamellar surface area in fish gills under acute 

hypoxia conditions (Nilsson, 2007; Sollid et al., 2003). In a study by Liew and co-

workers (2013), the modulation of feeding and swimming on ionoregulation in goldfish 

was studied by measuring the activity of the gill Na+/K+ ATPase. The authors reported 

that goldfish is able to adapt their osmorespiratory strategy to minimise ions losses 

whilst maintaining gas exchange under exhaustive swimming. The ion regulatory 

responses of the goldfish gill has also been studied following metal exposure 

(Eyckmans et al., 2010). Finally, goldfish has also been studied as a model organism in 
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understanding the susceptibility of goldfish to Dactylogyrus intermedius, an oviparous 

parasite abundantly found in cyprinid fishes, and the mechanisms involving the 

protection of fish against adverse parasitic conditions (Lu et al., 2013).  

3.11. Integument 

The body colour development in goldfish is entirely dependent on the 

differentiation of chromatophores. The major chromatophores that decide the body 

colour in goldfish are the black melanophores that consist of melanin, yellow coloured 

xanthophores containing the pigment pteridine, red erythrophores that contain 

carotenoids, and guanophores/iridophores containing guanine pigment (Kawamura et 

al., 1998; Leclercq et al., 2009; Nilsson Sköld et al., 2013; Xu et al., 2005). Among the 

wide variety of goldfish in terms of skin color, a transparent crucian carp (eg. C. 

auratus) have been identified: a type of goldfish possessing distinct characteristics 

towards body colour development such as loss of chromatophores pigment from the 

skin and scales during the depigmentation process in early stages of development 

leading to transparency of scales, gills and the skin (Xu, 2009). Skin pigmentation is 

greatly regulated by melanocortin peptides adrenocorticotropin hormone (ACTH) and 

melanocyte-stimulating hormones (α, β, γ- MSHs), all derived from common family 

proopiomelanocortin (POMC). Previous reports showed the pigment dispersing activity 

of α-MSH and its related peptides. Melanocortin receptor subtypes are abundantly 

expressed in goldfish chromatophores, and mediate classical MSH actions on 

physiological and morphological color pigmentation in goldfish (Koboyashi et al., 

2012). Some studies on the effects of the melanocortin system on color adaptation have 

been performed in goldfish. For instance, it has been demonstrated that α-MSH 

stimulates the dispersion of pigments in isolated xanthophores (Kobayashi et al., 2011).  
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4. Goldfish as a model organism for the study of behavioural responses 

Apart from being an ideal model organism in the field of endocrinology, 

goldfish is one of the fishes most employed for behavioural studies. The use of goldfish 

for studying behavioural responses started several decades ago. For example, in 1963, 

Rodgers and Melzack described that pressure wave and visual stimuli can elicit the tail 

flip response on this fish species. In the same year, Geller reported that hungry goldfish 

can learn to press a lever for worms, an action that was suppressed in the presence of a 

flashing light by pairing the light with a brief electric shock and punishing the lever-

pressing behaviour with electric shocks.  

One of the behavioural aspects most commonly studied using goldfish is 

locomotor activity. By attaching infrared photocells on the aquaria walls or by using a 

fixed handycam, many researchers have recorded and quantified the goldfish locomotor 

activity and studied its possible regulation by external and endocrine factors (Azpeleta 

et al., 2010; Kang et al., 2011; Matsuda, 2013; Nakamachi et al., 2014; Nisembaum et 

al., 2014; Vivas et al., 2011; Yahashi et al., 2012). Swimming performance, including 

spontaneous swimming activity, fast-start swimming performance (a form of burst 

swimming used by fish during predator-prey encounters) and critical swimming speed 

(the water speed at which a fish can no longer maintain its position or its maximum 

prolonged swimming speed, Ucrit), has also been largely studied in goldfish under, for 

example, conditions of fin loss (Fu et al., 2013), food deprivation (Liew et al., 2012; 

Pang et al., 2011), water temperature (Pang et al., 2011), hypoxia (Fu et al., 2011), and 

exposure to toxicants (Xia et al., 2013).  

Together with locomotor activity, feeding is another behaviour that has been 

extensively studied in goldfish, especially in terms of the enhancing/inhibitory effects 

that different endocrine signals may exert on it (Abbott and Volkoff, 2011; Bernier and 
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Peter, 2001; de Pedro et al., 2006; De Pedro et al., 1998; López-Olmeda et al., 2006; 

López-Patiño et al., 1999; Nakamachi et al., 2006; Unniappan et al., 2004; Volkoff et 

al., 1999). Other examples of behavioural aspects studied in goldfish include sexual 

behaviour and chasing (Kawaguchi et al., 2014; Lord et al., 2009), social approach 

behaviour (Thompson and Walton, 2004), shoaling (Shinozuka and Watanabe, 2004; 

Xie et al., 2015), and the sediment reworking behaviour (Gandar et al., 2016). In recent 

years, many characteristics of the goldfish have turned it into a potential non-

mammalian model for the study of behavioural neuroscience (Maximino et al., 2015). 

For example, the scototaxis (dark/light preference) protocol has been validated in 

goldfish to assess the anti-anxiety effects of pharmacological agents and the behavioural 

effects of toxic substances, and to investigate the bases of anxiety-related behaviour 

(Matsuda et al., 2011; Maximino et al., 2010; Nakamachi et al., 2014). Classical fear 

conditioning methods have also been applied to studies in goldfish (Yoshida et al., 

2004). The use of goldfish, and other fish species, as model organisms for the analysis 

of genetic and biological mechanisms of behavioural neuroscience could offer important 

comparative information that may eventually be used for the treatment of human 

psychiatric disorders associated with anxiety, stress and phobic states.   
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5. Current Trends 

Numerous studies have been performed using goldfish as a model organism. 

Novel methods such as brain mapping studies, in-situ hybridization, microarray, gene 

knockdown (siRNA), gene knockout, tissue-perfusion, developmental studies, and 

seasonal changes have been performed using goldfish in diverse fields. Also, in the field 

of endocrinology, goldfish has been used to study the regulation of the growth 

hormones and regulation of reproductive hormone functions (Unniappan and Peter, 

2004). In teleosts, regulation of LH and GH has been well characterized and shown to 

modulate hormone release in response to intracellular signalling (Canosa et al., 2007; 

Chang et al., 2012). GnRH has been shown to be widely expressed in goldfish pituitary, 

and the GnRH receptors play an important role in regulation of neuroendocrine 

signalling and LH and GH secretion through the action on gonadotrophs and 

somatotrophs in fish and in other mammalian systems (Grey et al., 2010; Grey and 

Chang, 2009). By pituitary cell perfusion experiments, it has been shown that growth 

hormone-releasing hormone (GHRH) is responsible for the stimulation of  GH secretion 

from the goldfish pituitary and acts as a negative neuroendocrine modulator on 

stimulated LH secretion in goldfish (Grey and Chang, 2013). Also in situ hybridization 

studies using goldfish showed that gonadotropin-inhibitory hormone play an important 

role in sexual dimorphism of steroidogenesis (Qi et al., 2013). With respect to gene 

knockdown studies, protein serine/threonine phosphatase (PP-1) gene knockdown has 

shown to have a critical role in eye formation during goldfish developmental stages (Liu 

et al., 2012). Brain mapping of ghrelin and ghrelin receptor (ghs-r1a) in the goldfish 

brain and gut showing the interconnection between the ghrelinergic and circadian 

systems have been performed in goldfish (Sánchez-Bretaño et al., 2015b). Seasonal 

changes in GH hormone release and its function have been widely studied using 
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goldfish as model species, and it was found that GH mRNA is elevated during early 

October but application of goldfish GnIH in vitro suppressed basal GH mRNA levels 

during mid- and later October. Also, gonadotropin-inhibitory hormone (GnIH) 

suppressed the levels of serum GH release during early recrudescence but not during 

mid and late recrudescence.  These studies suggest goldfish can be considered as an 

ideal model for endocrine research, but the expression of some hormones is regulated in 

a seasonal reproductive manner (Moussavi et al., 2014). 

 

6. Challenges 

While using goldfish as a model organism in research has numerous advantages, 

there are also challenges associated with it. Among them, probably the most difficult 

aspect for genetic studies or for assessing bioactive peptides, is its tetraploid genome 

(Larhammar and Risinger, 1994). The tetraploidization results in the existence of 

multiple, additional forms of the same gene which most likely results in more number of 

protein isoforms. The presence of extra endogenous forms of peptides and its receptors 

adds further complexity to the already redundant multifactorial endocrine milieu. The 

existence of a duplicated genome in contrast to mammals and other tetrapod vertebrates 

with only one genome copy is a common feature in all teleosts, which underwent a 

whole genome duplication event at the base of their radiation (Meyer and Schartl, 1999; 

Sidow, 1996). However, goldfish and other cyprinids underwent an additional 

duplication, thus carrying four copies of their genome (Larhammar and Risinger, 1994). 

The duplication of a gene/genome led to subsequent gene loss, to sub-functionalization, 

or to neo-functionalization of the paralogs generated in the duplication event, adding 

additional complexity to the study of genes in goldfish. Goldfish also offers some 

challenges for studies on reproduction and embryonic development. They reach initial 
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maturity after 225-233 days (Ortega-Salas and Reyes-Bustamante, 2006), a period 

considerably longer in comparison to other fishes such as zebrafish and medaka, which 

reach sexual maturity in 2-4 months (Lawrence et al., 2012). Besides, although larger, 

goldfish fertilized eggs are softer, thicker and not transparent compared to zebrafish, 

which make it difficult to carry out developmental studies. Finally, the seasonal and 

sexual stage must be considered as a potential challenge for some types of endocrine 

studies, as they have been shown to produce specific variations in the goldfish in terms 

of the endocrine milieu. For instance, the effects of GnIH on gonadotrope function in 

the pituitary as well as the regulation of vitellogenin by growth hormone in the liver 

were reported to be reproductive stage/season-dependent in this species (Moussavi et 

al., 2009, 2012). It was shown that the expression of antifreeze protein (AFP) gene in 

goldfish resulted in cold tolerance (Wang et al., 1995`).  

 

Conclusions  

 This review highlights goldfish as a well-characterized model system for studies 

in integrative physiology and comparative endocrinology. Its ease of handling, low cost 

of maintenance, anatomical characteristics and its evolutionary position relative to other 

vertebrates, all makes goldfish one of the fish species most commonly used in research. 

This has led to a wide knowledge of different aspects of the goldfish physiology and the 

validation of a large number and diverse techniques for use in this fish. In the post-

genomic era, goldfish will continue to shed light on more interesting endocrinology 

facts. While goldfish is a well-characterized model in endocrinology and 

neuroendocrinology, the main question that remains is whether we can apply such 

knowledge directly to other teleosts, or even in mammals. It is possible to apply the 

knowledge base for some aspects in goldfish on other species, but for some others, it is 
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likely not applicable. This is largely due to the highly species-specific roles of 

hormones in fishes. Fundamental research using goldfish, and its outcomes, provide a 

framework to study endocrine factors in other fishes and/or animals in general. Goldfish 

is a cultured species. For example, some strains or subspecies were used as ornamental 

fish, while others are used for food (eg. gibelio). Additional research and new strategies 

using knowledge generated from endocrine research will also help enhance the 

commercial importance of this species. 
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Figure Legends 

Figure 1A. Timeline and number of publications using goldfish. The black line 

represents the number of publications per year on goldfish between 1900 and 2015. This 

was generated based on a PubMed search of publications containing goldfish in the title 

or the abstract. Figure 1B - asterisks denote the countries from where research using 

goldfish was reported.  

Figure 2A. An artist’s rendering of the external anatomy of goldfish. Figure 2B shows 

an artist’s rendering of the internal organs in goldfish. Both images were originally 

drawn for the use of this manuscript. Artist: Juliane Deubner, Saskatoon, Canada. 

Figure 2C shows photographs of the external and internal anatomy of goldfish. 

Individual organs and brain regions are labelled. Female and male fish are shown 

separately to mark ovary and testis. 
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TABLES 

Table 1. Goldfish classification.  

Kingdom Animalia 

Phylum Chordata 

Subphylum Vertebrata 

Class Actinopterygii 

Order Cypriniformes 

Family Cyprinidae 

Genus Carassius 

Species Carassius auratus 

 




