
ARTICLES
PUBLISHED ONLINE: 19 JUNE 2017 | DOI: 10.1038/NPHYS4153

Dynamic scaling in natural swarms
Andrea Cavagna1*, Daniele Conti2, Chiara Creato1,2, Lorenzo Del Castello1,2, Irene Giardina1,2,3,
Tomas S. Grigera4,5, Stefania Melillo1,2*, Leonardo Parisi1,6 and Massimiliano Viale1,2

Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics.
The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose
relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the
emergence of dynamic scaling laws in natural swarms ofmidges.Wefind that spatio-temporal correlation functions in di�erent
swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical
exponent z≈1, a value not found in any other standard statistical model. To check whether out-of-equilibrium e�ects may be
responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z≈2,
suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental
evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial e�ects are
needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a
near-critical censorship of hydrodynamics.

Scaling is one of the most powerful concepts in statistical
physics. At the static level, the essential idea of the scaling
hypothesis is that the only natural length scale of a system

close to its critical point is the correlation length, ξ . In general, one
could expect the behaviour of a system to depend in complicated
ways on the parameters controlling its vicinity to the critical point.
The scaling hypothesis states that the situation is in fact simpler: the
correlation functions depend on all these control parameters only
through ξ (refs 1,2). The dynamic scaling hypothesis pushes this
idea a step further by establishing a connection between space and
time3,4: when the correlation length is large, both the characteristic
timescale and the dynamic correlation function depend on the
control parameters only through the correlation length, which
therefore becomes the sole relevant scale of the system also at the
dynamical level. The dynamic scaling hypothesis is rooted in the
renormalization group idea of studying how the laws of nature
change under a rescaling of space and time. Close to criticality,
scale invariance guarantees that all inessential microscopic details
drop out of the quantitative description of a system. This is
universality, the fundamental reason why a handful of physical
laws have a vast range of applicability, from condensed matter to
particle physics5,6.

The key ingredient of scaling is the existence of a large correlation
length, namely much larger than the microscopic length scales
of the system. This is not an exclusive prerogative of statistical
physics. Strong correlations are found in many biological systems;
indeed, the very existence of significant correlations is arguably
the best definition of collective behaviour7. Bird flocks8, fish
schools9, mammal herds10, insect swarms7, bacterial clusters11,12 and
proteins13 are all biological systems where static correlations have
been found to be strong. One may then ask whether the concepts
of scaling and universality make any sense in these contexts too.
Even though the complexity of biological systems may make us
coy about this kind of question, one should remember that even
in statistical physics scaling is not a rigorous theorem, but rather

a phenomenological conjecture about what is relevant and what is
not in a strongly correlated system. The only key assumption at
the basis of scaling is that the correlation length is much larger
than all microscopic scales. Hence, before banning scaling from the
living world, one should test it experimentally. Here we investigate
the dynamic scaling hypothesis in natural swarms of insects. We
find that experimental data are consistent with scaling and that a
seemingly new dynamical universality class emerges.

By using multi-camera techniques14, we reconstruct individual
three-dimensional (3D) trajectories in swarms of midges in
their natural environment (Diptera: Chironomidae and Diptera:
Ceratopogonidae; Fig. 1 and Methods). To perform a dynamic
analysis, we conducted a new data-taking campaign based on the
experimental set-up of ref. 7, reaching a total of 30 natural swarms
of various sizes and densities (Supplementary Table 1). After the
pioneering works of refs 15–17, new generation experiments on
swarms have been performed both in the laboratory18,19, and in the
wild7,20–22. From the trajectories, we compute the spatio-temporal
correlation function of the velocity fluctuations in the Fourier space
of the wavenumber k,

C(k, t)=
〈

1
N

N∑
i,j

sin[krij(t0, t)]
krij(t0, t)

δv̂i(t0) ·δv̂j(t0+ t)
〉

where δv̂i is the dimensionless velocity fluctuation of insect i (see
Methods) and the brackets indicate an average over the earlier
time t0; the distance between insects i and j at different times is
rij(t0, t)=|ri(t0)− rj(t0+ t)|, where positions are calculated in the
centre-of-mass reference frame (see Methods). C(r , t), the real-
space counterpart of C(k, t), measures to what extent the velocity
change of an insect at time t0 is similar to that of another insect at
distance r and at a later time t0+ t (Fig. 1c). For a frequency analysis
of laboratory swarm dynamics, see refs 23,24.

The correlation function depends on time, t , on wavenumber,
k, and very likely on other factors determining the behaviour of
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Figure 1 | Experiment and temporal correlation. a, A system of three synchronized high-speed cameras shooting at 170 fps is used to collect video
sequences of midge swarms in their natural environment. b, A swarm of approximately 300 midges. c, Close-up of two trajectories within the swarm.
d, Upper panel: normalized correlation function Ĉ(k, t) in one natural swarm at various values of k. Bottom panels: correlation as a function of the rescaled
time, t/τk, in various attempts to rescale the data (see text).

swarms. Can we reduce this complexity? In Fig. 1d we report the
normalized correlation, Ĉ(k, t)≡C(k, t)/C(k, t = 0), as a function
of time, for different values of k, in the same swarm.We observe that
the temporal decay rate of the correlation, τk, strongly depends on
k (see Methods and Supplementary Appendix A for the definition
of τk). A naive guess is that the correlation depends on k only
through its timescale, in which case Ĉ versus t/τk at various k should
collapse onto the same curve. The data show that this is not the
case (Fig. 1d, bottom panels): not only the timescale, but also the
shape of the correlation function, depends on the wavenumber.
Moreover, Fig. 1d shows that at fixed k the correlation as a function
of t/τk is different from swarm to swarm. We conclude that the
shape of Ĉ(t/τk) depends explicitly both on k and on the set of
biological and environmental parameters controlling the swarms’
dynamics, P= (p1, p2 . . . ), so that Ĉ = Ĉ(t/τk; k, P). Dynamical
correlations in swarms seem not to scale with anything and to
depend on everything.

Our failed attempts to separately rescale the dependence on
the wavenumber k and on the unknown factors P leaves open
the possibility to rescale them simultaneously, namely that the
correlation is a function of some dimensionless combination of k
and P. k has the dimensions of an inverse length; hence, we need to
multiply it by some natural length scale that depends on P. Such
length scale must be intrinsic to the swarm and experimentally
accessible, requirements that narrowly restrict the choice. A possible
candidate is the correlation length, ξ , which can be computed in
each swarm directly from the data (see ref. 7 and Methods) and
is known to depend on the external factors (certainly density and
size, as shown in ref. 22). We can now hypothesize that the product
k ξ(P) exhausts all dependence on k and on P of the correlation,
namely that Ĉ(t/τk;k,P)= Ĉ(t/τk;kξ(P)). If this is true, by fixing
the product kξ we should eliminate both the dependence on k and
on P. The simplest way to fix the product kξ in our data is to select
k=1/ξ in each swarm:

Ĉ= Ĉ(t/τk, 1) (1)

We test this hypothesis in Fig. 1d: data show that the spread of
the correlation functions among different swarms is now reduced,
which seems a promising step forward in terms of simplification of
the data complexity. Is there a theoretical framework within which
we can interpret and perhaps improve this result?

Natural swarms have a correlation length ξ that is large
compared with the interparticle distance and a susceptibility that

far exceeds that of a non-interacting system7,22. These are the
essential prerequisites of dynamical scaling; hence, it is tempting to
interpret the results above in terms of this framework. The dynamic
scaling hypothesis3,4,25,26 states that the temporal correlation and its
characteristic time are homogeneous functions of k and ξ and that
the dependence on the control parameters P runs only through ξ ,

Ĉ(k, t ,P)= Ĉ(t/τk;kξ(P)) (2)

τk=k−zg (kξ(P)) (3)

where g is an unknown scaling function. The fact that everything
depends on the product kξ means that the correlation length is
the only quantity needed to locate a system in its parameters
space. Equation (3) embodies the renormalization group idea
that to a rescaling of space, x→ x/b, corresponds a rescaling of
time, t→ t/bz , a balance regulated by the so-called dynamical
critical exponent, z (ref. 27), see Supplementary Appendix A. The
dynamical scaling relation (2) is consistent with Fig. 1d. However,
(3) says something more, namely that if we move along paths of
constant kξ the characteristic time becomes a power law,

τk∼k−z (4)

so that we can rescale time directly with a power of k, finally giving

Ĉ= Ĉ(kz t , 1) (5)

We tested relation (5) and found a very good collapse of the
data when z = 1.2 (Fig. 2b). This scaling is the most compelling
of those we tried, indicating that the dynamic scaling hypothesis
(see Supplementary Appendix A) is the most effective way to
reduce the complexity of the correlation. Moreover, we find that the
characteristic time scales with k in accordance with equation (4):
although the scatter is significant, the plot shows a clear correlation
between log τk and log k (P-value ∼ 10−6, Fig. 2c), with exponent
z = 1.12± 0.16, consistent with the value of z from the collapse.
Given the limited range of lengths and times, a fit to (4) is not
the safest way to determine z . On the other hand, to collapse the
correlation functions via relation (5) we do not need to compute
the characteristic time, τk; hence, this is a far cleaner determination
of the critical exponent z . In Supplementary Fig. 2 we show how
dramatically worse the collapse looks like when we try to scale the
correlations via a different exponent.
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Figure 2 | Dynamic scaling and critical exponent. a, Normalized time correlation function, Ĉ(k, t), evaluated at k= 1/ξ , in several natural swarms. Sizes range
from N= 100 to N=300, time is measured in seconds and correlation length ξ is centimetres. b, Ĉ(k, t) as a function of the scaling variable kzt for the same
events as in a; z= 1.2 gives the optimal collapse of the curves according to equation (5). The quality of the collapse deteriorates for longer times because
Ĉ(k, t) is the average over tmax− t time pairs (tmax is the sequence duration); hence, large t data are noisier. c, Characteristic timescale, τk, computed at
k= 1/ξ , as a function of k (log–log scale). Each point corresponds to a di�erent natural swarm; all experimental events are reported. P value= 10−6,
z= 1.12±0.16, consistent with the estimate from the collapse in b. d–f, Dynamic scaling analysis of the 3D Vicsek model for N= 128,256,512, 1,024,2,048
particles; τk scale with k with an exponent z= 1.96±0.04, which also produces an excellent collapse of the correlation functions.

If we plug k=1/ξ into (4) we obtain,

τk∼ξ
z (6)

Natural swarms seem therefore to conform to a fundamental law of
statistical physics: systems that are more spatially correlated (larger
correlation length ξ ) are also more temporally correlated (larger
characteristic time τk). This is the core of the dynamic scaling
hypothesis: in a strongly correlated system, space and time are
connected to each other by the exponent z . The fact that dynamic
scaling is consistent with experiments on natural swarms seems to
us noteworthy, because swarms’ collective behaviour is determined
by at least two control parameters (noise level and density22), plus
potentially many other biological and environmental factors we are
unaware of; yet the correlation function appears to be ruled by
just one quantity, the correlation length. This fact strongly supports
the idea that ξ alone contains the most important effects of the
fluctuations26. The growth of the relaxation timewith the correlation
length, equation (6), also opens intriguing possibilities about the off-
equilibrium formation of topological defects in strongly correlated
biological systems under fast quenches, a phenomenon known as
the Kibble–Zurek mechanisms28,29. Note, though, that the near-
criticality and scale-free nature of swarms found in ref. 22, namely
the fact that the correlation length scales with the system’s size, is not
a necessary assumption of the scaling hypothesis; to satisfy scaling
one simply needs ξ to be much larger than the microscopic scales, a
far weaker condition that is certainly satisfied in natural swarms7.

Given the non-standard statistical nature of the system under
investigation, classic dynamical scaling is not the only possible
interpretation of our data. One could envisage other, more
biologically related mechanisms giving rise to the same collapse of
the data. However, the experimental evidence that the correlation is
simply a function of the product kξ and therefore that all (or most)
of the external factors are encapsulated into a single quantity, ξ , is
independent of any theoretical scheme and it rests as a hard fact
other interpretations must confront.

The value of z determines the dynamic universality class of
the system and it is therefore instructive to compare natural

swarms (z ≈ 1) with known theoretical models. The classic
Heisenberg model of ferromagnetic alignment (Model A in
the Halperin–Hohenberg classification27) has z ≈ 2; other non-
dissipativemodels asModelG andModel J have z=3/2 and z=5/2,
respectively27. However, these are equilibrium lattice models that
completely fail to describe the self-propelled nature of real swarms.
A minimal step towards incorporating the effects of self-propulsion
is the Vicsek model30 (see Methods). This model has been originally
introduced to describe the collective behaviour of flocks, namely an
ordered phase in which velocities are aligned. Yet the Vicsek model
has been studied also close to its ordering transition, where the
polarization is low31–33; in this disordered phase the phenomenology
of the Vicsek model is similar to that of swarms, in that the equal
time velocity–velocity correlation functions are the same and the
Vicsek susceptibility and correlation length depends on density as
in natural swarms7,22. Of course, the Vicsek model is far from being
realistic and its lack of cohesion forces one to simulate the model
with periodic boundary conditions, which is as unrealistic in flocks
as in swarms. More realistic models certainly exist34,35; hence, we
study the Vicsek model merely as a benchmark for the dynamics, a
stepping stone between equilibrium lattice models and biologically
realistic models of swarms. The dynamic critical exponent of the
Vicsek model near the ordering transition has been computed
numerically in ref. 32 in d = 2, where it has been found z ≈ 1.3.
On the other hand, in the ordered phase the hydrodynamic theory
of flocking36,37 predicts z = 2(d + 1)/5, namely z = 1.6 in three
dimensions, consistently with numerical simulations38. Hence, no
estimate of z exists in the literature for the Vicsekmodel in d=3 and
in the swarm (disordered) phase. We run simulations of this case
and find that the 3D Vicsek model in its near-critical paramagnetic
phase satisfies dynamic scaling remarkably well (Fig. 2d–f; see
Methods for details of the simulation). Both the collapse of the
time correlations and the scaling of τk with k give the dynamic
critical exponent z=1.96±0.04, practically the same as the classical
Heisenberg model; this may be due to the fact that self-propulsion
effects are not strong enough to change the equilibrium value of z ,
or it could be that corrections to z kick in at sizes much larger than
those of natural swarms. We are not aware of other estimates of z in
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models of swarm behaviour. The discrepancy between the dynamic
critical exponent of natural swarms and that of all other 3Dmodels,
both on- and off-lattice, suggests that natural swarms belong to a
potentially novel dynamic universality class. This opens intriguing
new alleys for theoretical investigation.

A further hint that there is something qualitatively new in the
dynamics of natural swarms comes from the shape of the time
correlation function. While the Vicsek model displays the classic
exponential relaxation of dissipative statistical models, real swarms
have a clearly non-exponential correlation function, characterized
by a vanishing first derivative for t < τk (Fig. 3a). This feature
seems at odds with the disordered nature of swarms and the
seemingly dissipative motion of midges, both suggesting a purely
diffusive dynamics of the velocity fluctuations, and thus exponential
relaxation. A concave correlation for t <τk, on the other hand, is
reminiscent of non-dissipative inertial phenomena39. It is therefore
important to accurately verify this empirical result. To this aim we
define the function

h(x)≡−
1
x
log Ĉ(x), x≡ t/τk (7)

and study it in the interval x ∈ [0, 1], that is, for times t <τk. For
purely exponential relaxation h(x)→1 for x→0, while a flat time
correlation gives h(x)→ 0. We computed h(x) in all swarms and
find a clear difference between natural and Vicsek swarms (Fig. 3),
with the former showing a significantly lower value of h(x). We
remark that this phenomenon emerges in the whole interval t<τk,
not for unnaturally short timescales.

A vanishing first derivative of the time correlation function can
only arise if the dynamical propagator has two or more poles in the
complex plane of the frequency (see Supplementary Appendix B
for proof), namely if the dispersion polynomial is of degree two
or larger. This is an indication that the dynamical equations of
the system must involve time derivatives of the second order (or
higher), which we may call inertial terms. In fact, we can say more:
if inertia were present, but dissipation were large compared with
it, the flat form of the correlation would be restricted to t� τk;
hence, it could not be observed experimentally; hence, the evidence
of a flat correlation for t ∼ τk not only implies that inertial terms
exist, but also that they are relevant, namely that the dynamics over
the experimental timescales is not purely dissipative (see refs 39,40
and Supplementary Appendix C). The fact that we observe non-
dissipative modes in the velocity correlation suggests that second-
order inertial terms are directly present in the dynamic equations
for vi, as it happens in real flocks27,41. However, it could also be that
non-dissipative relaxation is the result of a coupling between density
waves and velocity fluctuations, similar to what happens in the
Toner–Tu theory of flocking36. Even though the purely exponential
relaxation we find in Vicsek swarms makes the second hypothesis
less likely, it is hard tomake a call purely based on our data. Tomake
progress it would be crucial to repeat our analysis in swarm models
more realistic and detailed than Vicsek34,42.

The evidence of non-dissipative modes may seem surprising,
as one would expect all such modes to be damped in a system
lacking spontaneous order, as is the case of swarms. Actually, the
fate of non-dissipative modes in the disordered phase of a system
depends on the product kξ (ref. 26): in the so-called hydrodynamic
regime, kξ�1, we are probing length scales much larger than the
correlation length, so that all excitations are deeply damped and
relaxation is exponential. But if kξ ∼ 1, as in our data, we are
probing scales within a single correlated region, so that fluctuations
invalidate the long-wavelength assumption of hydrodynamics. By
far the most conspicuous hallmark of the failure of hydrodynamics
in the kξ∼1 regime is the emergence of non-dissipative propagating
modes even in the disordered phase26,43,44. The consequence of
this phenomenon in the time domain is a temporal correlation
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Figure 3 | Non-dissipative relaxation. a, The correlation in Vicsek swarms
displays exponential relaxation (linear decay in semi-log scale), while
natural swarms have a strongly non-exponential correlation function (flat
derivative for small t). b, To quantify the di�erent form of the correlation we
calculate the function h(x) defined in (7), where x= t/τk; in contrast with
Vicsek, natural swarms are characterized by a small value of h(x) in the
interval 0< t<τk. c, We compute the intercept h0=h(x=0.1) for all data
and report its distribution: all natural swarms have a low first derivative,
indicating the existence of non-dissipative modes, while Vicsek swarms
have a purely dissipative peak at h0∼ 1.

function with flat first derivative, which is indeed what we find in
natural swarms.

It is intriguing to interpret our experimental results in terms
of non-dissipative magnetic materials26 and superfluids27, which
are characterized in their ordered phase by propagation of the
fluctuations of the order parameter, namely by spin waves40. Such
propagating modes are also found in polarized animal groups, such
as flocks, where they guarantee swift transmission of the velocity
changes, allowing the group to maintain cohesion41. The intriguing
point is that remnants of these propagating modes are also present
in the disordered (paramagnetic) phase of non-dissipative magnetic
materials, provided that kξ ∼1 (ref. 44); such spin-wave remnants
describe the propagation of a signal within a correlated region of size
ξ . It is possible that a similar phenomenon occurs in swarms: we find
evidence of non-dissipative propagating modes in the correlation of
the velocities, vi, which are directional degrees of freedom similar
to the phase in magnetic materials; a strongly correlated swarm
is therefore similar to a paramagnet with large correlation length.
Within this physical context, the remnants of non-dissipativemodes
that we observe may be functional to propagate a coherent change
of direction within the correlated regions the swarm is composed of.

We found non-dissipative modes in the region kξ ∼1. It would
therefore be natural to expect hydrodynamics to take over and
the correlation function to become exponential if we examined
the regime kξ� 1. Interestingly, in natural swarms this is impos-
sible. Swarms are characterized by near-critical, scale-free spatial
correlations, with a correlation length that scales with the system’s
size, ξ∼L (ref. 22). To access the hydrodynamic region we would
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therefore need k�1/L, while the smallest accessible value is k∼1/L.
We conclude that natural swarms are subject to a near-critical cen-
sorship of hydrodynamics. Several biological systems are believed
to live in a near-critical regime45 and may therefore share this same
weird condition. This scenario makes dynamic scaling particularly
relevant for strongly correlated biological systems: by generalizing
to non-equilibrium phenomena the usual scaling laws, dynamic
scaling is not restricted to the hydrodynamic regime and can thus
make predictions that fall outside the long-wavelength region, yet
enjoy a high degree of universality even in finite-size near-critical
systems26. In particular, the dynamic critical exponent z is indepen-
dent of the specific regime of kξ and the dynamic universality class
is therefore unequivocally identified. In natural swarms, z≈1 and
the existence of non-dissipativemodes are hard experimental results
any future theory must confront. Dynamic scaling may set equally
useful benchmarks in other biological systems.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 25 November 2016; accepted 27 April 2017;
published online 19 June 2017
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Methods
Experiments. Data were collected in the field between May and October, in 2011,
2012 and 2015. We acquired video sequences using a multi-camera system of three
synchronized cameras (IDT-M5) shooting at 170 fps. We used Schneider Xenoplan
50mm f =2.0 lenses. Typical exposure parameters: aperture f =5.6, exposure time
3ms. Recorded events have a time duration between 1.5 and 15.8 s (see
Supplementary Table 1). More details can be found in ref. 7. To reconstruct the 3D
positions and velocities of individual midges we used the tracking method
described in ref. 14. Our tracking method is accurate even on large moving groups
and produces very low time fragmentation and very few identity switches, therefore
allowing for accurate measurements of time-dependent correlations.

Correlation function.We define the dimensionless velocity fluctuations as

δv̂i≡
δvi√

1
N

∑
k δvk ·δvk

(8)

where δvi≡vi−V and V is the collective velocity of the swarm that takes into
account global translation, rotation and dilation modes (see ref. 22). The
spatio-temporal correlation function is the time generalization of the static space
correlation function previously studied in refs 7,8,22,

C(r , t)=

〈∑N
i,j δv̂i(t0) ·δv̂j(t0+ t)δ[r− rij(t0, t)]∑N

i,j δ[r− rij(t0, t)]

〉
t0

where rij(t0, t)=|ri(t0)−rj(t0+ t)| and the positions are calculated with respect to
the centre of mass of the swarm, that is, ri(t0)=Ri(t0)−RCM(t0); the brackets
indicate an average over time,

〈f (t0, t)〉t0 =
1

tmax− t

tmax−t∑
t0=1

f (t0, t) (9)

where tmax is the total available time in the simulation or in the experiment. The
purpose of C(r , t) is to measure how much a change of velocity of an individual at
time t0 influences a change of velocity of another individual at distance r at a later
time t0+ t . The (dimensionless) correlation function in Fourier space is given by

C(k, t)=ρ
∫

dr eik·rC(r , t) (10)

By using the definition of C(r , t) and the approximation
∑N

i,j δ[r− rij(t0, t)]∼
4πr 2ρN in the integral, we obtain

C(k, t) =

〈
1
N

N∑
i,j

∫
+1

−1
d(cosθ)eikrij cos(θ) δv̂i ·δv̂j

〉
t0

=

〈
1
N

N∑
i,j

sin(krij(t0, t))
krij(t0, t)

δv̂i ·δv̂j

〉
t0

(11)

which is the correlation function that we compute experimentally in the present
work. Notice that, by definition,

∑
i δv̂i=0; due to this sum rule we obtain

C(k=0, t)=0. The smallest non-trivial value of the wavenumber we can evaluate
the correlation at is therefore k=2π/L.

Characteristic timescale τ . To compute the characteristic timescale τk, we follow
the classical definition of ref. 26 (see Supplementary Appendix A):∫

∞

0

dt
t

sin(t/τk)Ĉ(k, t)=π/4 (12)

For a purely exponential correlation, τk coincides with the exponential decay time,
while for more complex functional forms, τk is the most relevant timescale of the
system. Relation (12) gives an estimate of τk that is more robust than simply
crossing Ĉ(k, t) with a constant and more reliable than a fit, as it does not require a
priori knowledge of the functional form of Ĉ(k, t). Dealing with real data, we
numerically solve:

T∑
t=0

1
t
sin(t/τk)Ĉ(k, t)=

π

4
(13)

where T is the time duration of the event of interest.

Correlation length. To compute the correlation length, ξ , we can directly work in k
space. The static correlation function, C0(k)≡C(k, t=0), is

C0(k)=

〈
1
N

N∑
i,j

sin(krij)
krij

δv̂i ·δv̂j

〉
t0

(14)

where now both i and j are evaluated at equal time, t0. By decreasing k we are
averaging over larger length scales, therefore adding to (14) more correlated pairs,
making C0(k) increase. When the wavenumber arrives at k∼1/ξ , we start adding
uncorrelated pairs; hence, C0(k)must level. If we further decrease k and reach 1/L
(where L is the system’s size) we start to be affected by the sum rule, C0(k=0)=0;
hence, the static correlation C0(k) decreases, until eventually it vanishes for k=0
(ref. 46). In a system where ξ�L the static correlation therefore has—in log
scale—a broad plateau between k∼1/ξ and k∼1/L. However, natural swarms are
scale-free systems, where ξ∼L (ref. 22); in this case, C0(k) has a well-defined
maximum at kmax∼1/ξ∼1/L. This is a very practical way to evaluate ξ if one is
already working in k space and it is the one we use in this work. Alternatively, one
can define ξ as the point where the static correlation in r space C0(r)=C(r , t=0)
reaches zero, C0(r=ξ)=0, as previously done in refs 7,8,22. These two definitions
of ξ are consistent with each other (Supplementary Fig. 1) and they both give the
same dynamic scaling results.

Critical exponent. The determination of the critical exponent, z , through the fit of
equation (4) is quite tricky because the range of the experimental times, τk, and
lengths, ξ , is rather limited and data are noisy. We checked the reliability of the
exponent found by the fit, comparing its value with the one that produces the best
collapse of the correlation functions when rescaled by kz t , equation (5). This last
procedure is less affected by experimental noise than the fit of equation (4) since it
does not need the computation of τk, but it is not suitable to estimate the critical
exponent of large data sets, because it may be hard to judge the quality of the
collapse when rescaling a high number of correlation functions.

In Supplementary Fig. 2 we present the correlation functions’ collapse obtained
for z=2, z=1 and z=1.2. The figure clearly shows that the correlation functions
rescaled by kz t with z equal to 2 (Supplementary Fig. 2a) do not collapse on the
same curve, while this happens for z=1 (Supplementary Fig. 2b), confirming that
the critical exponent is closer to 1 than to 2. Moreover, Supplementary Fig. 2c
shows the best collapse by eye of the correlation functions, which occurs for z=1.2
accordingly to the exponent obtained through the fit of equation (4).

Simulations.We simulated the Vicsek model30 in three dimensions as in ref. 22.
The updated equations are

vi(t+1)=v0Rη

∑
j∈Si

vj(t)

 (15)

ri(t+1)=ri(t)+vi(t+1) (16)

where Si is a sphere of radius rc centred at ri(t) and the operator Rη normalizes its
argument and rotates it randomly within a spherical cone centred at it and
spanning a solid angle 4πη. We chose η=0.45, v0=0.05, rc=1.

We considered systems of N =128, 256, 512, 1,024 and 2,048 particles, a
range consistent with the typical sizes of natural swarms. Dynamic scaling applies
when ξ is large, so we chose to have the largest possible ξ , that is, to be at
criticality. This makes sense also because natural swarms are near-critical
systems22. To mimic the experimental situation, we fix the noise η and use x= r1/rc
as control parameter, where r1 is the mean first-neighbour distance. Scaling is then
tested at pairs of values (x ,N ) that lie along the critical line in the x ,N plane. Note
that r1 cannot be fixed a priori, but has to be determined from a simulation at a
fixed average density.

For each value of N , several box sizes L were chosen to obtain different
average densities. Five samples with random initial conditions were generated for
each N and L. We ran each sample for 105 steps for equilibration and used a
further 5×105 steps for data collection. We verified that the polarization
8=(1/N )

∑
i vi/v0 remained stationary after the equilibration run, and that its

correlation time was much shorter than 105. We then determined r1 and computed
the static correlation C(k, t=0). This function has a maximum Cmax for some
k≡kmax. Cmax is a measure of the susceptibility χ (in statistical physics χ is given by
the volume integral of C(r, t=0), but in our case this integral is 0 because of the
fact that

∑
i δvi=0 (ref. 46)). We thus obtained χ versus x curves from which we

found the value of x that maximizes the susceptibility, xc(N ): this is the finite-size
critical point where the correlation length ξ is of order L. We finally computed
C(k, t) at xc(N ) (averaging over all samples) at k=kmax(xc(N ))∼1/L. Since ξ∼L,
this fulfils the dynamic scaling condition kξ=const that we also adopt in
natural swarms.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on request.
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