
* Corresponding author. Tel. : +54 0291 4595156
E-mail address: mfrutos@uns.edu.ar (M. Frutos)

© 2015 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.dsl.2014.11.001

Decision Science Letters 4 (2015) 247–260

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

Choice of a PISA selector in a hybrid algorithmic structure for the FJSSP

Mariano Frutosa* and Fernando Tohméb

aDepartment of Engineering, Universidad Nacional del Sur and CONICET, Argentina
bDepartment of Economics, Universidad Nacional del Sur and CONICET, Argentina
C H R O N I C L E A B S T R A C T

Article history:
Received June 10, 2014
Accepted November 22, 2014
Available online
November 22 2014

 This paper analyzes the choice of a PISA selector for a Hybrid Algorithm integrating it as a Multi-
Objective Evolutionary Algorithm (MOEA) with a path-dependent search algorithm. The interaction
between these components provides an efficient procedure for solving Multi-Objective Problems
(MOPs) in operations scheduling. In order to choose the selector, we consider both NSGA and
SPEA as well as their successors (NSGAII and SPEAII). NSGAII and SPEAII are shown to be the
most efficient candidates. On the other hand, for the path-dependent search at the end of each
evolutionary phase we use the multi-objective version of Simulated Annealing.

Growing Science Ltd. All rights reserved. 5© 201

Keywords:
Flexible Job-Shop Scheduling
Problem
PISA selector
Multi-Objective Hybrid
Evolutionary Algorithm

1. Introduction

One of the main purposes of production planning is improving the efficiency of processes (Bihlmaier
et al., 2009). A good plan in an industrial firm can be seen as a solution to a Job-Shop Scheduling
Problem (JSSP) (Chao-Hsien & Han-Chiang, 2009) although this problem belongs to the NP-Hard
class (Ullman, 1975; Papadimitriou, 1994). The JSSP involves the allocation of limited resources to
jobs in order to optimize some given objectives (Armentano & Scrich, 2000; Storer et al., 1992).
Evolutionary procedures have been designed to address these multi-objective problems (Deb et al.,
2002) (Coello Coello et al., 2006). Most of the work on JSSP has been done on its single objective
version, but in real-world cases multiple goals are highly frequent (Chinyao & Yuling, 2009). As
indicated by T`kindt and Billaut (2006), a genuine scheduling problem requires the optimization of
several simultaneous goals. Along these lines we present the result of searching for an appropriate PISA
selector, from a small class of candidate Multi-Objective Evolutionary Algorithms (MOEAs) which, joint
with a local search procedure (MOSA, Multi-Objective Simulated Annealing) addresses the flexible
instance of JSSP (Cortés Rivera et al., 2003; Park et al., 2003; Tsai & Lin, 2003; Wu et al., 2004). In this
sense, this paper provides a methodological ground for the design of such a hybrid algorithm,

 248

NSGAII+MOSA, as presented in (Frutos et al., 2010). We claim that the combination of these algorithms
yields a metaheuristic tool that provides a good approximation to the Pareto frontier of multi-objective
JSSPs without the short-comings of the underlying MOEA. In particular, that NSGAII fares better than
other alternative candidates.

1.1 Approaches to the JSSP

The large body of work on the JSSP exhibits different solution strategies ranging from priority rules
to parallel branch-and-bound algorithms. While Muth and Thompson’s (1964) introduced the current
form of the JSSP, Jackson (1956) presented solution procedures generalizing Johnson’s (1954). Akers
and Friedman (1955) provided a Boolean representation of the algorithm, which was later simplified
as a disjunctive graph in Roy and Sussman (1964), while Balas (1959) profited from this
representation to yield another solution to the JSSP. In more contemporary times, the complexity of
the JSSP permitted alternative formulations (Li et al., 2011, 2013; Della Croce et al., 2014), which
allowed the application of particular algorithms like Clonal Selection (Cortés Rivera et al., 2003),
Hybrid Artificial Bee Colony (Li et al., 2011), Multi-Population Interactive Coevolutionary (Xing et
al., 2011), Priority Rules (Panwalker & Iskander, 1977), Shifting Bottlenecks (Adams et al., 1988)
(Mönch & Zimmermann, 2011), etc. The efficiency of these meta-heuristic procedures leaves room
for further improvement (De Giovanni & Pezzella, 2010) (Al-Hinai & ElMekkawy, 2011) (Shin et
al., 2008).

1.2 Multi-Objective Optimization: Basic Concepts

Let us assume that several goals (objectives) have to be minimized. Thus, a vector * * *

1 nx (x ,..., x) of n
decision variables (real numbers) is chosen, satisfying q inequalities ig (x) 0 , i 1,...,q as well as p
equations ih (x) 0 , i 1,...,p , such that a vector of k functions, 1 kf (x) (f (x),..., f (x)) each one
corresponding to a particular goal, attains a Pareto optimum. More precisely, the family of decision
vectors satisfying the q inequalities and the p equations is denoted by and each x is a feasible
alternative. A *x is Pareto optimal if for any x and every i=1,…,k, *

i if (x) f (x) . This means that
no x can improve a goal without worsening others. We say that a vector of real numbers 1 nu (u ,..., u)
dominates another, 1 nv (v ,..., v) (denoted u v) if and only if for every i {1,..., k} , i iu v and for
some j {1,..., k} j ju v . The set of Pareto optima is *P {x : there is no ' 'x such that f (x) f (x)}
and the associated Pareto frontier is * *FP {f (x) : x P } . The main goal of Multi-Objective
Optimization is to find the corresponding *FP . A good approximation should yield a few feasible
alternatives close enough to the frontier (Frutos & Tohmé, 2009).

2. The Flexible Job-Shop Scheduling Problem

The Job-Shop Scheduling problem amounts to organizing the execution of a class of n jobs (n
j j 1{J }) on

a set of m machines (m
k k 1{M }). Each job is described as a sequence of tasks that be performed in

sequence:
jj 1 nJ S ,...,S (assuming that the order of tasks is known we write i jS J . We denote with i

jkO
that the task iS of job jJ is performed on machine kM . i

jkO requires the use of a machine kM for a
period i

jk 0 (the processing time) at a cost i
jk . The family of operations to be run on a machine kM

is denoted kE . In the case of Flexible JSSP (FJSSP), each i
jkO can be processed by any of the

machines in M . A key issue here is the scheduling of activities, i.e. the determination of the starting
time i

jkt of each i
jkO . (Table 1, FJSSP MF01 (Frutos et al., 2010)).

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

249

Table 1
A Flexible Job-Shop Scheduling Problem
MF01 / Problem 3 × 4 with 8 operations (flexible)

jJ
i
jkO

1M 2M 3M 4M

i
j1

i
j1

i
j2

i
j2

i
j3

i
j3

i
j4

i
j4

1J

1
1kO 1 10 3 8 4 6 1 9
2
1kO 3 4 8 2 2 10 1 12

3
1kO 3 8 5 4 4 6 7 3

2J

1
2kO 4 7 1 16 1 14 4 6
2
2kO 2 10 3 8 9 3 3 8
3
2kO 9 3 1 15 2 10 2 13

3J

1
3kO 8 6 6 8 3 12 5 10
2
3kO 4 11 5 8 8 6 1 18

At the start of the process each machine is available and can only carry out an operation at a time.
Furthermore, no job can use each machine more than once and has to wait until the next machine is
available (Lin et al., 2011). All the setup and waiting times are included in the initial data and
machines can remain unused at any step of the plan. The final state is reached when each job has
completed its last operation (Heinonen & Pettersson, 2007). The FJSSP involves, in turn, two sub-
problems: the allocation of the i

jkO on the different kM and the determination of the best way of
sequencing them, guided by the goals to reach. That is, to find optimal levels of Processing Time
(Makespan) (f1) stated in Eq. (1), for each job jJ and Total Operation Costs (f2) stated as Eq. (2).

k
i j

j i i
max jk kjM MS J

C max(t)

 (1)

and

j i j k

i i
jk jk

J S J M M
x

 (2)

where i
jkx = 1 if i

jk kO E and 0 otherwise. On the other hand i
jkk

x 1 . Besides, starting times satisfy
the following condition: i (i 1) (i 1) s s

jk jh jh pk pkt max (t , t , 0) for each pair i 1 s
jh pk kO ,O E , all machines

k hM , M M and tasks i 1 i jS ,S J and s pS J . That is, the starting time of an operation i
jkO should be

larger or equal than the total time spent on operation i 1
jhO and on operation s

pkO .

3. A Multi-Objective Hybrid Evolutionary Algorithm

Evolutionary algorithms have been intensively applied to optimization problems (Coello Coello et al.,
2006; Gao et al., 2008; Chiang & Lin, 2013; Rabiee et al., 2012). But for the FJSSP the high rate of
convergence of some of them increase the evaluation costs on multi-objective instances, leading to a low
diversity in the solutions. So, poorly distributed Pareto frontiers are sometimes obtained under these
procedures. But if efficient local search procedures are added in the process, very few evaluations of the
fitness functions yield acceptably distributed Pareto frontiers (see Fig. 1). Our take on this issue is to
present a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) for the FJSSP combining a Multi-
Objective Evolutionary Algorithm (MOEA), and Multi-Objective Simulated Annealing (MOSA)
(Varadharajan & Rajendran, 2005).

3.1 The Evolutionary Phase

Individuals are represented by means of a variant of (Wu et al., 2004). Given that the FJSSP has two
subproblems our MOHEA operates over two chromosomes. The first one represents the allocation of

 250

given operation i
jkO to a machine kM . For instance, for m = 4, we might have something like 0→ 1M ,

1→ 2M , 2→ 3M and 3→ 4M .

Fig. 1. Makespan vs. Total Operation Costs (MF01-3x4, (Frutos et al., 2010)). MOEA, without Local

Search () and with Local Search ()

The second chromosome represents the sequencing of the i
jkO already assigned to a machine

i

k jk kM (O E) . We denote with values between 0 and (n!-1) the sequence of jJ at a given kM . That is,
for n = 3, we may have 0→1│2│3, 1→1│3│2, 2→2│1│3, 3→2│3│1, 4→3│1│2 and 5→3│2│1
(Table 2). The initial values are generated in a random way up from uniform distributions: integer
numbers between 0 and m-1, for the allocation chromosome and between 0 and n!-1, for the
sequencing chromosome. After that, a crossover and a mutation operator are applied segment-wise on
the population of combined allocation-sequencing chromosomes. After some preliminary runs, we
selected the Uniform Crossover operator, because it yields the best results. The mutation operator is
needed because the crossover alone does not allow reaching certain areas of the search space of the
FJSSP. We chose the Two-Swap mutation operator, which takes the chain of integers corresponding
to two chromosomes and selects at random two genes, swapping their positions.

Table 2
Allocation and Sequencing Chromosomes for the FJSSP
MF01 / Problem 3 × 4 with 8 operations (flexible)

jJ
i
jkO

kM 1M 2M 3M 4M

Chr. 3 3 0 5

1J

1
1kO 2
2
1kO 1
3
1kO 0

2J

1
2kO 1
2
2kO 2

3
2kO 3

3J

1
3kO 0
2
3kO 3

3.2 Simulated Annealing as a Local Search Process

Simulated Annealing provides a search procedure based on thermodynamic principles. To avoid local
optimum traps, that tend to arise with traditional local search algorithms, random jumps to (possibly

f2

25

50

75

0 20 40

 f1

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

251

worse) alternative solutions are allowed. Simulated Annealing controls the frequency of jumps by means
of the probability function (T)e , where δ is the difference among values of the objective function, T is
the “temperature” at the k-th iteration, starting at a high value (called the initial temperature) Ti, that cools
down according to k 1 kT T until a final temperature, Tf, is reached. Since higher temperatures increase
the probability of getting poor solutions, the procedure diversifies them at its initial phase but improves
them in the final stages. At the k-th iteration a class of close neighbors M (T,ω) is obtained, depending on
the temperature and a control parameter ω. Each time a neighbor is generated, an acceptation criterion
determines whether the current solution is kept or not. In the case of N objectives, there exist several
alternative definitions of δ. We take δ as the normalized maximum deviation, i i imax f (x’) f (x) f (x) .
If a new solution is rejected, a slight variant is tried. The probability of accepting a bad solution makes the
algorithm less prone to get caught in a local minimum. On the other hand, during the execution T
decreases according to a cooling velocity α, lowering the chances of upward displacements in the space of
solutions and keeping the alternatives close to the optimal ones. The algorithm stops if no improvement
has been obtained after a certain number of tries or if the final temperature Tf has been reached. Van
Laarhoven et al. (1992), show that under appropriate conditions, the algorithm explores efficiently the
neighborhood of the actual solution. Our version of the MOSA algorithm (Multi-Objective Simulated
Annealing) generates, up from a given one, a class of close-enough alternative solutions by taking one of
the genes of the chromosome and changing its value at random (Frutos et al., 2010), representing the
exchange of several operations on a single machine. This procedure is applied M times. The pseudo-code
of the MOSA used here is presented in Fig. 2.
3.3 Combining the Algorithms

We focus here on how the aforementioned pieces are assembled (see Fig. 3). First, the memetic
procedure generates the initial population. Later, to evaluate the fitness of the individuals in the
population, the value of each goal is computed and a binary tournament selection is performed. The
selected candidates are subject to the genetic operators and create a new and smaller population.
Then, the simulated annealing procedure performs a local search on each individual, replacing it with
a new one. This is repeated until a given generation number is reached.

0. Take an initial x

i 1

Q
1. while T > Tf
2. Compute M 1 T
3. for i = 1 to M
4. Change x and obtain x’
5. Decodify and evaluate f1(x’) and f2(x’)
6. if f1 and f2 improve
7. then Change x’
8. if f1 or f2 improve without worsening either f2 or f1
9. then Change x’
10. if either f1 or f2 gets worse
11. then
12. if ξ (0, 1) < e-δ/T
13. then Change x’
14. end if
15. end if
16. end for
17. T = α (T)
18. end while
19. end

Fig. 2. Pseudo-code of the Simulated Annealing procedure

 252

4. Implementation and Design of Experiments

The whole algorithm was implemented on PISA (A Platform and Programming Language
Independent Interface for Search Algorithms) (Bleuler et al., 2003), an algorithm interface that
distinguishes between two modules: variator and selector. The former takes all the specificities of the
problem at hand to code and decode the solutions (to compute their fitness values). The selector
module is independent of the problem and acts by selecting candidates. These modules exchange
messages, coded as text files, independently of the programming language and the platform on which
the algorithm runs. PISA provides a library of evaluations as well as statistical tools that allow
evaluating and comparing alternative optimization methods (Knowles et al., 2005). For this work we
considered the following MOEAs (Multi-objective Evolutionary Algorithms): the Non-dominated
Sorting Genetic Algorithm (NSGA) (Srinivas, 1994), the Strength Pareto Evolutionary algorithm
(SPEA) (Zitzler & Thiele, 1999) and their successors, the Non-dominated Sorting Genetic Algorithm
II (NSGAII) (Deb et al., 2002) and the Strength Pareto Evolutionary algorithm II (SPEAII) (Zitzler et
al., 2002).

0. Generate an initial population (
0

P) of size N
1. Decodify and evaluate f1(x) and f2(x) on every

0
x P

2. Select Parents from
0

P
3.

0
Q = Cross (

0
P)

4.
0

Q = Mutate (
0

Q)
5.

0
Q =Local Search (

0
Q)

6. for i = 0 to G - 1 do
7. Decodify and evaluate f1(x) and f2(x) on every individual

i 1

x Q
8. Select out of

i i 1

P Q the N best elements and eliminate the rest
9. Create the next generation i 1

P
10. Select Parents from i 1

P
11. i 1

Q = Cross (i 1
P)

12.

i 1

Q = Mutate (i 1
Q)

13.

i 1

Q = Local Search (

i 1

Q)
14. end for
15. end

Fig. 3. Pseudo-code of the Multi-Objective Hybrid Evolutionary Algorithm

NSGA classifies the individuals in layers grouping all the non-dominated individuals in a single front
that comprises the individuals with the same value of fitness. This value is proportional to the size of
the population, providing reproduction potential for all the individuals in the front. The procedure is
repeated on the remaining individuals until all the individuals in the population are classified. Since
the candidates in the first front have higher fitness they get more attention than the rest of the
individuals. NSGAII is a more efficient version of NSGA that applies an elitist replacement strategy
choosing the best individuals from the union between parent and child generations. All the solutions
are ranked in terms of their degrees of non-dominancy, being the better ones those with lowest rank.
SPEA is an algorithm that at each generation keeps in memory the non-dominated individuals and
deletes those that became dominated. For each individual in the external system, a strength value is
computed, proportional to the number of solutions in which it is dominant. The fitness of a member
of the current population is computed by adding the strengths of the external non-dominated solutions
that dominate it. SPEAII instead, applies a fine-tuning procedure according to which the fitness of an
individual is obtained as a balance between the number of solutions that it dominates and the number
that dominate the individual. Besides, it uses the “nearest neighbor” for valuing the density of feasible
solutions, leading to a more efficient search. In Figure 4 we can see the PISA architecture adapted to
the FJSSP.

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

253

Fig. 4. The architecture of PISA

4.1 Experiments and results

A preliminary analysis of the improvement process showed that it tended to become stable at the
200th generation. We chose then the limit of 250 generations, just to leave room for any later
improvement. The parameters and characteristics of the computing equipment used during these
experiments were as follows: size of the population: 200, type of cross-over: uniform; probability of
cross-over: 0.90, type of mutation: two-swap, probability of mutation: 0.01, type of local search:
simulated annealing (Ti: 850, Tf: 0.01, α: 0.95, ω: 10), probability of local search: 0.01, CPU: 3.00
GHZ and RAM: 1.00 GB. Initially we consider four solutions, two dominated solutions (see Table 3
and Table 5) and two undominated solutions (see Table 4 and Table 6) for problem MF01 (Frutos et
al., 2010).

Table 3
Scheduling of MF01 (MOHEA) (f1: 6, f2: 78)

jJ i
jkO

Scheduling (MF01) - f1: 6, f2: 78
i
jkA i

jkt i i
jk jkt i

jk

1J

1
1kO 4M 0 1 9
2
1kO 4M 1 2 12
3
1kO 1M 2 5 4

2J

1
2kO 2M 0 1 14
2
2kO 2M 1 4 3
3
2kO 4M 4 6 13

3J
1
3kO 3M 0 3 5
2
3kO 4M 3 4 18

Table 4
Scheduling of MF01 (MOHEA) (f1: 6, f2: 66)

jJ i
jkO

Scheduling (MF01) - f1: 6, f2: 66
i
jkA i

jkt i i
jk jkt i

jk

1J

1
1kO 4M 0 1 4
2
1kO 4M 1 2 12
3
1kO 1M 3 6 4

2J

1
2kO 2M 0 1 4
2
2kO 2M 1 3 9
3
2kO 4M 3 4 10

3J
1
3kO 3M 1 4 5
2
3kO 4M 4 5 18

 254

Table 5
Scheduling of MF01 (MOHEA) (f1: 57, f2: 35)

jJ i
jkO

Scheduling (MF01) - f1: 57, f2: 35
i
jkA i

jkt i i
jk jkt i

jk

1J

1
1kO 4M 0 4 6
2
1kO 4M 4 12 2
3
1kO 1M 12 19 3

2J

1
2kO 2M 19 23 6
2
2kO 2M 23 32 3
3
2kO 4M 32 41 3

3J
1
3kO 3M 41 49 6
2
3kO 4M 49 57 6

Table 6
Scheduling of MF01 (MOHEA) (f1: 29, f2: 35)

jJ i
jkO

Scheduling (MF01) - f1: 29, f2: 35
i
jkA i

jkt i i
jk jkt i

jk

1J

1
1kO 4M 0 4 6
2
1kO 4M 4 12 2
3
1kO 1M 12 19 3

2J

1
2kO 2M 0 4 6
2
2kO 2M 16 20 3
3
2kO 4M 20 29 3

3J
1
3kO 3M 0 8 6
2
3kO 4M 8 16 6

The procedure has been applied to problems MF01 (Fig. 5 (a)), MF02 (Fig. 6 (a)), MF03 (Fig. 7 (a)),
MF04 (Fig. 8 (a)) and MF05 (Fig. 9 (a)) (Kacem et al., 2002) and the non-dominated solutions (S)
reached under a number of generations (G) are obtained. Then, a multi-objective analysis based on
Makespan (f1) and Total Operation Costs (f2) is iterated 30 times. For each algorithm the sets of
undominated solutions 1 2 30P , P ,..., P were obtained as well as the super-population T 1 2 30P P P ... P .
From each superpopulation a class of undominated solutions was extracted, constituting the Pareto
frontier for each algorithm: NSGAIIY , NSGAY , SPEAIIY and SPEAY . The mean times required for completing
250 generations by the different algorithms are shown in Table 7.

Table 7
Mean running times of the algorithms. Each algorithm is iterated 30 times

Mean Running Time (in seconds)

 NSGAII NSGA SPEAII SPEA

MF01 112,3 98,5 110,9 102,5

MF02 195,8 175,2 185,7 181,1

MF03 221,3 197,9 214,2 204,6

MF04 402,9 360,4 382,0 372,6

MF05 531,8 475,7 514,8 491,9

The fronts obtained are shown in Fig. 5 (b) (MF01), Fig. 6 (b) (MF02), Fig. 7 (b) (MF03), Fig. 8 (b)
(MF04) and Fig. 9 (b) (MF05). To obtain an approximation to the true Pareto front (Approximate
Pareto Frontier, APF) we take the entire class NSGAII NSGA SPEAII SPEAY Y Y Y , from which all the
dominated solutions are eliminated.

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

255

4.2 Comparison Procedure

In order to compare the results of the algorithms and establish the better option for the FJSSP, several
tests were applied over the solutions.

Fig. 5. MF01. NSGAII , NSGA , SPEAII , SPEA and APF

Fig. 6. MF02. NSGAII , NSGA , SPEAII , SPEA and APF

Fig. 7. MF03. NSGAII , NSGA , SPEAII , SPEA and APF

0

10

20

0 25 50 75 100 125 150 175 200 225 250 275
25

50

75

0 20 40
G

S

f1

f2

(a) (b)

0

15

30

0 25 50 75 100 125 150 175 200 225 250 275
25

100

175

10 45 80
G

S

f1

f2

(a) (b)

0

12

24

0 25 50 75 100 125 150 175 200 225 250 275
20

220

420

0 70 140
G

S

f1

f2

(a) (b)

 256

Fig. 8. MF04. NSGAII , NSGA , SPEAII , SPEA and APF

Fig. 9. MF05. NSGAII , NSGA , SPEAII , SPEA and APF

We considered unary quality indicators using normalized approximation sets. Then, we applied the
unary indicators (unary epsilon indicator Ie

1, unary hypervolume indicator IH and R indicator IR2
1) on

the normalized approximation sets as well as on the reference set generated by PISA (Ie
1, IH, and IR2

1,
Table 8 (MF01), Table 9 (MF02), Table 10 (MF03), Table 11 (MF04) and Table12 (MF05).

Table 8
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF01)

Test for Problem MF01
Ie1

 NSGAII NSGA SPEAII SPEA

NSGAII - 0,02837 0,38665 0,36578
NSGA 0,97163 - 0,72365 0,70856
SPEAII 0,61335 0,27635 - 0,49144
SPEA 0,63422 0,29144 0,50856 -

IH
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,02802 0,38193 0,36131

NSGA 0,97198 - 0,71481 0,69990
SPEAII 0,61807 0,28519 - 0,48543
SPEA 0,63869 0,30010 0,51457 -

IR21
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,02802 0,38193 0,36131
NSGA 0,97198 - 0,71481 0,69990

SPEAII 0,61807 0,28519 - 0,48543
SPEA 0,63869 0,30010 0,51457 -

0

15

30

0 25 50 75 100 125 150 175 200 225 250 275
0

150

300

5 35 65
G

S

f1

f2

(a) (b)

0

16

32

0 25 50 75 100 125 150 175 200 225 250 275
0

450

900

10 80 150
G

S

f1

f2

(a) (b)

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

257

Table 9
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF02)

Test for Problem MF02
Ie

1
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,03649 0,47696 0,04688
NSGA 0,96351 - 0,89319 0,55750
SPEAII 0,52304 0,10681 - 0,59746
SPEA 0,95312 0,44250 0,40254 -

IH
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,03726 0,48697 0,04786
NSGA 0,96274 - 0,91195 0,56921
SPEAII 0,51303 0,08805 - 0,61001
SPEA 0,95214 0,43079 0,38999 -

IR21
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,03702 0,48387 0,04756
NSGA 0,96298 - 0,90614 0,56558
SPEAII 0,51613 0,09386 - 0,60613
SPEA 0,95244 0,43442 0,39387 -

Table 10
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF03)

Test for Problem MF03
Ie1

 NSGAII NSGA SPEAII SPEA
NSGAII - 0,03739 0,48868 0,04803
NSGA 0,96261 - 0,91515 0,57121
SPEAII 0,51132 0,08485 - 0,61215
SPEA 0,95197 0,42879 0,38785 -

IH
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,03793 0,49577 0,04873
NSGA 0,96207 - 0,92842 0,57949
SPEAII 0,50423 0,07158 - 0,62103
SPEA 0,95127 0,42051 0,37897 -

IR21
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,03690 0,48233 0,04740
NSGA 0,96310 - 0,90326 0,56378
SPEAII 0,51767 0,09674 - 0,60420
SPEA 0,95260 0,43622 0,39580 -

Table 11
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF04)

Test for Problem MF04
Ie

1
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,07868 0,49118 0,10167
NSGA 0,92132 - 0,92328 0,63990
SPEAII 0,50882 0,07672 - 0,10063
SPEA 0,89833 0,36010 0,89937 -

IH
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,07679 0,47939 0,09923
NSGA 0,92321 - 0,90113 0,62454
SPEAII 0,52061 0,09887 - 0,09821
SPEA 0,90077 0,37546 0,90179 -

IR21
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,07868 0,49118 0,10167
NSGA 0,92132 - 0,92328 0,63990
SPEAII 0,50882 0,07672 - 0,10063
SPEA 0,89833 0,36010 0,89937 -

On problems MF01, MF04 and MF05, NSGAII showed statistically significant differences with NSGA
and SPEA at the α=0.05 level. On MF02 and MF03, NSGAII and SPEAII had differences with
NSGA y SPEA of an overall significance level α=0.05. Thus, NSGAII and SPEAII address better the
FJSSP. As a further step in the analysis, we establish the percentage of contribution of each algorithm to
the Approximate Pareto Frontier (see Table 13). From this we can conclude that NSGAII is the best
selector we can apply to our problem.

 258

Table 12
Unary epsilon indicator, unary hypervolume indicator and R indicator (MF05)

Test for Problem MF05
Ie1

 NSGAII NSGA SPEAII SPEA
NSGAII - 0,02906 0,39616 0,37477
NSGA 0,97094 - 0,74145 0,72598
SPEAII 0,60384 0,25855 - 0,49648
SPEA 0,62523 0,27402 0,50352 -

IH
 NSGAII NSGA SPEAII SPEA

NSGAII - 0,02838 0,38691 0,36602
NSGA 0,97162 - 0,72413 0,70903
SPEAII 0,61309 0,27587 - 0,48488
SPEA 0,63398 0,29097 0,51512 -

IR2
1

 NSGAII NSGA SPEAII SPEA
NSGAII - 0,02869 0,39101 0,36990
NSGA 0,97131 - 0,73181 0,71654
SPEAII 0,60899 0,26819 - 0,49002
SPEA 0,63010 0,28346 0,50998 -

Table 13
Percentage of solutions contributed by NSGAII, NSGA, SPEAII and SPEA to the Approximate
Pareto Frontier

Percentage of solutions in the Approximate Pareto Frontier
 NSGAII NSGA SPEAII SPEA

MF01 83,33% 27,78% 66,67% 66,67%
MF02 85,71% 21,43% 82,14% 53,57%
MF03 95,45% 31,82% 86,36% 63,64%
MF04 92,59% 55,56% 88,89% 62,96%
MF05 93,55% 48,39% 77,42% 77,42%

5. Conclusions

We presented a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) to solve the Flexible Job-
Shop Scheduling Problem (FJSSP). The application of the MOHEA required the calibration of parameters
to yield valid values. Our algorithm integrates two meta-heuristic procedures: a Multi-Objective
Evolutionary Algorithm (MOEA) and a Multi-Objective Simulated Annealing (MOSA) algorithm.
Individuals are coded in a way that facilitates the application of two basic genetic operators. Different
MOEAs were tested for this task. It was shown that the performance of NSGAII is at least as good as
SPEAII and it improves largely over NSGA and SPEA, validating the results in (Frutos et al., 2010). We
are currently running a comparison between the MOHEA presented in this paper and recently developed
approaches like the Hybrid Artificial Bee Colony Algorithm (Li et al., 2011) and the Multi-population
Interactive Co-evolutionary Algorithm (Xing et al., 2011). Furthermore, we plan, in the future, to explore
the performance of the MOHEA on other MOPs. We believe that it provides a strong and efficient
approach to this kind of problems.
Acknowledgements

We would like to thank the economic support of the Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET) and the Universidad Nacional del Sur (UNS) for Grant PGI 24/JO56. We
want also thank Dr. Ana C. Olivera for her constant support and help during this research.
References

Adams, J., Balas, E. & Zawack, D. (1998). The shifting bottleneck procedure for Job Shop

Scheduling. Management Science, 34 (3), 391-401.
Al-Hinai, N. & ElMekkawy, T. Y. (2011) Robust and stable flexible job shop scheduling with

random machine breakdowns using a hybrid genetic algorithm. International Journal of
Production Economics, 132 (2), 279-291.

Armentano, V. A. & Scrich, C. R. (2000). Tabu Search for minimizing total tardiness in a Job-Shop.
International Journal Production Economics, 63, 131-140.

M. Frutos and F. Tohmé / Decision Science Letters 4 (2015)

259

Bihlmaier, R., Koberstein, A. & Obst, R. (2009). Modeling and optimizing of strategic and tactical
production planning in the automotive industry under uncertainty. OR Spectrum, 31 (2), 311-336.

Bleuler, S., Laumanns, M., Thiele, L. & Zitzler, E. (2003). PISA: a platform and programming
language independent interface for search algorithms. In: Proceedings of Evolutionary Multi-
Criterion Optimization, Springer-Verlag, Berlin, 494-508.

Chao-Hsien, J. & Han-Chiang, H. (2009). A hybrid genetic algorithm for no-wait Job Shop
Scheduling problems. Expert Systems with Applications, 36 (3), 5800-5806.

Chiang, T. C. & Lin, H. J. (2013). A simple and effective evolutionary algorithm for multiobjective
flexible job shop scheduling. International Journal of Production Economics, 141 (1), 87-98.

Chinyao, L. & Yuling, Y. (2009). Genetic algorithm-based heuristics for an open shop scheduling
problem with setup, processing, and removal times separated. Robotics and Computer-Integrated
Manufacturing, 25 (2), 314-322.

Coello Coello, C. A., Lamont, G. B. & Veldhuizen, D. A. (2006). Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic and Evolutionary Computation, Springer-Verlag, NY.

Cortés Rivera, D., Coello Coello, C. A. & Cortés, N. C. (2003). Use of an artificial immune system
for Job-Shop Scheduling. Lecture Notes in Computer Science, 2787, 1-10.

De Giovanni, L. & Pezzella, F. (2010). An improved genetic algorithm for the distributed and
flexible Jobshop Scheduling problem. European Journal of Operational Research, 200 (2), 395-
408.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multi-objective genetic
algorithm: NSGAII. IEEE Transactions on Evolutionary Computation, 6 (2), 182-197.

Della Croce, F., Grosso, A. & Salassa, F. (2014). A metaheuristic approach for the two-machine total
completion time flow-shop problem. Annals of Operations Research, 213, 67-78.

Frutos, M., Olivera, A. C. & Tohmé, F. (2010). A memetic algorithm based on a NSGAII scheme for
the flexible Job-Shop Scheduling problem. Annals of Operations Research, 181, 745-765.

Frutos, M., Méndez, M., Tohmé, F. & Broz, D. (2013). Comparison of Multiobjective Evolutionary
Algorithms for Operations Scheduling under Machine Availability Constraints. The Scientific
World Journal: Bioinspired Computation and Its Applications in Operation Management, 2013, 1-
9.

Gao, J., Sun, L. & Gen, M. (2008). A hybrid genetic and variable neighborhood descent algorithm for
flexible job shop scheduling problems. Computers and Operations Research, 35, 2892-2907.

Heinonen, J. & Pettersson, F. (2007). Hybrid ant colony optimization and visibility studies applied to
a Job-Shop Scheduling problem. Applied Mathematics and Computation, 187 (2), 989-998.

Kacem, I., Hammadi, S. & Borne, P. (2002). Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on
Systems, Man and Cybernetics, Part C, 32, 1-13.

Knowles, J., Thiele, L. & Zitzler, E. (2005). A tutorial on the performance assessment of stochastic
multiobjective optimizers. TIK Computer Engineering and Networks Laboratory.

Li, J., Pan, Q., Xie, S. & Wang, S. (2011). A hybrid artificial bee colony algorithm for flexible Job
Shop Scheduling problems. International Journal of Computers Communications & Control, 6
(2), 286-296.

Lin, Y., Pfund, M. & Fowler, J. (2011). Heuristics for minimizing regular performance measures in
unrelated parallel machine scheduling problems. Computers & Operations Research, 38 (6), 901-
916.

Liu, C. H., Chen, L. S. & Lin, P. S. (2013). Lot streaming multiple jobs with values exponentially
deteriorating over time in a job-shop environment. International Journal of Production Research,
51 (1), 202-214.

Mönch, L. & Zimmermann, J. (2011). A computational study of a shifting bottleneck heuristic for
multi-product complex job shops. Production Planning & Control, 22 (1), 25-40.

Panwalker, S. & Iskander, W. (1977). A survey of scheduling rules. Operations Research, 25 (1), 45-
61.

Papadimitriou, C. H. (1994). Computational Complexity. Addison Wesley, NY.

 260

Park, B. J., Choi, H. R. & Kim, H. S. A. (2003). Hybrid genetic algorithm for the Job-Shop
Scheduling problems. Computers and Industrial Engineering, 45 (1), 597-613.

Rabiee, M., Zandieh, M. & Ramezani, P. (2012). Bi-objective partial flexible job shop scheduling
problem: NSGA-II, NRGA, MOGA and PAES approaches. International Journal of Production
Research, 50 (24), 7327-7342.

Shin, J. G., Kwon, O. H. & Ryu, C. (2008). Heuristic and metaheuristic spatial planning of assembly
blocks with process schedules in an assembly shop using differential evolution. Production
Planning & Control, 19 (6), 605-615.

Srinivas, N. (1994). Multi-objetive optimization using nondominated sorting in genetic algorithms.
Master’s Thesis. Indian Institute of Technology, Kuanpur, India.

Storer, R. H., Wu, S. D. & Vaccari, R. (1992). New search spaces for sequencing instances with
application to Job-Shop Scheduling. Management Science, 38, 1495-1509.

T`kindt, V. & Billaut, J. C. (2006). Multicriteria Scheduling. Theory, Models and Algorithms,
Springer-Verlag, Berlin.

Tsai, C. F. & Lin, F. C. (2003). A new hybrid heuristic technique for solving Job-Shop Scheduling
problems. In: Proceedings of the Second IEEE International Workshop on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, IEEE, Kharkov,
Ukraine, 53-58.

Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer System Sciences, 10,
384-393.

Van Laarhoven, P. J. M., Aarts, E. H. L. & Lenstra, J. K. (1992). Job-Shop Scheduling by simulated
annealing. Operations Research, 40 (1), 113-125.

Varadharajan, T. K. & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for
scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal
of Operational Research, 167, 772-795.

Wu, C. G., Xing, X. L., Lee, H. P., Zhou, C. G. & Liang, Y. C. (2004). Genetic algorithm application
on the Job-Shop Scheduling problem. In: Proceedings of the 2004 International Conference
Machine Learning and Cybernetics, 4, 2102-2106.

Xing, L. N., Chen, Y. W. & Yang, K. W. (2011). Multi-population interactive coevolutionary
algorithm for flexible Job Shop Scheduling problems. Computational Optimization and
Applications, 48, 139-155.

Zitzler, E., Laumanns, M. & Thiele, L. (2002). SPEAII: improving the strength Pareto evolutionary
algorithm for multiobjective optimization. In Giannakoglou, Tsahalis, Periaux, Papailiou, and
Fogarty (eds), Evolutionary Methods for Design, Optimisation and Control, CIMNE, Barcelona,
Spain, 19-26.

Zitzler, E. & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Transactions Evolutionary Computation, 3 (3), 257-271.

