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1. Introduction

Max-plus algebra is the algebraic structure obtained when considering the max-plus semifield
Rmax,+ . This semifield is defined as the set R ∪ {−∞} endowed with α ⊕ β := max(α,β) as addi-
tion and the usual real numbers addition α ⊗ β := α + β as multiplication. Thus, in the max-plus
semifield, the neutral elements for addition and multiplication are −∞ and 0 respectively.

The max-plus semifield is algebraically isomorphic to the max-times semifield Rmax,× , also known
as the max-prod semifield (see e.g. [23,24]), which is given by the set R+ = [0,+∞) endowed with
α ⊕ β := max(α,β) as addition and the usual real numbers product α ⊗ β := αβ as multiplication.
Consequently, in the max-times semifield, 0 is the neutral element for addition and 1 is the neutral
element for multiplication.

In this paper we consider both of these semifields at the same time, under the common notation T
and under the common name tropical algebra. In what follows T denotes either the max-plus semifield
Rmax,+ or the max-times semifield Rmax,× . We will use 0 to denote the neutral element for addition,
1 to denote the neutral element for multiplication, and T+ to denote the set of all invertible elements
with respect to the multiplication, i.e., all the elements of T different from 0.

The space Tn of n-dimensional vectors x = (x1, . . . , xn), endowed naturally with the component-
wise addition (also denoted by ⊕) and λx := (λ⊗ x1, . . . , λ⊗ xn) as the multiplication of a scalar λ ∈ T
by a vector x, is a semimodule over T. The vector (0, . . . ,0) ∈ Tn is also denoted by 0, and it is the
identity for ⊕.

In tropical convexity, one first defines the tropical segment joining the points x, y ∈ Tn as the set
{αx ⊕ β y ∈ Tn | α,β ∈ T, α ⊕ β = 1}, and then calls a set C ⊆ Tn tropically convex if it contains
the tropical segment joining any two of its points (see Fig. 1 below for an illustration of tropical
segments in dimension 2). Similarly, the notions of cone, halfspace, semispace, hemispace, convex hull,
linear span, convex and linear combination, can be transferred to the tropical setting (precise definitions
are given below). Henceforth all these terms used without precisions should always be understood in
the max-plus or max-times (i.e. tropical) sense.

The interest in this convexity (also known as max-plus convexity when T = Rmax,+ , or max-times
convexity or B-convexity when T =Rmax,×) comes from several fields, some of which we next review.
Convexity in Tn and in more general semimodules was introduced by Zimmermann [29] under the
name “extremal convexity” with applications e.g. to discrete optimization problems and it was stud-
ied by Maslov, Kolokoltsov, Litvinov, Shpiz and others as part of the Idempotent Analysis [17,19,22],
inspired by the fact that the solutions of a Hamilton–Jacobi equation associated with a deterministic
optimal control problem belong to structures similar to convex cones. Another motivation arises from
the algebraic approach to discrete event systems initiated by Cohen et al. [6], since the reachable and
observable spaces of certain timed discrete event systems are naturally equipped with structures of
cones of Tn (see e.g. Cohen et al. [7]). Motivated by tropical algebraic geometry and applications in
phylogenetic analysis, Develin and Sturmfels studied polyhedral convex sets in Tn thinking of them
as classical polyhedral complexes [10].

Many results that are part of classical convexity theory can be carried over to the setting of Tn:
separation of convex sets and projection operators (Gaubert and Sergeev [14]), minimization of dis-
tance and description of sets of best approximation (Akian et al. [1]), discrete convexity results such
as Minkowski theorem (Gaubert and Katz [11,12]), Helly, Carathéodory and Radon theorems (Briec
and Horvath [2]), colorful Carathéodory and Tverberg theorems (Gaubert and Meunier [13]), to quote
a few.

Here we investigate hemispaces in Tn , which are convex sets in Tn whose complements in Tn are
also convex. The definition of hemispaces makes sense in other structures once the notion of convex
set is defined. Hemispaces also appear in the literature under the name of halfspaces, convex half-
spaces, and generalized halfspaces. As general convex sets are quite complicated in many convexity
structures, a simple description of hemispaces is highly desirable. Usual hemispaces in Rn are de-
scribed by Lassak in [18]. Martínez-Legaz and Singer [20] give several geometric characterization of
usual hemispaces in Rn with the aid of linear operators and lexicographic order in Rn .

Hemispaces play a role in abstract convexity (see Singer [27], Van de Vel [28]), where they are used
in the Kakutani Theorem to separate two convex sets from each other. The proof of Kakutani Theorem
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makes use of Zorn’s Lemma (relying on the Pasch axiom, which holds both in tropical and usual
convexity). A different approach is to start from the separation of a point from a closed convex set,
as investigated in many works (e.g., Zimmermann [29], Litvinov et al. [19], Cohen et al. [8,9], Develin
and Sturmfels [10], Briec et al. [4]). This Hahn–Banach type result is extended to the separation of
several convex sets by an application of non-linear Perron–Frobenius theory by Gaubert and Sergeev
in [14].

In the Hahn–Banach approach, tropically convex sets are separated by means of closed halfspaces
in Tn , defined as sets of vectors x in Tn satisfying an inequality of the form

⊕
j γ j x j ⊕α �

⊕
i βi xi ⊕δ.

As shown by Joswig [16], closed halfspaces in Tn are unions of several closed sectors, which are
convex tropically and in the ordinary sense.

Briec and Horvath [3] proved that the topological closure of any hemispace in Tn is a closed
halfspace in Tn . Hence closed halfspaces, with respect to general hemispaces, are “almost everything”.
However, the borderline between a hemispace and its complement in Tn has a generally unknown
intricate pattern, with some pieces belonging to one hemispace and the rest to the other. This pattern
was not revealed by Briec and Horvath.

The present paper gives a complete characterization of hemispaces in Tn by means of the so-called
(P , R)-decompositions (see Definition 2.3 below). In dimension 2 the borderline is described explicitly
and all the types of hemispaces in T2 that may appear are shown in Figs. 2 and 3. Thus, our result is
more general than the one established in [3] even in dimension 2. In higher dimensions one may use
the characterization in terms of (P , R)-decompositions to describe the thin structure of the borderline
quite explicitly.

We now describe the basic idea of the proof of this characterization. Let us first recall that like in
usual convexity, a closed convex set in Tn can be decomposed as the (tropical) Minkowski sum of the
convex hull of its extreme points and its recession cone (Gaubert and Katz [11,12]). As a relaxation of
this traditional approach, we suggest the concept of (P , R)-decomposition to describe general convex
sets in Tn . Developed here in the context of tropical convexity, this concept corresponds to that of
Motzkin decomposition studied in usual convexity in locally convex spaces (see e.g. [15]). Homoge-
nization, which carries convex sets to convex cones, is another classical tool we exploit in the setting
of Tn . Next, an important feature of tropical convexity (as opposed to usual convexity) is the exis-
tence of a finite number of types of semispaces, i.e., maximal convex sets in Tn not containing a given
point. These sets were described in detail by Nitica and Singer [23–25], who showed that they are
precisely the complements of closed sectors. Let us mention that the multiorder principle of tropical
convexity [23,24,26,21] can be formulated in terms of complements of semispaces.

It follows from abstract convexity that any hemispace is the union of all the complements of
semispaces which it contains. These sets are closed sectors of several types. The convex hull in
Tn of a union of sectors of certain type gives a sector of the same type, perhaps with some
pieces of the boundary missing. Some degenerate cases may also appear. Sectors admit a (rela-
tively) simple (P , R)-decomposition, and we can combine such (P , R)-decompositions to obtain a
(P , R)-decomposition of the hemispace. So far the method is quite general and geometric, and in
dimension 2 sufficient for classification.

For higher dimensions the fact that we deal with hemispaces becomes relevant. It turns out that
a hemispace in Tn admits a (P , R)-decomposition consisting of unit vectors and linear combinations
of two unit vectors. Thus, to characterize a hemispace by means of (P , R)-decompositions we need
to understand how the linear combinations of two unit vectors are distributed among the hemispace
and its complement. The proof becomes more algebraic and combinatorial, and at this point it be-
comes convenient to work with cones and their (usual) representation in terms of generators. Using
homogenization, we reduce the study of general hemispaces in Tn to the study of conical hemi-
spaces in Tn+1 (these are hemispaces in Tn+1 which are also cones or, equivalently, cones in Tn+1

whose complements enlarged with 0 are also cones). We introduce the “α-matrix”, whose entries
stem from the borderline between a conical hemispace and its complement in two-dimensional coor-
dinate planes. We show that it satisfies an extended rank-one condition, and then we prove that this
condition is also sufficient in order for a set to generate a conical hemispace. This part of the proof
is more technical and it is given in the last third of the paper, starting with Proposition 4.10 and
ending with the proof of Theorem 4.7. We use the rank-one condition to describe the fine structure
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of the α-matrix, which is an independent combinatorial result of interest, and then use this struc-
ture to construct explicitly the complementary conical hemispace for a conical hemispace given by
its (P , R)-decomposition. Finally, we translate this result back to the (P , R)-decomposition of general
hemispaces, to obtain the main result of the paper (Theorem 4.22).

The paper is organized as follows. Section 2 is occupied with preliminaries on convex sets in Tn ,
and introduces the concept of (P , R)-decomposition. In Section 3 we study semispaces in Tn , in or-
der to give, exploiting homogenization, a simpler proof of their characterization than the one given
in [23,24]. Hemispaces appear here as unions of (in general, infinitely many) complements of semi-
spaces, i.e., the closed sectors of [16]. Section 4 contains the main results on hemispaces in Tn . The
purpose of Section 4.1 is to reduce general hemispaces in Tn to conical hemispaces in Tn+1. This aim
is finally achieved in Theorem 4.5. In view of this theorem, in Section 4.2 we study conical hemi-
spaces only. There we prove Theorem 4.7 as explained above, which gives a concise characterization
of conical hemispaces in terms of generators. In Section 4.3, we obtain a number of corollaries of the
previous results. In the first place we verify that closed hemispaces in Tn are closed halfspaces in Tn ,
a result of [3], see Theorem 4.18 and Corollary 4.20. Finally, the main result of this paper is given in
Theorem 4.22 of Section 4.4. It provides a characterization of general hemispaces in Tn as convex sets
having particular (P , R)-decompositions, and is obtained as a combination of Theorems 4.5 and 4.7.

2. Preliminaries

In the sequel, for any m,n ∈ Z with m � n, we denote the set {m,m + 1, . . . ,n} by [m,n], or simply
by [n] when m = 1. The multiplicative inverse of λ ∈ T+ (recall that T+ := T\{0}) will be denoted
by λ−1. For x ∈ Tn we define the support of x by

supp(x) := {
i ∈ [n] ∣∣ xi 	= 0

}
.

We will say that x ∈ Tn has full support if supp(x) = [n]. Otherwise we say that x has non-full support.
The set of the vectors {ei,n | i ∈ [n]} ⊆ Tn defined by

ei,n
j =

{
1 if i = j,

0 if i 	= j,

form the standard basis in Tn . We will refer to these vectors as the unit vectors. In what follows, we
will work with unit vectors in both Tn and Tn+1. For simplicity of the notation, we identify ei,n with
ei,n+1 for i � n, and write simply ei for them.

To introduce a topology we need to specialize T to one of the models. Namely, if T =Rmax,× then
we use the topology induced in Rn+ by the usual Euclidean topology in the real space. If T = Rmax,+ ,
then our topology is induced by the metric d∞(x, y) = maxi∈[n] |exi − e yi |. Note that the max-plus and
max-times semifields are isomorphic.

2.1. Tropical cones and tropically convex sets: (P , R)-decomposition and homogenization

We begin by recalling the definition of cones and by describing some relations between them and
convex sets.

Definition 2.1. A set V ⊆ Tn is called a (tropical) cone if it is closed under (tropical) addition and
multiplication by scalars. A cone V in Tn is said to be non-trivial when V 	= {0} and V 	= Tn .

Definition 2.2. For P , R ⊆ Tn , we define the (tropical) convex hull of P to be:

conv(P ) :=
{⊕

y∈P

λy y
∣∣∣ λy ∈ T for y ∈ P and

⊕
y∈P

λy = 1

}

and the (tropical) linear span of R or cone generated by R to be:
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span(R) :=
{⊕

y∈R

λy y
∣∣∣ λy ∈ T for y ∈ R

}
,

where in both cases only a finite number of the scalars λy is not equal to 0. We will also consider
the (tropical) Minkowski sum of conv(P ) and span(R), which is

conv(P ) ⊕ span(R) := {
x ⊕ y

∣∣ x ∈ conv(P ), y ∈ span(R)
}
.

Observe that span(R) always contains the null vector 0, but conv(P ) does not contain it in general.
For this reason, we always have conv(P ) ⊆ conv(P ) ⊕ span(R) and we do not always have span(R) ⊆
conv(P ) ⊕ span(R).

Definition 2.3. Let P , R ⊆ Tn . If for a convex set C ⊆ Tn we have

C = conv(P ) ⊕ span(R), (1)

then (1) is called a (P , R)-decomposition of C .

For each convex set C ⊆ Tn at least one decomposition of the form (1) exists: just take P = C
and R = ∅. A canonical decomposition of the form (1) can be written for closed convex sets, by the
tropical analogue of Minkowski theorem, due to Gaubert and Katz [11,12].

Definition 2.4. For C ⊆ Tn , the set

V C = {
(λx1, . . . , λxn, λ)

∣∣ (x1, . . . , xn) ∈ C, λ ∈ T
} ⊂ Tn+1

is called the homogenization of C .
For x = (x1, . . . , xn) ∈ Tn , by abuse of notation, we shall also denote the vector (λx1, . . . , λxn, λ) ∈

Tn+1 by (λx, λ), that is, we shall use the identification of Tn+1 with Tn × T by the isomorphism
(z1, . . . , zn, zn+1) → ((z1, . . . , zn), zn+1). Thus we have (λx, λ)i = λxi for i ∈ [n] and (λx, λ)n+1 = λ.

Remark 2.5. If C ⊆ Tn is a convex set, then its homogenization VC ⊆ Tn+1 is a cone. A proof can be
found in [12, Lemma 2.12].

Reversing the homogenization means taking a section of a cone by a coordinate plane. Below we
take only sections of cones in Tn+1 by xn+1 = α (mostly with α = 1), and not by xi = α with i ∈ [n].

Definition 2.6. For V ⊆ Tn+1 and α ∈ T, the set

Cα
V = {

x ∈ Tn
∣∣ (x,α) ∈ V

}
(2)

is called a coordinate section of V by xn+1 = α.

Equivalently, the coordinate section of V ⊂ Tn+1 by xn+1 = α is the image in Tn of V ∩ {x ∈ Tn+1 |
xn+1 = α} under the map (x1, . . . , xn, xn+1) → (x1, . . . , xn).

The following property of coordinate section is standard (the proof is given for the reader’s conve-
nience).

Proposition 2.7. Let V ⊆ Tn+1 be closed under multiplication by scalars, and take any α 	= 0. Then Cα
V =

{αx | x ∈ C1
V }.

Proof. If x ∈ C1
V then (x,1) ∈ V and hence (αx,α) ∈ V and αx ∈ Cα

V . Thus {αx | x ∈ C1
V } ⊆ Cα

V . Simi-
larly, {α−1x | x ∈ Cα

V } ⊆ C1
V . This implies Cα

V ⊆ {αx | x ∈ C1
V }. (Indeed, if x ∈ Cα

V then α−1x ∈ C1
V , and

we have x = αy where y = α−1x ∈ C1
V .) �
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Let us write out a (P , R)-decomposition of a section of a cone generated by a set U ⊆ Tn+1.

Proposition 2.8. If U ⊆ Tn+1 , V = span(U ) and the coordinate section C1
V is non-empty, then

C1
V = conv(P U ) ⊕ span(RU )

where

P U := {
y ∈ Tn

∣∣ ∃μ 	= 0, (μy,μ) ∈ U
}

and RU := {
z ∈ Tn

∣∣ (z,0) ∈ U
}
. (3)

Proof. Let us represent

U = {
(u, un+1) ∈ U

∣∣ u ∈ Tn, un+1 	= 0
} ∪ {

(u, un+1) ∈ U
∣∣ u ∈ Tn, un+1 = 0

}
= {

(μy y,μy) ∈ Tn+1
∣∣ (μy y,μy) ∈ U , μy 	= 0

} ∪ {
(z,0) ∈ Tn+1

∣∣ (z,0) ∈ U
}
.

If x ∈ C1
V , i.e. (x,1) ∈ V = span(U ), we have

(x,1) =
⊕

(μy y,μy)∈U ,μy 	=0

λy(μy y,μy) ⊕
⊕

(z,0)∈U

λz(z,0)

for some λy, λz ∈ T, with only a finite number of λy, λz not equal to 0. Thus,⊕
(μy y,μy)∈U ,μy 	=0

λyμy = 1 and x =
⊕

(μy y,μy)∈U ,μy 	=0

λyμy y ⊕
⊕

(z,0)∈U

λzz.

It follows that x ∈ conv(P U ) ⊕ span(RU ).
Conversely, if x ∈ conv(P U ) ⊕ span(RU ), we have

x =
⊕
y∈PU

λy y ⊕
⊕
z∈RU

λzz

for some λy, λz ∈ T, with
⊕

y∈PU
λy = 1 and only a finite number of λy, λz not equal to 0. Then,

(x,1) =
⊕
y∈PU

λy(y,1) ⊕
⊕
z∈RU

λz(z,0).

Since (y,1) ∈ V for y ∈ P U and (z,0) ∈ V for z ∈ RU , we conclude that (x,1) ∈ V , and so x ∈ C1
V . �

Corollary 2.9. Let H = conv(P )⊕ span(R), where P , R ⊂ Tn. Then, if we define V := span({(x,1) | x ∈ P } ∪
{(y,0) | y ∈ R}), we have C1

V =H.

Proof. Let

U := {
(x,1)

∣∣ x ∈ P
} ∪ {

(y,0)
∣∣ y ∈ R

}
. (4)

Then, by Proposition 2.8, we have C1
V = conv(P U ) ⊕ span(RU ), where P U and RU are defined by (3).

With U given by (4), we have P U = P and RU = R .
Indeed, let y ∈ P U . If (μy,μ) = (x,1), with μ 	= 0 and x ∈ P , then μ = 1 and μy = x, whence

y = x ∈ P . On the other hand, the relation (μy,μ) = (z,0), with μ 	= 0 and z ∈ R , is impossible. Thus
P U ⊆ P . Conversely, if y ∈ P , then taking μ = 1, we have (μy,μ) = (y,1), so y ∈ P U . Thus P ⊆ P U ,
which proves that P U = P .

Now let z ∈ RU . Then (z,0) ∈ U . If (z,0) = (y,0), with y ∈ R , then z = y ∈ R . On the other hand,
the relation (z,0) = (x,1), with x ∈ P , is impossible. Thus RU ⊆ R . Conversely, if z ∈ R , then (z,0) ∈ U
by (4). Thus R ⊆ RU , which proves that RU = R .

Hence C1
V = conv(P U ) ⊕ span(RU ) = conv(P ) ⊕ span(R) =H. �
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2.2. Recessive elements

We will use the following notions of recessive elements:

Definition 2.10. Let C ⊆ Tn be a convex set.

(i) Given x ∈ C , the set of recessive elements at x, or locally recessive elements at x, is defined as

recx C := {
z ∈ Tn

∣∣ x ⊕ λz ∈ C for all λ ∈ T
}
.

(ii) The set of globally recessive elements of C , denoted by recC , consists of the elements that are
recessive at each element of C .

There is a close relation between recessive elements and (P , R)-decompositions.

Lemma 2.11. If C = conv(P ) ⊕ span(R) as in (1), then R ⊆ recC .

Proof. Let z ∈ R . If x ∈ C , we have x = p ⊕ r for some p ∈ conv(P ) and r ∈ span(R). Then,

x ⊕ λz = p ⊕ (r ⊕ λz) ∈ conv(P ) ⊕ span(R) = C,

for any λ ∈ T, because r ⊕ λz ∈ span(R) as a consequence of fact that span(R) is a cone. Since this
holds for any x ∈ C and λ ∈ T, we conclude that z ∈ recC . �

For closed convex sets, every locally recessive element is globally recessive:

Proposition 2.12. (See Gaubert and Katz [12].) If a convex set C ⊆ Tn is closed, then recx C ⊆ recC for all
x ∈ C .

Proposition 2.12 is proved in [12] for the max-plus semifield, and hence it follows also for the
max-times semifield as these two semifields are isomorphic.

There are also other useful situations when a locally recessive element turns into a globally reces-
sive one.

Lemma 2.13. Let C ⊆ Tn be a convex set and y ∈ C . If z ∈ recy C and supp(y) ⊆ supp(z), then z ∈ recC .

Proof. Since z ∈ recy C we have y ⊕ λz ∈ C for all λ ∈ T, and since supp(y) ⊆ supp(z) we have
y ⊕λz = λz for all λ�μ, where μ = ⊕

i∈supp(y) yi z
−1
i if y 	= 0 and μ = 0 otherwise. Given any β ∈ T,

recalling that T denotes either Rmax,+ = (R ∪ {−∞}, max,+) or Rmax,× = ([0,+∞),max,×), we
know that there exists λ ∈ T such that λ > β⊕μ. Then, for any x ∈ C , we have x⊕βz = x⊕βλ−1λz ∈ C
because βλ−1 � 1 and x, λz ∈ C . Thus, we conclude that z ∈ recC . �

Using the above observations, we now show that (P , R)-decompositions can be combined, under
certain conditions.

Theorem 2.14. Let {C�} be a family of convex sets in Tn, each of which admits the following (P , R)-decomposi-
tion:

C� = conv(P�) ⊕ span(R�),

and let C := conv(
⋃

� C�). Then,

C = conv

(⋃
�

P�

)
⊕ span

(⋃
�

R�

)
(5)

if any of the following conditions hold:
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(i) R� ⊆ recC for all �;
(ii) C is closed;

(iii) For any z ∈ R� there exists y ∈ conv(P�) such that supp(y) ⊆ supp(z).

Proof. We have:

C� = conv(P�) ⊕ span(R�) ⊆ conv

(⋃
�

P�

)
⊕ span

(⋃
�

R�

)
.

As conv(
⋃

� P�) ⊕ span(
⋃

� R�) is convex, it follows that

C = conv

(⋃
�

C�

)
⊆ conv

(⋃
�

P�

)
⊕ span

(⋃
�

R�

)
.

(i) In this case span(
⋃

� R�) ⊆ recC , and hence C⊕ span(
⋃

� R�) ⊆ C . We know that P� ⊆ C� , hence
conv(

⋃
� P�) ⊆ conv(

⋃
� C�) = C , whence

conv

(⋃
�

P�

)
⊕ span

(⋃
�

R�

)
⊆ C ⊕ span

(⋃
�

R�

)
⊆ C.

Let us now prove that R� ⊆ recC holds for cases (ii) and (iii).
(ii) Each z ∈ R� is recessive at all y ∈ P� , hence by Proposition 2.12 it is globally recessive.
(iii) For z ∈ R� , let y ∈ conv(P�) be such that supp(y) ⊆ supp(z). By Lemma 2.11 we have z ∈

recC� , so in particular z ∈ recy C� . It follows that z ∈ recy C because C� ⊂ C . As supp(y) ⊆ supp(z) and
z ∈ recy C , we have z ∈ recC by Lemma 2.13. �

We will also need the following lemma.

Lemma 2.15. Let {V�} = {span(R�)} be a family of cones generated by the sets R� ⊆ Tn and let V :=
span(

⋃
� V�). Then, V = span(

⋃
� R�).

Proof. We have V� = span(R�) ⊆ span(
⋃

� R�) for all �, and so
⋃

� V� ⊆ span(
⋃

� R�). As span(
⋃

� R�)

is a cone, it follows that V = span(
⋃

� V�) ⊆ span(
⋃

� R�).
For the reverse inclusion, since R� ⊆ V� for all �, we have

⋃
� R� ⊆ ⋃

� V� , and so span(
⋃

� R�) ⊆
span(

⋃
� V�) = V . �

3. Tropical semispaces

In this section we aim to give a simpler proof for the structure of semispaces in Tn , originally
described by Nitica and Singer [23,24], and to introduce hemispaces in Tn with some preliminary
results on their relation with semispaces.

3.1. Conical hemispaces, quasisectors and quasisemispaces

We first introduce and study three objects called conical hemispaces, quasisectors and quasi-
semispaces. The importance of these lies in the fact that they will be the main tools for studying
hemispaces, sectors and semispaces (see Definitions 3.13, 3.14 and 3.21 below) using the homoge-
nization technique.

Definition 3.1. We call conical hemispace a cone V1 ⊆ Tn , for which there exists a cone V2 ⊆ Tn such
that V1 ∩ V2 = {0} and V1 ∪ V2 = Tn . In this case we call (V1,V2) a joined pair of conical hemispaces
(since V2 is a conical hemispace as well). We say that a joined pair (V1,V2) of conical hemispaces is
non-trivial when V1 	= {0} and V2 	= {0}.
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For completeness, we show the relationship between conical hemispaces and hemispaces (for the
concept of hemispace, see the Introduction or Definition 3.13 below).

Definition 3.2. A subset W ⊆ Tn is called wedge if x ∈ W and λ ∈ T imply λx ∈ W .

Lemma 3.3. If W ⊆ Tn is a wedge, then �W ∪ {0} ⊆ Tn is also a wedge.

Proof. Let x ∈ �W ∪ {0} and λ ∈ T. We show that λx ∈ �W ∪ {0}. Indeed, if λx ∈ W and λx 	= 0, then
λ 	= 0 and x = λ−1(λx) ∈ W , a contradiction. �
Proposition 3.4. A convex set V ⊆ Tn is a conical hemispace if and only if it is a hemispace and a cone.

Proof. If V is a conical hemispace, then it is a cone and its complement (not enlarged with 0) is a
convex set. Thus V is a hemispace and a cone, whence the “only if” part follows. Conversely, assume
(by contradiction) that V is a hemispace and a cone, and �V ∪ {0} is a convex set and not a cone.
Then �V ∪ {0} contains the sum of any two of its elements but it is not a cone, so it is not a wedge.
By Lemma 3.3 V is not a wedge, in contradiction with the fact that it is a cone. Whence the “if” part
follows. �

Note that conical hemispaces are almost the same as “conical halfspaces” of Briec and Horvath [3].
Indeed, the latter “conical halfspaces” are, in our terminology, hemispaces closed under the multipli-
cation by any non-null scalar. In [3] it is not required that 0 belongs to the “conical halfspace”.

Definition 3.5. For any y 	= 0 in Tn and i ∈ supp(y), define the following sets:

Wi(y) :=
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j � xi y−1

i , and x j = 0 for all j /∈ supp(y)

}
, (6)

which will be referred to as quasisectors of type i.

Since the complement of Wi(y) is

�W i(y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j > xi y−1

i , or x j > 0 for some j /∈ supp(y)

}
, (7)

it follows that Wi(y) and �W i(y) ∪ {0} are both cones, so they form a joined pair of conical hemi-
spaces. Also note that y ∈Wi(y) for all i ∈ supp(y).

The following result appears in several places [5,10,16,12,26].

Theorem 3.6. Let V ⊆ Tn be a cone and take y 	= 0 in Tn. Then y ∈ V if and only if(
Wi(y) \ {0}) ∩ V 	= ∅

for each i ∈ supp(y).

Proof. The “only if” part follows from the fact that y ∈Wi(y) for i ∈ supp(y).
In order to prove the “if” part, assume that i ∈ supp(y) and xi ∈ (Wi(y) \ {0}) ∩ V . We claim that

xi
i 	= 0. Indeed, if we had xi

i = 0, then by xi ∈ Wi(y) and (6) we would have
⊕

j∈supp(y) xi
j y−1

j = 0

and xi
j = 0 for all j /∈ supp(y), hence xi = 0, in contradiction with our assumption. Furthermore,

yi xi
j � y j xi

i for all j ∈ [n]. Then, y can be written as a linear combination of the xi ’s:

y =
⊕

i∈supp(y)

λi x
i,

where λi = yi(xi
i)

−1, therefore y ∈ V . �
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Restating Theorem 3.6 we get the following.

Theorem 3.7. Let V ⊆ Tn be a cone and take y 	= 0 in Tn. Then y /∈ V if and only if V ⊆ �W i(y) ∪ {0} for
some i ∈ supp(y).

We are also interested in the following object.

Definition 3.8. A cone in Tn is called a quasisemispace at y 	= 0 in Tn if it is a maximal (with respect
to inclusion) cone not containing y.

Corollary 3.9. There are exactly the cardinality of supp(y) quasisemispaces at y 	= 0 in Tn. These are given
by the cones �W i(y) ∪ {0} for i ∈ supp(y).

Proof. Suppose that V is a quasisemispace at y. Since it is a cone not containing y, Theorem 3.7
implies that it is contained in �W i(y) ∪ {0} for some i ∈ supp(y). By maximality, it follows that it
coincides with �W i(y) ∪ {0}. �

This statement shows that Theorem 3.7 is an instance of a separation theorem in abstract con-
vexity, since it says that when V is a cone in Tn , we have y /∈ V if and only if there exists a
quasisemispace �W i(y) \ {0} (where i ∈ supp(y)) in Tn that contains V and does not contain y.
In particular, we obtain the following result.

Corollary 3.10. Each non-trivial cone V can be represented as the intersection of the quasisemispaces
�W i(y) ∪ {0} containing it (where y /∈ V and i ∈ supp(y)), and for each complement F of a cone, the set
F ∪ {0} can be represented as the union of the quasisectors Wi(y) contained in F ∪ {0} (where y ∈ F and
i ∈ supp(y)).

Lemma 3.11. Assume that x, y ∈ Tn satisfy supp(x) ∩ supp(y) 	= ∅. Then, for any i ∈ supp(x) ∩ supp(y), the
non-null point z with coordinates

z j := min
{

x−1
i x j, y−1

i y j
}

(8)

belongs to both Wi(x) and Wi(y).

Proof. Note that z j = 0 for j /∈ supp(x) ∩ supp(y). Moreover, since zi = 1, we have z j x
−1
j � x−1

i =
zi x

−1
i for all j ∈ supp(x). Then, we conclude that z ∈Wi(x). The proof of z ∈Wi(y) is similar. �
Corollary 3.10 and Lemma 3.11 imply the following (preliminary) result on conical hemispaces.

Theorem 3.12. For any joined pair (V1,V2) of conical hemispaces in Tn there exist disjoint subsets I, J of [n]
such that

V1 =
⋃{

Wi(y)
∣∣ Wi(y) ⊆ V1, y ∈ V1, i ∈ I

}
= span

(⋃{
Wi(y)

∣∣ Wi(y) ⊆ V1, y ∈ V1, i ∈ I
})

,

V2 =
⋃{

W j(y)
∣∣ W j(y) ⊆ V2, y ∈ V2, j ∈ J

}
= span

(⋃{
W j(y)

∣∣ W j(y) ⊆ V2, y ∈ V2, j ∈ J
})

. (9)



R.D. Katz et al. / Linear Algebra and its Applications 440 (2014) 131–163 141
Proof. As V1 \ {0} and V2 \ {0} are complements of cones, Corollary 3.10 yields that

V1 =
⋃{

Wi(y)
∣∣ Wi(y) ⊆ V1, y ∈ V1, i ∈ supp(y)

}
,

V2 =
⋃{

W j(y)
∣∣ W j(y) ⊆ V2, y ∈ V2, j ∈ supp(y)

}
,

i.e. V1 and V2 are the unions of the quasisectors contained in them. We claim that the quasisectors
contained in V1 and V2 are of different type. To see this assume that, on the contrary, there exist two
points y′ ∈ V1, y′′ ∈ V2 and an index i ∈ supp(y′)∩ supp(y′′) for which Wi(y′) ⊆ V1 and Wi(y′′) ⊆ V2.
Then, by Lemma 3.11 applied to y′ , y′′ and i, we conclude that the quasisectors Wi(y′) and Wi(y′′),
and so the conical hemispaces V1 and V2, have a non-null point in common, which is a contradiction.

From the discussion above it follows that there exist disjoint subsets I, J of [n] such that

V1 =
⋃{

Wi(y)
∣∣ Wi(y) ⊆ V1, y ∈ V1, i ∈ I

}
,

V2 =
⋃{

W j(y)
∣∣ W j(y) ⊆ V2, y ∈ V2, j ∈ J

}
.

Finally, since the conical hemispaces V1 and V2 are cones, the unions above coincide with their
spans. �
3.2. Tropical hemispaces, sectors and tropical semispaces

We now turn to convex sets using the homogenization technique. Below we will be interested in
the following objects.

Definition 3.13. We call (tropical) hemispace a convex set H1 ⊆ Tn , for which there exists a convex set
H2 ⊆ Tn such that H1 ∩ H2 = ∅ and H1 ∪ H2 = Tn . In this case we call (H1,H2) a complementary
pair of hemispaces. We say that a complementary pair (H1,H2) of hemispaces is non-trivial when H1
and H2 are both non-empty.

Definition 3.14. For y ∈ Tn and i ∈ supp(y) ∪ {n + 1}, the coordinate sections Si(y) := C1
Wi(y,1)

are
called sectors of type i.

See Fig. 1 below for an illustration of sectors in dimension 2.

Lemma 3.15. For y ∈ Tn and i ∈ supp(y), we have

Si(y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j ⊕ 1� xi y−1

i and x j = 0 for all j /∈ supp(y)

}
,

Sn+1(y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j � 1 and x j = 0 for all j /∈ supp(y)

}
,

and so

�S i(y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j ⊕ 1 > xi y−1

i or x j > 0 for some j /∈ supp(y)

}
,

�Sn+1(y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j > 1 or x j > 0 for some j /∈ supp(y)

}
.



142 R.D. Katz et al. / Linear Algebra and its Applications 440 (2014) 131–163
Proof. By Definition 3.5 applied to (y,1), we have

Wi(y,1)

=
{
(x, xn+1) ∈ Tn+1

∣∣∣ ⊕
j∈supp(y)

x j y−1
j ⊕ xn+1 � xi y−1

i , x j = 0 for all j /∈ supp(y,1)

}

for i ∈ supp(y), and

Wn+1(y,1)

=
{
(x, xn+1) ∈ Tn+1

∣∣∣ ⊕
j∈supp(y)

x j y−1
j ⊕ xn+1 � xn+1, x j = 0 for all j /∈ supp(y,1)

}

because supp(y,1) = supp(y) ∪ {n + 1}. Hence,

Si(y) = C1
Wi(y,1) = {

x ∈ Tn
∣∣ (x,1) ∈ Wi(y,1)

}
=

{
x ∈ Tn

∣∣∣ ⊕
j∈supp(y)

x j y−1
j ⊕ 1� xi y−1

i , x j = 0 for all j /∈ supp(y)

}

for i ∈ supp(y), and

Sn+1(y) = C1
Wn+1(y,1) = {

x ∈ Tn
∣∣ (x,1) ∈ Wn+1(y,1)

}
=

{
x ∈ Tn+1

∣∣∣ ⊕
j∈supp(y)

x j y−1
j � 1, x j = 0 for all j /∈ supp(y)

}

since
⊕

j∈supp(y) x j y−1
j ⊕ 1� 1 is equivalent to

⊕
j∈supp(y) x j y−1

j � 1. �
Let us make the following observation which will be useful in the next section.

Lemma 3.16. Let y ∈ Tn and α,β ∈ T be such that α � β . Then Sn+1(αy) ⊆ Sn+1(β y).

Proof. If α = 0 then Sn+1(αy) = {0}, and the inclusion follows since 0 ∈ Sn+1(z) for each z ∈ Tn . If
0 < α � β then by Lemma 3.15 we have

Sn+1(αy) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j � α and x j = 0 for all j /∈ supp(y)

}
,

Sn+1(β y) =
{

x ∈ Tn
∣∣∣ ⊕

j∈supp(y)

x j y−1
j � β and x j = 0 for all j /∈ supp(y)

}

and the inclusion follows since each x ∈ Sn+1(αy) satisfies
⊕

i∈supp(y) xi y−1
i � α � β and x j = 0 for

all j /∈ supp(y). �
Remark 3.17. Both Si(y) and �S i(y) (for i ∈ supp(y) ∪ {n + 1}) are convex sets and complements of
each other, hence they form a complementary pair of hemispaces.

Remark 3.18. The notation for sectors and semispaces is reversed as compared to the notation in
Nitica and Singer [23–25].

Theorem 3.19. Let y ∈ Tn and let C ⊆ Tn be convex. Then y ∈ C if and only if

Si(y) ∩ C 	= ∅ (10)

for each i ∈ supp(y) and for i = n + 1.
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Proof. The “only if” part is trivial, since Si(y) contains y for each i ∈ supp(y) and for i = n + 1.
For the “if” part, consider the homogenization VC of C . If (10) is satisfied, then for each i ∈ supp(y)

and for i = n + 1 there exists xi ∈ Si(y) ∩ C = C1
Wi(y,1)

∩ C , which implies (xi,1) ∈ (Wi(y,1) \
{(0,0)}) ∩ VC . By Theorem 3.6, it follows that (y,1) ∈ VC , and so y ∈ C . �

Restating Theorem 3.19 we obtain the following.

Theorem 3.20. Let C ⊆ Tn be a convex set and take y ∈ Tn. Then y /∈ C if and only if C ⊆ �S i(y) for some
i ∈ supp(y) or i = n + 1.

Definition 3.21. A convex set of Tn is called a (tropical) semispace at y ∈ Tn if it is a maximal (with
respect to inclusion) convex set of Tn not containing y.

Corollary 3.22. There are exactly the cardinality of supp(y) plus one semispaces at y ∈ Tn. These are given
by the convex sets �S i(y) for i ∈ supp(y) and i = n + 1.

Proof. Suppose that C is a semispace at y ∈ Tn . Since it is a convex set not containing y, Theo-
rem 3.20 implies that it is contained in �S i(y) for some i ∈ supp(y) or i = n + 1. By maximality, it
follows that it coincides with �S i(y). �

The following corollary corresponds to Corollary 3.10.

Corollary 3.23. Each convex set C ⊆ Tn can be represented as the intersection of the semispaces �S i(y)

containing it (where y /∈ C and i ∈ supp(y) or i = n + 1), and each complement F of a convex set can be
represented as the union of the sectors Si(y) contained in F (where y ∈ F and i ∈ supp(y) or i = n + 1).

Lemma 3.24. For any two points x, y ∈ Tn and i ∈ supp(x) ∩ supp(y) or i = n + 1 the intersection Si(x) ∩
Si(y) is non-empty.

Proof. Consider the points (x,1) and (y,1) and observe that for V :=Wi(x,1) ∩Wi(y,1) we have:

C1
V = {

z ∈ Tn
∣∣ (z,1) ∈ V

} = {
z ∈ Tn

∣∣ (z,1) ∈ (
Wi(x,1) ∩Wi(y,1)

)}
= {

z ∈ Tn
∣∣ (z,1) ∈ Wi(x,1)

} ∩ {
z ∈ Tn

∣∣ (z,1) ∈ Wi(y,1)
}

= C1
Wi(x,1) ∩ C1

Wi(y,1) = Si(x) ∩ Si(y).

For any i ∈ supp(x,1)∩supp(y,1) = (supp(x)∩supp(y))∪{n+1}, Lemma 3.11 applied to (x,1) and
(y,1) provides a non-null point z in V = Wi(x,1) ∩Wi(y,1). This point is defined by (8) applied to
(x,1) and (y,1), so zn+1 = min{x−1

i , y−1
i } if i ∈ supp(x) ∩ supp(y) and zn+1 = 1 if i = n + 1. In both

cases we have zn+1 	= 0, and then we conclude that z−1
n+1(z1, . . . , zn) ∈ C1

V = Si(x) ∩ Si(y) because

(z−1
n+1z1, . . . , z−1

n+1zn,1) = z−1
n+1z ∈ V . �

Corollary 3.23 and Lemma 3.24 imply the following (preliminary) result on general hemispaces (an
analogue of Theorem 3.12).

Theorem 3.25. For any complementary pair of hemispaces H1 and H2 there exist disjoint subsets I, J ⊆
[n + 1] such that

H1 =
⋃{

Si(y)
∣∣ Si(y) ⊆ H1, i ∈ I, y ∈ H1

}
= conv

(⋃{
Si(y)

∣∣ Si(y) ⊆ H1, i ∈ I, y ∈ H1
})

,

H2 =
⋃{

S j(y)
∣∣ S j(y) ⊆ H2, j ∈ J , y ∈ H2

}
= conv

(⋃{
S j(y)

∣∣ S j(y) ⊆ H2, j ∈ J , y ∈ H2
})

. (11)
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Fig. 1. Max-times segments (on the left) and sectors based at a point y with full support {1,2} (on the right) in dimension 2.

Proof. As H1 and H2 are complements of convex sets, Corollary 3.23 yields that H1 and H2 are the
unions of the sectors contained in them. The sectors contained in H1 and H2 should be of different
type, since otherwise there exist two points y′ ∈H1, y′′ ∈H2, and an index i ∈ (supp(y′)∩supp(y′′))∪
{n + 1} for which Si(y′) ⊆ H1 and Si(y′′) ⊆ H2. Then, by Lemma 3.24 applied to y′ , y′′ and i, we
conclude that the hemispaces H1 and H2 have a common point, which is a contradiction.

Finally, since the hemispaces H1 and H2 are convex sets, the unions in (11) coincide with their
convex hulls. �

Theorem 3.25 can be used to describe hemispaces in the case n = 2. Indeed, in this case, the
non-empty and disjoint sets I and J appearing in its formulation should satisfy I ∪ J ⊆ {1,2,3}. It
follows that one of the sets I or J consists of only one index. Thus, one of the hemispaces H1 or H2
is the union of sectors of the same type. By careful inspection of all possible cases, for this hemispace
we obtain the sets shown on the diagrams of Figs. 2 and 3. Using the form of typical (tropical)
segments on the plane, shown on the left-hand side of Fig. 1, it can be checked graphically that all
these sets and their complements are indeed convex sets (and hence, indeed, hemispaces). All figures
are done in the max-times semifield Rmax,× .

4. Tropical hemispaces

4.1. Homogenization and (P , R)-decompositions

Let us start with (P , R)-decompositions of quasisectors and sectors.

Proposition 4.1. For y ∈ Tn and i ∈ supp(y), the quasisectors Wi(y) and the sectors Si(y) and Sn+1(y) can
be represented as

Wi(y) = span
({

ei ⊕ y j y−1
i e j

∣∣ j ∈ supp(y)
})

,

Si(y) = {
yie

i} ⊕ span
({

ei ⊕ y j y−1
i e j

∣∣ j ∈ supp(y)
})

,

Sn+1(y) = conv
({0} ∪ {

y je
j
∣∣ j ∈ supp(y)

})
. (12)

Proof. We claim that if x ∈Wi(y), then

x =
⊕

j∈supp(y)

yi y−1
j x j

(
ei ⊕ y j y−1

i e j).
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Fig. 2. The hemispaces in dimension 2 which can be obtained as unions of sectors of the same type based at points with full
support {1,2}.

Indeed, we have( ⊕
j∈supp(y)

yi y−1
j x j

(
ei ⊕ y j y−1

i e j))
i
=

⊕
j∈supp(y)

yi y−1
j x j = xi

since i ∈ supp(y) and yi y−1
j x j � xi for all j ∈ supp(y) by Definition 3.5. Furthermore for k ∈ supp(y) \

{i} we have( ⊕
j∈supp(y)

yi y−1
j x j

(
ei ⊕ y j y−1

i e j))
k
= yi y−1

k xk yk y−1
i = xk,
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Fig. 3. The hemispaces in dimension 2 which can be obtained as unions of sectors of the same type based at points with
non-full support ({1} or {2}).

and for k ∈ [n] \ supp(y) we have

( ⊕
j∈supp(y)

yi y−1
j x j

(
ei ⊕ y j y−1

i e j))
k
=

⊕
j∈supp(y)

yi y−1
j x j

(
ei ⊕ y j y−1

i e j)
k = 0 = xk.

This proves our claim. Using this property, we conclude that

Wi(y) ⊆ span
({

ei ⊕ y j y−1
i e j

∣∣ j ∈ supp(y)
})

.
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For the converse inclusion, let us show that the vector ei ⊕ y j y−1
i e j belongs to Wi(y) for any j ∈

supp(y). Indeed, we have (ei ⊕ y j y−1
i e j)k = 0 for any k ∈ [n] \ {i, j}, and so in particular for any

k ∈ [n] \ supp(y), and⊕
k∈supp(ei⊕y j y−1

i e j)

(
ei ⊕ y j y−1

i e j)
k y−1

k = y−1
i ⊕ y j y−1

i y−1
j = y−1

i = (
ei ⊕ y j y−1

i e j)
i y−1

i .

Thus, ei ⊕ y j y−1
i e j ∈ Wi(y) by Definition 3.5. Since Wi(y) is a cone and ei ⊕ y j y−1

i e j ∈ Wi(y) for
any j ∈ supp(y), we conclude that

span
({

ei ⊕ y j y−1
i e j

∣∣ j ∈ supp(y)
}) ⊆ Wi(y).

This completes the proof of the first equality in (12).
From the first equality in (12) it follows that, given y ∈ Tn , for all i ∈ supp(y,1) = supp(y)∪{n+1}

we have Wi(y,1) = span(Ui), where

Ui = {
ei ⊕ (y,1) j(y,1)−1

i e j
∣∣ j ∈ supp(y) ∪ {n + 1}}. (13)

Hence by Definition 3.14 and Proposition 2.8, it follows that for all i ∈ supp(y) ∪ {n + 1},

Si(y) = C1
Wi(y,1) = C1

span(Ui)
= conv(P Ui ) ⊕ span(RUi ), (14)

where

P Ui = {
y ∈ Tn

∣∣ ∃μ 	= 0, (μy,μ) ∈ Ui
}
, (15)

and

RUi = {
z ∈ Tn

∣∣ (z,0) ∈ Ui
}
. (16)

Let i ∈ supp(y) (hence i � n). Then by (13) we have

Ui = {
ei ⊕ y j y−1

i e j
∣∣ j ∈ supp(y)

} ∪ {
ei ⊕ y−1

i en+1}.
Therefore by (15) z ∈ P Ui if and only if there exists μ 	= 0 such that (μz,μ) = ei ⊕ y−1

i en+1 which

yields μ = y−1
i and y−1

i z = μz = ei , whence z = yiei . Thus P Ui = {yiei}. Furthermore, by (16) z ∈ RUi

if and only if (z,0) = ei ⊕ y j y−1
i e j for some j ∈ supp(y). Consequently, by (14), we obtain the second

equality of (12).
Finally, let i = n + 1. Then by (13),

Un+1 = {
en+1 ⊕ y je

j
∣∣ j ∈ supp(y)

} ∪ {
en+1},

whence (z,0) /∈ Un+1 for all z ∈ Tn , and hence by (16), RUn+1 = ∅. Furthermore, for μ 	= 0 we have
(μz,μ) ∈ Un+1 if and only if either (μz,μ) = en+1 ⊕ y je j for some j ∈ supp(y) or (μz,μ) = en+1. In
the first case we obtain μ = 1 and z = μz = y je j for some j ∈ supp(y), and in the second case we
obtain μ = 1 and z = μz = 0. Thus by (15), P Un+1 = {0} ∪ {y je j | j ∈ supp(y)}, whence by RUn+1 = ∅
and (14), we obtain the third equality of (12). �

We now obtain (P , R)-decompositions of hemispaces (respectively, conical hemispaces) by uniting
the (P , R)-decompositions of sectors (respectively, quasisectors) contained in them.

Theorem 4.2. For any hemispace H ⊂ Tn (resp. any conical hemispace V ⊂ Tn) a (P , R)-decomposition can
be obtained by uniting the (P , R)-decompositions given in (12) of all Si(y) ⊆ H (resp. Wi(y) ⊆ V), where
y ∈H and i ∈ supp(y) ∪ {n + 1} (resp. y ∈ V and i ∈ supp(y)).
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If H is a hemispace, the resulting (P , R)-decomposition is given by

P =
{

{yiei | Si(y) ⊆ H}, if there is no y ∈ Tn such that Sn+1(y) ⊆ H,

{0} ∪ {yiei | Si(y) ⊆ H} ∪ {y je j | Sn+1(y) ⊆ H, j ∈ supp(y)} otherwise,

R = {
ei ⊕ y j y−1

i e j
∣∣ Si(y) ⊆ H, j ∈ supp(y)

}
, (17)

and if V is a conical hemispace, then we have

P = ∅, R = {
ei ⊕ y j y−1

i e j
∣∣ Wi(y) ⊆ V, j ∈ supp(y)

}
. (18)

Proof. By Theorem 3.25 any hemispace H can be represented as the convex hull of all the sectors
contained in H. Consider the (P , R)-decomposition of sectors given in the last two lines of (12).
The pair of sets (P , R) which determines the (P , R)-decomposition of the sector Si(y), for any
y ∈ Tn and i ∈ supp(y), satisfy condition (iii) of Theorem 2.14 due to the fact that supp(yiei) ⊆
supp(ei ⊕ y j y−1

i e j) for all j ∈ supp(y), and the pair of sets determining the (P , R)-decomposition of
the sector Sn+1(y) satisfies this condition trivially (since R is empty). Therefore we can combine all
the (P , R)-decompositions of the sectors contained in H (in other words, take the unions of all P
and all R separately) to obtain a (P , R)-decomposition of H. To form the set P , let us first collect,
using Theorem 3.25 and the second line of (12), all the vectors yiei such that Si(y) ⊆ H (where
i ∈ supp(y)). If we have Sn+1(y) ⊆ H for some y ∈ Tn then, using Theorem 3.25 and the third line
of (12), we also add the zero vector and all the vectors y je j , where j ∈ supp(y). This explains the
expression for P in (17), in both cases. The set R is composed of the vectors ei ⊕ y j y−1

i e j appearing
on the second line of (12), such that Si(y) ⊆H and j ∈ supp(y). This explains the last line of (17).

By Theorem 3.12, any conical hemispace V is the linear span of all the quasisectors contained in V .
Consider the (P , R)-decomposition of quasisectors given in the first line of (12). By Lemma 2.15 the
union of all the sets R appearing in these (P , R)-decompositions of the quasisectors contained in V
gives the set R appearing in a (P , R)-decomposition of V (in which P = ∅). By Theorem 3.12 and the
first line of (12), R consists of all the vectors ei ⊕ y j y−1

i e j such that Wi(y) ⊆ V and j ∈ supp(y). This
shows (18). �

Let us make an observation on the (P , R)-decomposition of Theorem 4.2.

Lemma 4.3. Let H ⊆ Tn be a hemispace, z ∈ Tn, and let R be defined by the last line of (17). If Si(z) ⊆ H
then z ∈ span(R).

Proof. Since Si(z) ⊆ H, by the last line of (17) the set R contains all the vectors of the form ei ⊕
z j z

−1
i e j for j ∈ supp(z). Representing

z = zi

( ⊕
j∈supp(z)

(
ei ⊕ z j z

−1
i e j)),

we conclude that z ∈ span(R). �
We shall need the following characterization of joined pairs of conical hemispaces by means of

sections.

Lemma 4.4. Let V1,V2 ⊆ Tn+1 be cones. Then, (V1,V2) is a joined pair of conical hemispaces if and only if
the following statements hold:

Cα
V1

∩ Cα
V2

= ∅ and Cα
V1

∪ Cα
V2

= Tn for all α 	= 0, (19)

C0
V1

∩ C0
V2

= {0} and C0
V1

∪ C0
V2

= Tn. (20)
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Proof. Assume that (V1,V2) is a joined pair of conical hemispaces, i.e. V1 ∪ V2 = Tn+1 and V1 ∩
V2 = {0}.

Let α ∈ T. Then, given any x ∈ Tn , since V1 ∪ V2 = Tn+1 we have (x,α) ∈ V1 ∪ V2, and so x ∈
Cα
V1

∪ Cα
V2

. Since x ∈ Tn is arbitrary, this shows Cα
V1

∪ Cα
V2

= Tn for any α ∈ T.
Suppose now that α 	= 0 and Cα

V1
∩ Cα

V2
	= ∅. Let x ∈ Cα

V1
∩ Cα

V2
. Then, we have (x,α) ∈ V1 ∩ V2,

which contradicts the fact that V1 ∩V2 = {0} because α 	= 0. This proves that Cα
V1

∩Cα
V2

= ∅ for α 	= 0.

Since 0 ∈ V1 ∩V2, we have 0 ∈ C0
V1

∩ C0
V2

. Furthermore, if for x 	= 0 we had x ∈ C0
V1

∩ C0
V2

, then the
non-null vector (x,0) would belong to V1 ∩ V2, contradicting the fact that V1 ∩ V2 = {0}. This shows
that C0

V1
∩ C0

V2
= {0}, and completes the proof of (19) and (20).

Assume now that (19) and (20) are satisfied.
Given any x ∈ Tn and α ∈ T, since Cα

V1
∪ Cα

V2
= Tn , we have x ∈ Cα

V1
∪ Cα

V2
. It follows that (x,α) ∈

V1 ∪ V2. Since x ∈ Tn and α ∈ T are arbitrary, we conclude that V1 ∪ V2 = Tn+1.
Finally, let (x,α) ∈ V1 ∩ V2. Then x ∈ Cα

V1
∩ Cα

V2
, and by (19) and (20) we necessarily have x = 0

and α = 0. This shows that V1 ∩V2 = {0}, and completes the proof of the fact that (V1,V2) is a joined
pair of conical hemispaces. �

The following theorem relates complementary pairs of hemispaces in Tn with joined pairs of con-
ical hemispaces in Tn+1 through the concept of section.

Theorem 4.5. Let H1,H2 ⊆ Tn be a complementary pair of hemispaces, and let (P1, R1) and (P2, R2) deter-
mine respectively the (P , R)-decompositions of H1 and H2 given by Theorem 4.2. Then, the cones

V1 := span
({

(x,1)
∣∣ x ∈ P1

} ∪ {
(y,0)

∣∣ y ∈ R1
})

(21)

and

V2 := span
({

(x,1)
∣∣ x ∈ P2

} ∪ {
(y,0)

∣∣ y ∈ R2
})

(22)

satisfy H1 = C1
V1

and H2 = C1
V2

, and (V1,V2) is a joined pair of conical hemispaces in Tn+1 .

Proof. In the first place, observe that by Corollary 2.9 we have C1
V1

=H1 and C1
V2

=H2.
To prove that (V1,V2) is a joined pair of conical hemispaces, we show that (19) and (20) are

satisfied and then use Lemma 4.4.
Let us first prove (19). Since (H1,H2) = (C1

V1
, C1

V2
) is a complementary pair of hemispaces, it

follows that (19) holds for α = 1. For the case of general α 	= 0, observe that

Cα
V1∩V2

= Cα
V1

∩ Cα
V2

and Cα
V1∪V2

= Cα
V1

∪ Cα
V2

for all α ∈ T. (23)

Since V1 ∩ V2 and V1 ∪ V2 are closed under multiplication by scalars, using (23) and Proposition 2.7
we conclude that

Cα
V1

∩ Cα
V2

= Cα
V1∩V2

= {
αx

∣∣ x ∈ C1
V1∩V2

}
= {

αx
∣∣ x ∈ C1

V1
∩ C1

V2

} = {αx | x ∈ H1 ∩H2} = ∅,

Cα
V1

∪ Cα
V2

= Cα
V1∪V2

= {
αx

∣∣ x ∈ C1
V1∪V2

}
= {

αx
∣∣ x ∈ C1

V1
∪ C1

V2

} = {αx | x ∈ H1 ∪H2} = Tn.

Thus we obtained (19).
It remains to prove (20). Eqs. (21) and (22) imply that C0

V1
= span(R1) and C0

V2
= span(R2), so it

remains to show that (span(R1), span(R2)) is a joined pair of conical hemispaces of Tn .
Let us show first that span(R1) ∪ span(R2) = Tn . Take a vector z ∈ Tn . As (H1,H2) is a comple-

mentary pair of hemispaces, either z ∈ H1 or z ∈ H2. Assume z ∈ H1. By Theorem 3.20 (taking H2
as C and H1 as its complement), it follows that Si(z) ⊆ H1 for i = n + 1 or for some i ∈ supp(z). If
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Si(z) ⊆H1 for some i 	= n + 1, then z ∈ span(R1) by Lemma 4.3. In the case when Si(z) �H1 for any
i 	= n + 1, we have Sn+1(z) ⊆H1, and we consider αz for α 	= 0.

Suppose that for some α 	= 0 we have Sn+1(αz) �H1 and Sn+1(αz) �H2. Then Si(αz) ⊆ H1 or
Si(αz) ⊆ H2 for some i 	= n + 1, by Theorem 3.20. If Si(αz) ⊆ H1 then z ∈ span(R1), and if Si(αz) ⊆
H2 then z ∈ span(R2), by Lemma 4.3, so z ∈ span(R1) ∪ span(R2).

We are left with the case when Sn+1(αz) ⊆H1 or Sn+1(αz) ⊆H2 for each α. Since by Lemma 3.16
the sets Sn+1(αz) are increasing with α, it can be only that either Sn+1(αz) ⊆ H1 for all α, or
Sn+1(αz) ⊆ H2 for all α. Assume the first case. Then, we obtain that all vectors x with supp(x) ⊆
supp(z) are in H1, since x ∈ Sn+1(αz) with α = ⊕

i∈supp(z) xi z
−1
i holds for every such x. But then

Si(z) ⊆H1 for any i ∈ supp(z), implying that z ∈ span(R1).
We have shown that if z ∈ H1 then z ∈ span(R1) ∪ span(R2). The same statement holds in the

case of z ∈H2 (by symmetry). Thus span(R1) ∪ span(R2) = Tn is proved, and it remains to show that
span(R1) ∩ span(R2) = {0}.

Assume by contradiction that z ∈ span(R1) ∩ span(R2) and z 	= 0. As z ∈ span(R1), we have z =⊕
x∈R1

βxx, where only a finite number of the scalars βx are not equal to 0. Observe that R1 	= ∅
and at least one βx is not equal to 0 because z 	= 0. By (17), R1 is composed of vectors of the
form ei ⊕ y j y−1

i e j , where y ∈ Tn and i, j ∈ supp(y) are such that Si(y) ⊆ H1. Consequently we

have β(ei ⊕ y j y−1
i e j) � z for some β ∈ T+ , y ∈ Tn and i, j ∈ supp(y) such that Si(y) ⊆ H1. Since

Si(y) ⊆ H1, by (17) it follows that yiei ∈ P1. As z ∈ span(R2), for the same reasons as above there
also exist β ′ ∈ T+ , y′ ∈ Tn and i′, j′ ∈ supp(y′) such that β ′(ei′ ⊕ y′

j′ (y′
i′ )

−1e j′ )� z and y′
i′ e

i′ ∈ P2.

If λ � (yiβ
−1 ⊕ y′

i′ (β
′)−1) then λ � yiβ

−1, whence using also that βei � z, we obtain yiei =
yiββ−1ei � λβei � λz. Similarly, since λ � y′

i′ (β
′)−1, we obtain y′

i′ e
i′ � λz. These inequalities can

be written as equalities yiei ⊕ λz = y′
i′ e

i′ ⊕ λz = λz, whence λz ∈ conv(P1) ⊕ span(R1) = H1 and
λz ∈ conv(P2) ⊕ span(R2) =H2, so λz ∈H1 ∩H2, in contradiction with the assumption H1 ∩H2 = ∅.
Thus the proof of (19) and (20) is complete and Lemma 4.4 implies that (V1,V2) is a joined pair of
conical hemispaces. �
4.2. On the (P , R)-decomposition of conical hemispaces

We know that the (P , R)-decomposition of a conical hemispace, as a linear span of quasisectors
(Theorem 3.12), consists of unit vectors and linear combinations of two unit vectors (Theorem 4.2).
Therefore, to describe the (P , R)-decompositions of a joined pair of conical hemispaces we need to
understand how the linear combinations of two unit vectors are distributed among them. With this
aim, we first associate with a non-trivial joined pair (V1,V2) of conical hemispaces in Tn the index
sets

I := {
i ∈ [n] ∣∣ ei ∈ V1

}
and J := {

j ∈ [n] ∣∣ e j ∈ V2
}
. (24)

The following lemma is elementary and will rather serve to define below the coefficients αi j . In
what follows, for some purposes it will be convenient to assume that scalars can also take the
value +∞ (the structure which is obtained defining λ ⊕ (+∞) := +∞, (+∞) ⊕ λ := +∞ for λ ∈ T,
λ ⊗ (+∞) := +∞, (+∞) ⊗ λ := +∞ for λ ∈ T+ and 0⊗ (+∞) := 0, (+∞) ⊗0 := 0 is usually known
as the completed semifield, see for instance [9]) and to adopt the convention

ei ⊕ λe j = e j if λ = +∞. (25)

Lemma 4.6. Let (V1,V2) be a non-trivial joined pair of conical hemispaces of Tn, and let I, J ⊂ [n] be defined
as in (24). Then, for any i ∈ I and j ∈ J we have

sup
{
α ∈ T∪ {+∞} ∣∣ ei ⊕ αe j ∈ V1

} = inf
{
β ∈ T∪ {+∞} ∣∣ ei ⊕ βe j ∈ V2

}
.

Proof. In the sequel, we will use the fact that every linear combination of two unit vectors belongs
either to V1 or to V2, which follows from V1 ∩ V2 = {0} and V1 ∪ V2 = Tn .
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First, assume that inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2} = +∞, which implies ei ⊕ βe j /∈ V2 for all
β ∈ T. Then, we have ei ⊕ αe j ∈ V1 for all α ∈ T, and so sup{α ∈ T∪ {+∞} | ei ⊕ αe j ∈ V1} = +∞.

Assume now that inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2} 	= +∞. Observe that we have the following
implication:

ei ⊕ βe j ∈ V2, γ � β ⇒ ei ⊕ γ e j ∈ V2, (26)

since e j ∈ V2 and, further, ei ⊕ γ e j = (ei ⊕ βe j) ⊕ γ e j ∈ V2 if γ � β . Thus,

sup
{
α ∈ T∪ {+∞} ∣∣ ei ⊕ αe j ∈ V1

}
� inf

{
β ∈ T∪ {+∞} ∣∣ ei ⊕ βe j ∈ V2

}
, (27)

because if we had > in (27), then there would exist α,β ∈ T with α > β such that ei ⊕ αe j ∈ V1 and
ei ⊕βe j ∈ V2. Then by ei ⊕βe j ∈ V2 and (26) it would follow that ei ⊕αe j ∈ V2, whence ei ⊕αe j /∈ V1,
a contradiction. If inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2} = 0, then the lemma follows from (27). Thus, it
remains to consider the case inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2} ∈ T+ . In this case, by the definition
of inf we have ei ⊕ αe j /∈ V2 for all α < inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2}. Then, since every linear
combination of two unit vectors belongs either to V1 or to V2, we have ei ⊕ αe j ∈ V1 for all α <

inf{β ∈ T ∪ {+∞} | ei ⊕ βe j ∈ V2}, and so (27) must be satisfied with equality. This completes the
proof. �

Henceforth, the matrix whose entries are the coefficients

αi j := sup
{
α ∈ T∪ {+∞} ∣∣ ei ⊕ αe j ∈ V1

} = inf
{
β ∈ T∪ {+∞} ∣∣ ei ⊕ βe j ∈ V2

}
(28)

will be referred to as the α-matrix (associated with the non-trivial joined pair (V1,V2) of conical
hemispaces). Besides, with each coefficient αi j we associate the pair of subsets of T ∪ {+∞} defined
by

(
α

(−)
i j ,α

(+)
i j

) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

({λ | λ < αi j}, {λ | λ� αi j}) if αi j ∈ T+, ei ⊕ αi je j ∈ V2,

({λ | λ� αi j}, {λ | λ > αi j}) if αi j ∈ T+, ei ⊕ αi je j ∈ V1,

({αi j}, {λ | λ > αi j}) if αi j = 0,

({λ | λ < αi j}, {αi j}) if αi j = +∞.

(29)

Thus, by Lemma 4.6 it follows that

{
ei ⊕ λe j

∣∣ λ ∈ α
(−)
i j

} ⊂ V1 and
{

ei ⊕ λe j
∣∣ λ ∈ α

(+)
i j

} ⊂ V2 (30)

for any i ∈ I and j ∈ J .
Since α

(+)
i j ⊆ T+ ∪ {+∞} and α

(−)
i j ⊆ T+ ∪ {0}, observe that the sets α

(+)
i1 j1

and α
(+)
i2 j2

, as well as

α
(−)
i1 j1

and α
(−)
i2 j2

, can be unambiguously multiplied (by definition, the product of two sets consists of
all possible products of an element of one set by an element of the other set) for any i1, i2 ∈ I and
j1, j2 ∈ J .

In the sequel, we write I1 + · · · + Im = I if Ik for k ∈ [m] and I are index sets such that I1 ∪
· · · ∪ Im = I and I1, . . . , Im are pairwise disjoint.

We now formulate one of the main results of the paper: a characterization of conical hemispaces
in terms of their generators. We will immediately prove that any conical hemispace fulfills the given
conditions. The proof that these conditions are also sufficient is going to occupy the remaining part
of this section.

Theorem 4.7. A non-trivial cone V ⊂ Tn is a conical hemispace if and only if

V = span
({

ei ⊕ λe j
∣∣ i ∈ I, j ∈ J , λ ∈ σ

(−)
i j

})
, (31)



152 R.D. Katz et al. / Linear Algebra and its Applications 440 (2014) 131–163
where I is a non-empty proper subset of [n], J = [n]\ I , and the sets σ
(−)
i j , which are non-empty proper subsets

of T ∪ {+∞} either of the form {λ ∈ T | λ � σi j} or {λ ∈ T | λ < σi j} with σi j ∈ T ∪ {+∞}, are such that the

pairs (σ
(−)
i j , σ

(+)
i j ), with σ

(+)
i j defined by σ

(+)
i j := (T∪ {+∞}) \ σ

(−)
i j , satisfy

σ
(+)
i1 j2

σ
(+)
i2 j1

∩ σ
(−)
i1 j1

σ
(−)
i2 j2

= ∅ and σ
(−)
i1 j2

σ
(−)
i2 j1

∩ σ
(+)
i1 j1

σ
(+)
i2 j2

= ∅ (32)

for any i1, i2 ∈ I and j1, j2 ∈ J .

Proof of the “only if” part of Theorem 4.7. Define V1 := V and V2 := �V ∪ {0}. Thus, (V1,V2) is a
non-trivial joined pair of conical hemispaces in Tn because V is a conical hemispace and non-trivial.
Let I and J be the sets defined in (24). Then, I and J satisfy J = [n] \ I , and these sets are non-empty
since (V1,V2) is non-trivial. For i ∈ I and j ∈ J , let σi j := αi j and (σ

(−)
i j , σ

(+)
i j ) := (α

(−)
i j ,α

(+)
i j ), where

the scalars αi j and the pairs of sets (α
(−)
i j ,α

(+)
i j ) are defined by (28) and (29) respectively. Then, the

sets σ
(−)
i j and σ

(+)
i j are of the required form.

We claim that

V1 = span
({

ei ⊕ λe j
∣∣ i ∈ I, j ∈ J , λ ∈ σ

(−)
i j

})
,

V2 = span
({

ei ⊕ λe j
∣∣ i ∈ I, j ∈ J , λ ∈ σ

(+)
i j

})
. (33)

Indeed, by Theorem 4.2 both V1 and V2 are generated by unit vectors and linear combinations of
two unit vectors. The distribution of unit vectors is given by I and J . Observe that (33) conforms
to this distribution, since for any i ∈ I , ei belongs to the generators of V1 as 0 ∈ σ

(−)
i j , and for any

j ∈ J , e j belongs to the generators of V2 since +∞ ∈ σ
(+)
i j . This obviously implies that no linear

combination of ei1 and ei2 with i1, i2 ∈ I (resp. of e j1 and e j2 with j1, j2 ∈ J ) is necessary in (33) to
generate V1 (resp. V2). For i ∈ I and j ∈ J , the distribution of the linear combinations of ei and e j is
given by (30). Since (σ

(−)
i j , σ

(+)
i j ) = (α

(−)
i j α

(+)
i j ), it follows that (33) also conforms to this distribution.

These observations yield (33).
It remains to prove (32). Assume that

σ
(+)
i1 j2

σ
(+)
i2 j1

∩ σ
(−)
i1 j1

σ
(−)
i2 j2

	= ∅.

Then, there exist βi1 j2 ∈ σ
(+)
i1 j2

, βi2 j1 ∈ σ
(+)
i2 j1

, γi1 j1 ∈ σ
(−)
i1 j1

and γi2 j2 ∈ σ
(−)
i2 j2

such that βi1 j2βi2 j1 =
γi1 j1γi2 j2 . For this to hold, the products βi1 j2βi2 j1 and γi1 j1γi2 j2 should be in T+ , and hence βi1 j2 ,
βi2 j1 , γi1 j1 and γi2 j2 should be in T+ . Then, we make the linear combination

z = ei1 ⊕ βi1 j2 e j2 ⊕ λ
(
ei2 ⊕ βi2 j1 e j1

) ∈ V2,

where λ satisfies λβi2 j1 = γi1 j1 , hence also λγi2 j2 = βi1 j2 , and observe that

z = ei1 ⊕ γi1 j1 e j1 ⊕ λ
(
ei2 ⊕ γi2 j2 e j2

) ∈ V1.

Thus V1 ∩ V2 	= {0}, a contradiction. This completes the proof of the “only if” part of Theorem 4.7. The “if”
part will be proved later (formally after Remark 4.17, but the preparations for this proof will start right after
Corollary 4.9). �

The following result shows that if a non-trivial cone V defined as in (31) is a conical hemispace,
then �V∪{0} can be defined as V2 in (33) and the scalars σi j are precisely the entries of the α-matrix
associated with the non-trivial joined pair of conical hemispaces (V,�V ∪ {0}).

Proposition 4.8. Assume that

V1 = span
({

ei ⊕ λe j
∣∣ i ∈ I, j ∈ J , λ ∈ σ

(−)
i j

})
(34)
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is a conical hemispace, where I is a non-empty proper subset of [n], J = [n] \ I , and for i ∈ I and j ∈ J the sets
σ

(−)
i j are non-empty proper subsets of T∪ {+∞} either of the form {λ ∈ T | λ� σi j} or {λ ∈ T | λ < σi j} with

σi j ∈ T∪ {+∞}. Then, V1 and V2 defined by

V2 := span
({

ei ⊕ λe j
∣∣ i ∈ I, j ∈ J , λ ∈ σ

(+)
i j

})
, (35)

where σ
(+)
i j := (T∪{+∞})\σ

(−)
i j , form a joined pair of conical hemispaces, and we have σi j = αi j for all i ∈ I

and j ∈ J with αi j defined by (28).

Proof. Let R := {ei ⊕ λe j | i ∈ I, j ∈ J , λ ∈ σ
(−)
i j }. We first claim that the unit vectors and linear

combinations of two unit vectors contained in V1 are precisely the ones in R . Indeed given j ∈ J ,
since e j /∈ R , it readily follows that e j /∈ V1. Then, the unit vectors contained in V1 are precisely the
ones in R (i.e. ei for i ∈ I). Assume now that ei ⊕ βe j ∈ V1 for some i ∈ I , j ∈ J and β ∈ T+ . Then, we
have ei ⊕ βe j = ⊕

y∈R δy y, where only a finite number of the scalars δy is not equal to 0. Observe
that

δy 	= 0 ⇒ yk = 0 for k ∈ [n] \ {i, j} ⇒ y = ei ⊕ λe j for some λ ∈ σ
(−)
i j

⇒ yi = 0, y j ∈ σ
(−)
i j , and yk = 0 for k ∈ [n] \ {i, j}. (36)

Then 1 = (ei ⊕ βe j)i = (
⊕

y∈R δy y)i = ⊕
y∈R δy yi = ⊕

y∈R δy , and so δy � 1 for all y ∈ R . Besides,

since only a finite number of the scalars δy is not equal to 0 and β = (ei ⊕ βe j) j = (
⊕

y∈R δy y) j =⊕
y∈R δy y j , we conclude that β = δy y j for some y ∈ R such that δy 	= 0. Using (36) and the fact that

λ ∈ σ
(−)
i j and δ � 1 imply δλ ∈ σ

(−)
i j , it follows that β ∈ σ

(−)
i j , and so ei ⊕ βe j ∈ R . This completes the

proof of our claim.
By Theorem 4.2, the conical hemispace �V1 ∪ {0} is generated by the unit vectors and linear com-

binations of two unit vectors which it contains, i.e. those which do not belong to V1. By the first part
of the proof and the definition of σ

(+)
i j as complements of σ

(−)
i j in T ∪ {+∞}, we know that these

vectors are precisely the generators of V2 in (35). Then V2 = �V1 ∪ {0}, and so V1 and V2 form a
joined pair of conical hemispaces.

Finally, the fact that the entries αi j of the α-matrix associated with (V1,V2) coincide with the
scalars σi j follows from their definition (28) and from (34) and (35). �

Condition (32) will be called the rank-one condition, due to the following observation.

Corollary 4.9. If condition (32) is satisfied and σi j ∈ T+ for i ∈ {i1, i2} and j ∈ { j1, j2}, then σi1 j1σi2 j2 =
σi1 j2σi2 j1 . In particular, if all the entries of an α-matrix belong to T+ , then it has rank one.

In the rest of this subsection, we assume that I is a non-empty proper subset of [n] and V is the
non-trivial cone defined by (31), where J := [n] \ I and the sets σ

(−)
i j , which are either of the form

{λ ∈ T | λ � σi j} or {λ ∈ T | λ < σi j} with σi j ∈ T ∪ {+∞}, are such that the pairs (σ
(−)
i j , σ

(+)
i j ), with

σ
(+)
i j defined by σ

(+)
i j := (T ∪ {+∞}) \ σ

(−)
i j , satisfy the rank-one condition (32). With the objective

of showing that any such cone is a conical hemispace, we first give a detailed description of the
“thin structure” of the corresponding σ -matrix that follows from the rank-one condition (32). This
description can be also seen as one of the main results.

Proposition 4.10. If we define

J<
i := {

j ∈ J
∣∣ σi j ∈ T+ and σi j ∈ σ

(+)
i j

}
,

J�i := {
j ∈ J

∣∣ σi j ∈ T+ and σi j ∈ σ
(−)
i j

}
,
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J0i := { j ∈ J | σi j = 0},
J∞

i := { j ∈ J | σi j = +∞},
for i ∈ I , then by the rank-one condition (32) it follows that:

(i) J�i + J<
i + J∞

i + J0i = J for each i ∈ I;
(ii) J∞

i1
⊆ J∞

i2
or J∞

i2
⊆ J∞

i1
, and J0i1

⊆ J0i2
or J0i2

⊆ J0i1
for any i1, i2 ∈ I;

(iii) If ( J<
i1

∪ J�i1
) ∩ ( J<

i2
∪ J�i2

) 	= ∅, then J<
i1

∪ J�i1
= J<

i2
∪ J�i2

, J∞
i1

= J∞
i2

and J0i1
= J0i2

;

(iv) If ( J<
i1

∪ J�i1
) ∩ ( J<

i2
∪ J�i2

) 	= ∅, then J<
i1

⊆ J<
i2

or J<
i2

⊆ J<
i1

;

(v) If ( J<
i1

∪ J�i1
) ∩ ( J<

i2
∪ J�i2

) 	= ∅, then there exists λ ∈ T+ such that σi1 j = λσi2 j for all j ∈ J<
i1

∪ J�i1
=

J<
i2

∪ J�i2
.

Proof. In this proof, we will use F , � F and � F to represent an entry of a matrix which belongs to
T+ , T+ ∪ {+∞} and T+ ∪ {0} = T, respectively.

(i) This property readily follows from the definition of the sets J<
i , J�i , J0i , and J∞

i .
(ii) If these conditions are violated, then the σ -matrix has one of the following 2 × 2 minors(+∞ � F

� F +∞
)

,

(
0 � F

� F 0

)
,

violating (32).
(iii) If this condition is violated, then the σ -matrix has one of the following 2 × 2 minors(

F F
0 F

)
,

(
F F

+∞ F

)
,

(+∞ F
0 F

)
,

violating (32). More precisely, one of the first two minors will appear when ( J<
i1

∪ J�i1
)∩( J<

i2
∪ J�i2

) 	= ∅
but ( J<

i1
∪ J�i1

) 	= ( J<
i2

∪ J�i2
). The third one will appear if ( J<

i1
∪ J�i1

) = ( J<
i2

∪ J�i2
) 	= ∅ but J∞

i1
	= J∞

i2

(equivalently, J0i1
	= J0i2

).
(iv) If J<

i1
⊆ J<

i2
and J<

i2
⊆ J<

i1
do not hold for some i1, i2, then there exist j1 and j2 such that

σi1 j1 ∈ σ
(+)
i1 j1

, σi2 j2 ∈ σ
(+)
i2 j2

, σi1 j2 ∈ σ
(−)
i1 j2

, σi2 j1 ∈ σ
(−)
i2 j1

, and σi1 j1 , σi1 j2 , σi2 j1 , σi2, j2 ∈ T+ . However, this
contradicts the rank-one condition (32), since σi1 j1σi2 j2 = σi1 j2σi2 j1 by Corollary 4.9.

(v) This property follows from Corollary 4.9 and part (iii). �
Remark 4.11. Regarding part (ii) of Proposition 4.10, observe that the condition “ J∞

i1
⊆ J∞

i2
or

J∞
i2

⊆ J∞
i1

” can be equivalently formulated as “ J<
i1

∪ J�i1
∪ J0i1

⊆ J<
i2

∪ J�i2
∪ J0i2

or J<
i2

∪ J�i2
∪ J0i2

⊆
J<

i1
∪ J�i1

∪ J0i1
” for any i1, i2 ∈ I . Similarly, the condition “ J0i1

⊆ J0i2
or J0i2

⊆ J0i1
” can be equivalently

formulated as “ J<
i1

∪ J�i1
∪ J∞

i1
⊆ J<

i2
∪ J�i2

∪ J∞
i2

or J<
i2

∪ J�i2
∪ J∞

i2
⊆ J<

i1
∪ J�i1

∪ J∞
i1

” for any i1, i2 ∈ I .

Consider the equivalence relation on I defined by

i1 ∼ i2 ⇔ J∞
i1

= J∞
i2

and J0i1
= J0i2

.

By part (ii) of Proposition 4.10 the relation

i1 � i2 ⇔
{

J∞
i2

⊂ J∞
i1

or

J∞
i2

= J∞
i1

and J0i1
⊆ J0i2

defines a total order on I , which induces a total order (also denoted by �) on the equivalence classes
associated with ∼. Assume that I1, . . . , I p are these equivalence classes and that I1 � I2 � · · · � I p .
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By definition, note that there exist subsets L1, . . . , Lp , K 1, . . . , K p , and J 1, . . . , J p of J , such that
J0i = Lr , J∞

i = K r and J<
i ∪ J�i = J r for i ∈ Ir . Thus, by part (i) of Proposition 4.10, it follows that

J r + K r + Lr = J

for r ∈ [p], and from part (iii) we conclude that the sets J 1, . . . , J p are pairwise disjoint. Moreover,
for r ∈ [2, p] we have

J r ∪ K r ⊆ K r−1, (37)

or equivalently

J r−1 ∪ Lr−1 ⊆ Lr .

Indeed, if i1 ∈ Ir−1 and i2 ∈ Ir , using Remark 4.11 we conclude that either J<
i2

∪ J�i2
∪ J∞

i2
⊆ J<

i1
∪ J�i1

∪
J∞

i1
or J<

i1
∪ J�i1

∪ J∞
i1

⊆ J<
i2

∪ J�i2
∪ J∞

i2
. Using part (ii) of Proposition 4.10 and the fact that J r−1 = J<

i1
∪

J�i1
and J r = J<

i2
∪ J�i2

are disjoint, it follows that either J<
i2

∪ J�i2
∪ J∞

i2
⊆ J∞

i1
or J<

i1
∪ J�i1

∪ J∞
i1

⊆ J∞
i2

.

In the former case, we have J r ∪ K r = J<
i2

∪ J�i2
∪ J∞

i2
⊆ J∞

i1
= K r−1. In the latter case, as i1 � i2, we

have J∞
i2

⊆ J∞
i1

and so K r−1 = J∞
i1

= J∞
i2

= K r and J r−1 = J<
i1

∪ J�i1
= ∅. Thus, Lr−1 = J0i1

⊆ J0i2
= Lr

because i1 � i2, which implies J r ∪ K r = J \ Lr ⊆ J \ Lr−1 = J r−1 ∪ K r−1 = K r−1.
Finally, note that by part (iv) of Proposition 4.10 we have

J<
i1

⊆ J<
i2

or J<
i2

⊆ J<
i1

(38)

for all i1, i2 ∈ Ir and r ∈ [p].
Observe that V is also generated by the set⋃

i∈I

({
ei} ∪ {

ei ⊕ σi je
j
∣∣ j ∈ J�i

} ∪ {
ei ⊕ λe j

∣∣ j ∈ J<
i , λ < σi j

}
∪{

ei ⊕ λe j
∣∣ j ∈ J∞

i , λ ∈ T+
})

,

since any vector of the form ei ⊕ λe j , where j ∈ J�i and λ < σi j , can be expressed as a linear combi-
nation of ei ⊕ σi je j and ei . Moreover, defining

Ci := span
({

ei} ∪ {
ei ⊕ σi je

j | j ∈ J�i
} ∪ {

ei ⊕ λe j
∣∣ j ∈ J<

i , λ < σi j
})

,

Di := span
({

ei} ∪ {
ei ⊕ λe j | j ∈ J∞

i , λ ∈ T+
})

, (39)

for i ∈ I , we have V = ⊕
i∈I (Ci ⊕Di).

Lemma 4.12. There exist βh ∈ T+ , for h ∈ I , and γ j ∈ T+ , for j ∈ ⋃
i∈I ( J�i ∪ J<

i ), such that for each i ∈ I , the
set of non-null vectors of the cone Ci is the set of vectors satisfying⎧⎪⎨

⎪⎩
γ j x j � βi xi for all j ∈ J�i ,

γ j x j < βi xi for all j ∈ J<
i ,

x j = 0 for all j ∈ J0i ∪ J∞
i ∪ (

I\{i}).
(40)

Proof. Part (v) of Proposition 4.10 implies that there exist βi, γ j ∈ T+ such that σi j = γ −1
j βi for all

σi j ∈ T+ . Thus, the cone Ci can be equivalently defined by

Ci = span
({

ei} ∪ {
γ je

i ⊕ βie
j
∣∣ j ∈ J�i

} ∪ {
γ je

i ⊕ λβie
j
∣∣ j ∈ J<

i , λ < 1
})

.

Next, any non-null vector x ∈ Ci can be written as a linear combination of vectors in the cones
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C�i j := span
({

ei} ∪ {
γ je

i ⊕ βie
j
∣∣ j ∈ J�i

})
,

C<
i j := span

({
ei} ∪ {

γ je
i ⊕ λβie

j
∣∣ j ∈ J<

i , λ < 1
})

,

with the same coefficient xi at ei . The generators of C�
i j and C<

i j satisfy the first and second conditions
of (40) respectively, hence x also satisfies all these conditions. Conversely, each non-null vector x
satisfying (40) can be written (using similar ideas to those in the proof of Proposition 4.1) as a linear
combination of the generators of C�

i j and C<
i j , and so it belongs to Ci . �

Later we will show that certain Minkowski sums of the cones Ci are conical hemispaces. To this
end, note that Ci = {x ∈ Tn | x j = 0 for j 	= i} if J<

i ∪ J�i = ∅, and so⊕
i∈ Ĩ

Ci = {
x ∈ Tn

∣∣ x j = 0 for all j /∈ Ĩ
}

(41)

when for Ĩ ⊆ I we have J<
i ∪ J�i = ∅ for all i ∈ Ĩ . Evidently, any set given by (41) is a conical hemi-

space.

Remark 4.13. Since V = ⊕
i∈I (Ci ⊕ Di), observe that the null vector 0 is the only vector x in V

satisfying xi = 0 for all i ∈ I .

Theorem 4.14. Given x ∈ Tn, if xi 	= 0 for some i ∈ I , let h := min{r ∈ [p] | xt 	= 0 for some t ∈ Ir} and x̂ ∈ Tn

be the vector defined by x̂k := 0 if k ∈ (
⋃

r>h Ir) ∪ K h and x̂k := xk otherwise. Then, x ∈ V if and only if
x̂ ∈ ⊕

i∈Ih Ci .

Proof. The “if” part: Let t ∈ Ih be such that xt 	= 0. Then, by the definition of x̂ we have

x = x̂ ⊕
( ⊕

i∈⋃
r>h Ir

xie
i
)

⊕
( ⊕

j∈K h

xt
(
et ⊕ x−1

t x je
j)).

It follows that x ∈ V because x̂ ∈ ⊕
i∈Ih Ci ⊆ V , ei ∈ V for all i ∈ I and ei ⊕λe j ∈ V for all i ∈ Ih , j ∈ K h

and λ ∈ T+ .
The “only if” part: Let x ∈ V . As V = ⊕

i∈I (Ci ⊕ Di), we have x = ⊕
i∈I (yi ⊕ zi) for some yi ∈ Ci

and zi ∈ Di . Note that yi ⊕ zi = 0 for i ∈ Ir with r < h since yi
i ⊕ zi

i = xi = 0 for such vectors. So
x = ⊕

i∈⋃
r�h Ir (yi ⊕ zi).

We will show that yi can be chosen so that x̂ = ⊕
i∈Ih yi ∈ ⊕

i∈Ih Ci . For this, observe that for all
i ∈ Ih , since ei ∈ Ci , we can assume xi = x̂i = yi

i , adding xiei to yi if necessary. This fixes our choice
of yi . Then by (37), for r > h we have J r ∪ K r ⊆ K h , or equivalently, J h ∪ Lh ⊆ Lr . It follows from (39)
and the above that supp(yi ⊕ zi) ⊆ Ir ∪ K r ∪ J r = Ir ∪ ( J \ Lr) ⊆ [n] \ (Ih ∪ J h ∪ Lh) for i ∈ Ir and r > h.
Thus, x̂k = xk = (

⊕
i∈Ih (yi ⊕ zi))k for all k ∈ Ih ∪ J h ∪ Lh . Moreover, since we have supp(zi) ⊆ K h ∪ {i}

(from (39)) and xi = x̂i = yi
i for i ∈ Ih , it follows that x̂k = xk = (

⊕
i∈Ih yi)k for all k ∈ Ih ∪ J h ∪ Lh .

Finally, the claim follows from the fact that x̂k = 0 = (
⊕

i∈Ih yi)k for k /∈ Ih ∪ J h ∪ Lh . �
We now describe

⊕
i∈Ir Ci as the set of vectors lying in a halfspace (42) and satisfying a con-

straint (43).

Lemma 4.15. If J r 	= ∅, then the non-null elements of the cone
⊕

i∈Ir Ci are the vectors x ∈ Tn that satisfy
xi 	= 0 for some i ∈ Ir ,⊕

j∈ J r

γ j x j �
⊕
i∈Ir

βi xi and x j = 0 for j /∈ Ir ∪ J r, (42)
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and, in addition,

γ j x j =
⊕
i∈Ir

βi xi ⇒ ∃k ∈ Ir such that γ jx j = βkxk and j ∈ J�k . (43)

Proof. Assume first that the conditions are satisfied for x ∈ Tn . Given j ∈ J r , if γ j x j = ⊕
i∈Ir βi xi , let

k ∈ Ir be such that βkxk = ⊕
i∈Ir βi xi and j ∈ J�k . Then, the vector ykj := ek ⊕ x j x

−1
k e j belongs to

Ck because j ∈ J�k and x j x
−1
k = βkγ

−1
j = σkj . Given j ∈ J r such that γ j x j <

⊕
i∈Ir βi xi , let k be any

element of Ir such that βkxk attains the maximum in
⊕

i∈Ir βi xi . The vector ykj := ek ⊕ x j x
−1
k e j again

belongs to Ck , because j ∈ J�k ∪ J<
k and x j x

−1
k < βkγ

−1
j = σkj . Since ei ∈ Ci for all i ∈ Ir , it readily

follows that x ∈ ⊕
i∈Ir Ci as a sum of xiei for i ∈ Ir and xk ykj = xkek ⊕ x je j over all ykj considered

above.
Assume now that x ∈ ⊕

i∈Ir Ci is non-null. Represent x = ⊕
i∈Ir yi where yi ∈ Ci . Using (40) we

observe that each vector y in Ci for i ∈ Ir satisfies
⊕

j∈ J r γ j y j � βi yi and yh = 0 for all h /∈ Ir ∪ J r ,
hence it lies in the halfspace (42), and so the same holds for x. Besides, the fact that x 	= 0 and (42)
imply that xi 	= 0 for some i ∈ Ir . Finally, if γ j x j = ⊕

i∈Ir βi xi , let k ∈ Ir be such that x j = yk
j . Since

yk ∈ Ck , by (40) we have γ j yk
j � βk yk

k , and it follows that γ j x j = γ j yk
j � βk yk

k � βkxk �
⊕

i∈Ir βi xi .

All these inequalities turn into equalities, so we have γ j yk
j = βk yk

k with yk ∈ Ck , and hence j ∈ J�k
by (40). This shows that the conditions of the lemma are also necessary. �
Proposition 4.16. For each r ∈ [p] the cone

⊕
i∈Ir Ci is a conical hemispace.

Proof. The case when J r = ∅ was treated in (41), so we can assume J r 	= ∅. We have shown that the
non-trivial elements of

⊕
i∈Ir Ci are precisely the elements of Tn that satisfy (42) and (43). In the rest

of the proof, we assume that the complement of Ir ∪ J r is empty, or equivalently, we will show that⊕
i∈Ir Ci is a conical hemispace in the plane {xi = 0 | i /∈ Ir ∪ J r}, from which it follows that

⊕
i∈Ir Ci

is a conical hemispace in Tn . (For this, verify that the complement of a cone lying in {xi = 0 | i ∈ Ĩ},
for Ĩ a subset of [n], is a cone, if the restriction of that complement to {xi = 0 | i ∈ Ĩ} is a cone.) Thus,
we assume Ir ∪ J r = [n].

Let us build a “reflection” of
⊕

i∈Ir Ci , swapping the roles of Ir and J r , and the roles of J�k and J<
k

in (42) and (43). Namely, we define it as the set C̃ containing 0 and all the vectors x ∈ Tn that satisfy⊕
i∈Ir

βi xi �
⊕
j∈ J r

γ j x j (44)

and

βi xi =
⊕
j∈ J r

γ jx j ⇒ ∃k ∈ J r such that γkxk = βi xi and k ∈ J<
i . (45)

We need to show that C̃ is a cone. Evidently, x ∈ C̃ implies λx ∈ C̃ for all λ ∈ T. If x, y ∈ C̃ \ {0} and
z = x ⊕ y satisfies (44) with strict inequality, then z ∈ C̃ . If not, let i be such that βi zi = ⊕

j∈ J r γ j z j ,
and assume zi = xi . It follows that βi xi = ⊕

j∈ J r γ j x j , and then there exists k ∈ J r such that γkxk =
βi xi and k ∈ J<

i . Further observe that γk zk � γkxk = βi xi = βi zi = ⊕
j∈ J r γ j z j � γk zk , and so γk zk =

βi zi , showing that z satisfies (45) and is in C̃ .
We now show that C̃ \ {0} is the complement of

⊕
i∈Ir Ci , so C̃ and

⊕
i∈Ir Ci form a joined pair

of conical hemispaces. Building the complement of
⊕

i∈Ir Ci by negating (42) and (43), we see that it
consists of two branches: vectors x satisfying⊕

i∈Ir

βi xi <
⊕
j∈ J r

γ jx j,
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and those satisfying⊕
i∈Ir

βi xi =
⊕
j∈ J r

γ jx j

and

∃k ∈ J r such that γkxk =
⊕
i∈Ir

βi xi, and k ∈ J<
h whenever βhxh = γkxk.

It can be verified that both branches belong to the “reflection” C̃ as defined by (44) and (45).
We are now left to show that

⊕
i∈Ir Ci and its “reflection” C̃ do not contain any common non-null

vector. We will use (38), i.e., the fact that for each i1, i2 ∈ Ir either J<
i1

⊆ J<
i2

or J<
i2

⊆ J<
i1

. This property

means that the sets J<
i and J�i = J\ J<

i are nested, hence the elements of Ir and J r can be assumed
to be ordered so that

i1 � i2 ⇔ J�i2
⊆ J�i1

and the following properties are satisfied:

j1 ∈ J�i1
, j2 ∈ J<

i1
⇒ j1 < j2,

j1 ∈ J<
i1

, j1 ∈ J�i2
⇒ i2 < i1. (46)

Assume now x ∈ (
⊕

i∈Ir Ci) ∩ C̃ but x 	= 0. Then, we necessarily have
⊕

i∈Ir βi xi = ⊕
j∈ J r γ j x j 	= 0.

Let i1 ∈ Ir be such that βi1 xi1 = ⊕
j∈ J r γ j x j . Since x ∈ C̃ , there exists j1 ∈ J<

i1
such that

⊕
j∈ J r γ j x j =

γ j1 x j1 . As x ∈ ⊕
i∈Ir Ci , there exists i2 ∈ Ir such that βi2 xi2 = ⊕

i∈Ir βi xi = γ j1 x j1 and j1 ∈ J�i2
, and

so i2 < i1 by (46). Again, using the fact that x ∈ C̃ and βi2 xi2 = ⊕
j∈ J r γ j x j , we conclude that there

exists j2 ∈ J<
i2

such that
⊕

j∈ J r γ j x j = γ j2 x j2 , and so j1 < j2 by (46). Repeating this argument again
and again we obtain infinite sequences i1 > i2 > i3 > · · · and j1 < j2 < j3 < · · · , which is impossible.
Hence,

⊕
i∈Ir Ci and C̃ form a joined pair of conical hemispaces. �

Remark 4.17. It can be shown that C̃ = ⊕
j∈ J r C̃ j , where C̃ j are defined as the “reflection” of Ci , i.e.,

cones whose non-null vectors satisfy⎧⎪⎨
⎪⎩

βi xi � γ jx j for all i such that j ∈ J<
i ,

βi xi < γ jx j for all i such that j ∈ J�i ,

xi = 0 for all i ∈ J r \ { j}.
The proof of C̃ = ⊕

j∈ J r C̃ j is based on the arguments of Lemmas 4.12 and 4.15. As this observation is
just a remark, we will not provide a proof.

Proof of the “if” part of Theorem 4.7. Let Ci ⊂ Tn , for i ∈ I , be defined by (39) (see also (40), a working
equivalent definition, and Lemma 4.15 for an equivalent definition of

⊕
i∈Ir Ci ). Let the operator x �→ x̂

be defined as in Theorem 4.14.
Let x ∈ �V (which in particular means x 	= 0) and λ ∈ T+ . If xi = 0 for all i ∈ I , then λx ∈ �V

is immediate by Remark 4.13 because x 	= 0. If xi 	= 0 for some i ∈ I , let h := min{r ∈ [p] | xt 	= 0
for some t ∈ Ir}. Then, x̂ /∈ ⊕

i∈Ih Ci by Theorem 4.14 because x ∈ �V . Note that for y := λx we have
min{r ∈ [p] | yt 	= 0 for some t ∈ Ir} = h and ŷ = λx̂. By Theorem 4.14 it follows that y ∈ �V because
ŷ = λx̂ /∈ ⊕

i∈Ih Ci .
Let now x, y ∈ �V (which in particular means x 	= 0 and y 	= 0) and define z := x ⊕ y.
Assume first that xi = yi = 0 for all i ∈ I . Then, zi = 0 for all i ∈ I , and as z 	= 0, we conclude

z ∈ �V by Remark 4.13.
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In the second place, assume xi 	= 0 for some i ∈ I but yt = 0 for all t ∈ I . Then, note that ẑ = x̂ ⊕ w
for some vector w which satisfies supp(w) ∩ I = ∅. Let h := min{r ∈ [p] | xt 	= 0 for some t ∈ Ir}, so
x̂ /∈ ⊕

i∈Ih Ci by Theorem 4.14. Since ẑ = x̂ ⊕ w and supp(w)∩ Ih = ∅, from Lemma 4.15 it follows that
ẑ /∈ ⊕

i∈Ih Ci , and so z ∈ �V by Theorem 4.14.
Finally, assume xi 	= 0 and yt 	= 0 for some i, t ∈ I . Let h := min{r ∈ [p] | xt 	= 0 for some t ∈ Ir}

and k := min{r ∈ [p] | yt 	= 0 for some t ∈ Ir}. We first consider the case h 	= k, and so without loss
of generality we may assume h < k. Then, as above, we conclude that z ∈ �V because ẑ = x̂ ⊕ w for
some vector w satisfying supp(w) ∩ Ih = ∅. Suppose now h = k. Then, min{r ∈ [p] | zt 	= 0 for some
t ∈ Ir} = h and ẑ = x̂ ⊕ ŷ. From x̂ /∈ ⊕

i∈Ih Ci and ŷ /∈ ⊕
i∈Ih Ci , it follows that ẑ /∈ ⊕

i∈Ih Ci , because⊕
i∈Ih Ci is a conical hemispace by Proposition 4.16. Thus, again by Theorem 4.14, we have z ∈ �V . �

Example 1. Let us consider the cone

V = span
({

e1} ∪ {
e1 ⊕ e3} ∪ {

e1 ⊕ δe4
∣∣ δ ∈ T

} ∪ {
e2} ∪ {

e2 ⊕ e4}) ⊆ T4.

Note the V can be written in the form (31) defining I := {1,2}, J := {3,4}, σ
(−)
13 := {λ | λ � 1},

σ
(−)
14 := T, σ

(−)
23 := {0} and σ

(−)
24 := {λ | λ � 1}. Since the rank-one condition (32) is satisfied with

σ
(+)
13 := T ∪ {+∞} \ σ

(−)
13 = {λ | λ > 1}, σ

(+)
14 := T ∪ {+∞} \ σ

(−)
14 = {+∞}, σ

(+)
23 := T ∪ {+∞} \ σ

(−)
23 =

T+ ∪ {+∞} and σ
(+)
24 := T ∪ {+∞} \ σ

(−)
24 = {λ | λ > 1}, by Theorem 4.7 we know that V is a conical

hemispace. Then, by Proposition 4.8 we also know that V1 := V and

V2 := span
({

e3} ∪ {
e3 ⊕ αe1

∣∣ α < 1
} ∪ {

e3 ⊕ βe2
∣∣ β ∈ T

} ∪ {
e4} ∪ {

e4 ⊕ γ e2
∣∣ γ < 1

})
form a joined pair of conical hemispaces. Let us verify that this holds.

We first show that V1 ∩ V2 = {0}. Assume x ∈ V1 ∩ V2. Note that we can always express x as a
linear combination of the generators of V1 containing at most one vector of the form e1 ⊕ δe4. The
same observation holds for the generators of V2 and vectors of the form e3 ⊕ αe1, e3 ⊕ βe2 and
e4 ⊕ γ e2. Thus, we have

x = μ1e1 ⊕ μ2
(
e1 ⊕ e3) ⊕ μ3

(
e1 ⊕ δe4) ⊕ μ4e2 ⊕ μ5

(
e2 ⊕ e4)

for some μ1,μ2,μ3,μ4,μ5 ∈ T since x ∈ V1, and

x = ν1e3 ⊕ ν2
(
e3 ⊕ αe1) ⊕ ν3

(
e3 ⊕ βe2) ⊕ ν4e4 ⊕ ν5

(
e4 ⊕ γ e2)

for some ν1, ν2, ν3, ν4, ν5 ∈ T since x ∈ V2.
Writing the equality on components in these expressions gives:

μ1 ⊕ μ2 ⊕ μ3 = αν2,

μ4 ⊕ μ5 = ν3β ⊕ ν5γ ,

μ2 = ν1 ⊕ ν2 ⊕ ν3,

μ3δ ⊕ μ5 = ν4 ⊕ ν5. (47)

From the first and third equalities in (47) it follows that

μ2 �μ1 ⊕ μ2 ⊕ μ3 = αν2 � α(ν1 ⊕ ν2 ⊕ ν3) = αμ2,

which, due to α < 1, implies μ1 = μ2 = μ3 = ν1 = ν2 = ν3 = 0. Then, from the second and fourth
equalities in (47) it follows that

μ5 �μ4 ⊕ μ5 = ν5γ � (ν4 ⊕ ν5)γ = μ5γ ,

which, due to γ < 1, implies μ4 = μ5 = ν4 = ν5 = 0.
To show that V1 ∪ V2 = T4, let x ∈ T4. It is convenient to consider different cases.
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If x1 = x3 = 0, we have x = x4(e2 ⊕ e4)⊕ x2e2 ∈ V1 when x2 � x4, and defining γ = x−1
4 x2 we have

x = x4(e4 ⊕ γ e2) ∈ V2 when x2 < x4.
When x1 = 0 and x3 	= 0, defining β = x−1

3 x2 we have x = x4e4 ⊕ x3(e3 ⊕ βe2) ∈ V2.

When x1 	= 0 and x3 = 0, defining δ = x−1
1 x4 we have x = x2e2 ⊕ x1(e1 ⊕ δe4) ∈ V1.

If x1 	= 0 and x3 	= 0, defining δ = x−1
1 x4 we have x = x1e1 ⊕ x2e2 ⊕ x3(e1 ⊕ e3) ⊕ x1(e1 ⊕ δe4) ∈ V1

when x1 � x3, and defining β = x−1
3 x2 and α = x−1

3 x1 we have x = x3e3 ⊕x4e4 ⊕x3(e3 ⊕βe2)⊕x3(e3 ⊕
αe1) ∈ V2 when x1 < x3.

4.3. Closed hemispaces and closed halfspaces

We now consider the case of closed conical hemispaces, and show that these are precisely the
closed homogeneous halfspaces, i.e., cones of the form{

x ∈ Tn
∣∣∣ ⊕

j∈ J

γ j x j �
⊕
i∈I

βi xi and xi = 0 for all i ∈ L

}
, (48)

where I , J and L (with I and J , or L, possibly empty) are pairwise disjoint subsets of [n].

Theorem 4.18. (See Briec and Horvath [3].) Closed conical hemispaces = closed homogeneous halfspaces.

Proof. Closed homogeneous halfspaces are closed conical hemispaces, since the complement of (48)
is given by{

x ∈ Tn
∣∣∣ ⊕

j∈ J

γ j x j >
⊕
i∈I

βi xi or xi 	= 0 for some i ∈ L

}
,

and adding the null vector 0 to this complement we get a cone.
Conversely, if a conical hemispace V is closed, then in (31) we have σi j ∈ T for all i ∈ I and j ∈ J ,

and the sets σ
(−)
i j can only be of the form

σ
(−)
i j =

{ {λ | λ � σi j} if σi j ∈ T+,

{σi j} if σi j = 0.

Equivalently, the sets J<
i and J∞

i of Proposition 4.10 are empty for all i ∈ I , and so K r = ∅ for r ∈ [p].
Observe that this means that Lr = J if J r = ∅, which in turn implies p = r. Moreover, we also have
V = ⊕

i∈I (Ci ⊕Di) = ⊕
i∈I Ci if V is a closed conical hemispace, since J∞

i = ∅ implies Di ⊆ Ci .
Assume first that p � 2, which implies J 1 	= ∅ as mentioned above. Then, we have J 2 ∪ K 2 ⊆

K 1 = ∅ by (37). It follows that J 2 = ∅, and so p = 2. Thus, we have I = I1 ∪ I2 and V = ⊕
i∈I1∪I2 Ci .

By Lemma 4.15, the cone
⊕

i∈I1 Ci can be represented by⊕
j∈ J 1

γ j x j �
⊕
i∈I1

βi xi and x j = 0 for j ∈ L1 ∪ I2. (49)

Note that this is just condition (42), and condition (43) is always satisfied as J�k = J 1 for all k ∈ I1.
Since J 2 = ∅, it follows that

⊕
i∈I2 Ci is generated by {ei | i ∈ I2}, and then (49) implies that V =⊕

i∈I1∪I2 Ci is the set of all vectors satisfying⊕
j∈ J 1

γ j x j �
⊕
i∈I1

βi xi and x j = 0 for j ∈ L1, (50)

which is a closed homogeneous halfspace. Note that by Lemma 4.15 we arrive at the same conclusion
if we assume that p = 1 and J 1 	= ∅.

Finally, if we assume that p = 1 and J 1 = ∅, then V = ⊕
i∈I1 Ci is generated by {ei | i ∈ I1 = I}, i.e.,

V = {x ∈ Tn | x j = 0 for j ∈ J } is a closed homogeneous halfspace. �
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We now recall an important observation of [3], which will allow us to easily extend the result of
Theorem 4.18 to general hemispaces. For the reader’s convenience, we give an elementary proof based
on (tropical) segments and their perturbations.

Lemma 4.19. (See Briec and Horvath [3].) Closures of hemispaces = closed hemispaces.

Proof (in the max-times setting, with usual arithmetics). Consider the closure of a hemispace H in
Rn

max,× . Since the closure of a convex set is a closed convex set (see e.g. [12,5]), we only need to
show that the complement of this closure is also convex. This complement is open, so it consists of
all points x ∈ �H for which there exists an open “ball” Bε

x := {u ∈ Rn
max,× | |ui − xi | < ε for all i ∈ [n]}

such that Bε
x ⊆ �H. We need to show that if x and y have this property, then any linear combination

z = λx ⊕ μy with λ ⊕ μ = 1 also does. If we assume λ = 1, then

zi =
{

μyi, if μyi > xi,

xi, if μyi � xi .

Let us consider ẑ ∈ Rn
max,× defined by ẑi := zi + εi , where ε′

i are such that |εi | � ε for all i ∈ [n]. We
can write

ẑi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μyi + εi, if μyi + εi > xi and xi < μyi,

μyi + εi = xi + ε′
i , if μyi + εi � xi < μyi,

xi + εi, if μyi � xi + εi and μyi � xi,

xi + εi = μyi + ε′
i , if xi + εi < μyi � xi,

where always |ε′
i | � |εi | � ε . Thus, defining

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷi := yi + μ−1εi and x̂i := xi, if μyi + εi > xi and xi < μyi,

ŷi := yi + μ−1εi and x̂i := xi + ε′
i , if μyi + εi � xi < μyi,

ŷi := yi and x̂i := xi + εi, if μyi � xi + εi and μyi � xi,

ŷi := yi + μ−1ε′
i and x̂i := xi + εi, if xi + εi < μyi � xi,

we have ẑ = μ ŷ ⊕ x̂, x̂ ∈ Bε
x and ŷ ∈ Bε′′

y , where ε′′ := μ−1ε . Since �H is convex, it follows that

Bε
z ⊆ �H if Bε′′

x ⊆ �H and Bε′′
y ⊆ �H, proving the claim. �

Corollary 4.20. (See Briec and Horvath [3].) Closed hemispaces = closed halfspaces.

Proof. We need to consider the case of a closed halfspace that is not necessarily homogeneous, and
of a closed hemispace. A general closed halfspace is a set of the form{

x ∈ Tn
∣∣∣ ⊕

j∈ J

γ jx j ⊕ α �
⊕
i∈I

βi xi ⊕ δ and x j = 0 for j ∈ L

}
, (51)

where I , J and L are pairwise disjoint subsets of [n]. As in the case of conical hemispaces, it can be
argued that the complement is convex too, so (51) describes a hemispace.

Conversely, by Theorem 4.5, for a general hemispace H ⊆ Tn there exists a conical hemispace
V ⊆ Tn+1 such that H = C1

V . Even if H is closed, V may be not closed in general. However, if V
is the closure of V , then the section C1

V still coincides with H. Indeed, for any z = (x,1) ∈ V there

exists a sequence {zk}k∈N of vectors of V such that limk zk = z. Since zn+1 = 1 and, by Proposition 2.7,
Cα
V = {αx | x ∈H} for any non-null α, we can assume that zk = (λkxk, λk) for some λk ∈ T and xk ∈H.

It follows that limk λk = 1 and limk xk = x. Thus, x ∈ H because H is closed. Therefore, we conclude
that C1 = C1

V =H.
V
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By Lemma 4.19 it follows that �V is convex, and so �V ∪ {0} and V form a joined pair of conical
hemispaces. Then, by Theorem 4.18, V can be expressed as a solution set to⊕

j∈ J

γ j x j ⊕ αxn+1 �
⊕
i∈I

βi xi ⊕ δxn+1 and x j = 0 for j ∈ L,

for some disjoint subsets I , J and L of [n]. The original hemispace in Tn appears as a section of this
closed homogeneous halfspace by xn+1 = 1, and so it is of the form (51). �
Corollary 4.21. Open hemispaces = open halfspaces.

Proof. Open hemispaces and open halfspaces can be obtained as complements of their closed “part-
ner”. �
4.4. Characterization of hemispaces by means of (P , R)-decompositions

We now characterize hemispaces by means of (P , R)-decompositions, as foreseen by Theorem 4.5
and Theorem 4.7.

Theorem 4.22. Let H be a non-empty proper convex subset of Tn. Then, H is a hemispace if and only if
there exist non-empty disjoint sets I and J satisfying I + J = [n + 1] and n + 1 ∈ I , and sets σ

(−)
i j , which

are non-empty proper subsets of T ∪ {+∞} either of the form {λ ∈ T | λ � σi j} or {λ ∈ T | λ < σi j} with

σi j ∈ T ∪ {+∞}, such that the pairs (σ
(−)
i j , σ

(+)
i j ), with σ

(+)
i j defined by σ

(+)
i j := (T ∪ {+∞}) \ σ

(−)
i j , satisfy

the rank-one condition (32) and

H = conv
({

λe j
∣∣ j ∈ J , λ ∈ σ

(−)
n+1, j

})
⊕ span

({
ei ⊕ λe j

∣∣ i ∈ I \ {n + 1}, j ∈ J , λ ∈ σ
(−)
i j

})
(52)

if 0 ∈H, and

H = conv
({

λe j
∣∣ j ∈ J , λ 	= +∞, λ ∈ σ

(+)
n+1, j

})
⊕ span

({
ei ⊕ λe j

∣∣ i ∈ I \ {n + 1}, j ∈ J , λ ∈ σ
(+)
i j

})
(53)

otherwise. Moreover, if H is a hemispace given by the right-hand side of (52), then �H is given by the right-
hand side of (53), and vice versa.

Proof. Sufficiency: Consider the cones

V1 = span
({

en+1 ⊕ λe j
∣∣ j ∈ J , λ ∈ σ

(−)
n+1, j

})
⊕ span

({
ei ⊕ λe j

∣∣ i ∈ I \ {n + 1}, j ∈ J , λ ∈ σ
(−)
i j

})
,

V2 = span
({

en+1 ⊕ λe j
∣∣ j ∈ J , λ ∈ σ

(+)
n+1, j

})
⊕ span

({
ei ⊕ λe j

∣∣ i ∈ I \ {n + 1}, j ∈ J , λ ∈ σ
(+)
i j

})
. (54)

By Theorem 4.7 (the “if” part), V1 is a conical hemispace. Further, by Proposition 4.8, V1 and V2
form a joined pair of conical hemispaces. Then, from Lemma 4.4 it follows that C1

V1
and C1

V2
form

a complementary pair of hemispaces. Besides, by Proposition 2.8 we have H = C1
V1

if 0 ∈ H and

H = C1
V2

otherwise. Thus, H is a hemispace.

Necessity: If H is a hemispace, then (H,�H) is a non-trivial complementary pair of hemispaces.
By Theorem 4.5, H and �H can be represented as sections of some conical hemispaces V1 and V2,
which form a joined pair of conical hemispaces. Since (H,�H) is non-trivial, it follows that (V1,V2)
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is also non-trivial. By Theorem 4.7 (the “only if” part) and Proposition 4.8, V1 and V2 must be as
in (54). Then, since en+1 ∈ V1, we have H = C1

V1
if 0 ∈ H and H = C1

V2
otherwise. Consequently,

using Proposition 2.8, we see that H has a (P , R)-decomposition as in (52) and its complement as
in (53) if 0 ∈ H. Similarly, H has a (P , R)-decomposition as in (53) and its complement as in (52) if
0 /∈H. �
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