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In this work we analyze the validity of Lifshitz’s theory for the case of nonequilibrium scenarios from a
full quantum dynamical approach. We show that Lifshitz’s framework for the study of the Casimir pressure
is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem,
subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we
implement the closed time path formalism developed in previous works to study the case of two half spaces
(modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths)
interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the
full time evolution, obtaining general expressions for the different contributions to the pressure that take
part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-
time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the
baths’ contribute, in agreement with the results of previous works, where this was assumed without
justification. We also study in detail the physics of the initial conditions’ contribution and the concept of
modified vacuum modes, giving insights about in which situations one would expect a nonvanishing
contribution at the steady state of a nonequilibrium scenario. This would be the case when considering
finite width slabs instead of half-spaces.
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I. INTRODUCTION

In this paper we are concerned with a first principles
calculation of the nonequilibrium Casimir pressure
between real materials, for the particular geometry of
half-spaces separated by a vacuum gap of constant width.
By nonequilibrium we refer to a situation in which the
objects are held at different (but fixed) temperatures.
Lifshitz formula describes the Casimir pressure in a

steady situation, in terms of the macroscopic properties of
the materials. The original derivation [1] was based on the
use of stochastic Maxwell equations, and relied heavily on
the thermal properties of the stochastic sources, assuming
thermal equilibrium. A few years later, the same formula
was obtained in Ref. [2] within the framework of quantum
field theory at finite temperature. Whatever the chosen
approach, the final result can be expressed in terms of the
permittivity of the materials (or alternatively in terms of
their reflection coefficients), and therefore admits a natural
generalization to the case in which the half-spaces are
maintained at different temperatures, assuming that the
system reaches a steady state. This kind of approach has
been followed in Ref. [3], where the nonequilibrium
Casimir force has been considered for the first time.
Nevertheless, the latter seems rather an extension of the
original derivation than a full quantum development from

first principles which is, today, a pending challenge in
nonequilibrium scenarios. Although there are remarkable
works in the context of Casimir physics (as Ref. [4]), the
present paper focuses on the dynamical aspects of the
building-up of the steady state of an electromagnetic (EM)
field interacting with matter in a nonequilibrium scenario
that, as far as we know, has not been done before, and we
think that contains relevant physics.
Beyond the nonequilibrium features, this work also

enters another (not completely unrelated) issue that has
been the subject of an intense controversy: whether Lifshitz
theory is applicable or not to real metals. In the simplest
approach, free (conduction) electrons in metals are
described by the Drude model, although its dissipationless
limit, the plasma model, seems to be in concordance with
the experimental results [5]. Some authors claim that
Lifshitz formula cannot be applied for the Drude model
[6], while others have reached the opposite conclusion [7],
claiming that the Lifshitz-Matsubara formula is not correct
for the plasma model. At first glance, our work will not
address directly this important question, because through-
out the paper we consider a material without free carriers,
i.e., an insulator which permittivity function is given by the
bounded electrons only (see Ref. [6], for example).
However, the present work enters the discussion about a
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systematic treatment that allows us to understand the
limitations of the Lifshitz formula, and how to figure out
which model is consistent with it.
A first principles calculation involves a microscopic

model for the quantum polarization degrees of freedom of
the materials, interacting both with the electromagnetic
field and thermal baths that fix the different temperatures of
the objects (see Ref. [8–10] for more details about physical
aspects of the material model). The evolution of the fully
quantized system from adequate initial conditions should
eventually show the emergence of a steady situation in the
long time limit, with Casimir pressure given by a Lifshitz-
like formula. From a technical point of view, this program
can be developed in the framework of the theory of
quantum open systems (see Ref. [11]). The quantization
procedure can be worked out through Heisenberg equations
for the quantum operators (canonical formalism [12]) or
path integral methods (Schwinger-Keldysh closed time
path formalism (CTP) [13]), but both are subject to initial
conditions [14]. For the latter, after integration of the
material degrees of freedom and thermal baths, one obtains
the influence action (Refs. [13,15]) for the electromagnetic
field. Then, integrating the field, one can construct the
generating functional to calculate the correlation functions
(see Ref. [16]). Using the correlation functions derived, one
can compute the time evolution of the mean value of the
energy momentum tensor, and therefore the Casimir
pressure as a function of time. The main question is
therefore whether this mean value reaches a well-defined
limit at long times, and whether this limit depends on the
initial conditions or not. Note that the approaches that are
usually implemented in Casimir physics can be considered
as “steady” quantization schemes in the sense that they
assume without justification that the system reaches a
steady state and, in addition, that the latter is of thermal
equilibrium. Both requirements make the “steadiness”
assumption physically reasonable and expected to treat
equilibrium situations (see for example Refs. [14,17] for
the “steady canonical quantization” schemes and Ref. [18]
for the “steady path integral quantization”). This kind of
approaches are included in the so-called “Thermo Field
Dynamics” framework, which constitutes a systematic
methodology for treating quantum field theory in equilib-
rium scenarios. Within this context, two remarkable works
presenting how to deal with real materials are Refs. [2,10].
Nonetheless, the CTP approach naturally unifies the study
of equilibrium and nonequilibrium systems (see Ref. [13]
for more detail), so the equilibrium situation is fully
included as a particular case of the general result. In fact,
it is not clear how to extend it to nonequilibrium (steady)
situations or how it is done from first principles. As we
mentioned before, the first work in this direction was
Ref. [3] which extends the stochastic approach, but a
complete quantum approach will bring to light the physics
of the contributions of each part of the model to the

electrodynamical quantities. At the end, the whole picture
gives an appropriate and systematic way to deal with
nonequilibrium situations in Casimir physics.
In previous works, some of us investigated preliminary

aspects of the problem at hand. In Ref. [19] the case of a
quantum scalar field in the presence of an arbitrary material
was studied. After developing the quantum open systems
approach for the particular situation of a scalar field
interacting with microscopic degrees of freedom and
thermal baths, it was shown that the emergence of a steady
state independent of the initial conditions is a nontrivial
issue. While for a quantum field in bulk material such limit
exists, this is not the case for slabs of material with finite
width. The generalization to the electromagnetic field has
been considered in Ref. [20], where the CTP generating
functional for the electromagnetic field interacting with a
composite environment has been described in detail.
Specifically, the environment considered there consisted
of the quantum polarization degrees of freedom at each
point of space, connected to thermal baths to fix the local
temperature. Formal expressions for the Maxwell tensor
and the Poynting vector in terms of the Hadamard propa-
gator were obtained, for the case of the electromagnetic
field in bulk material, where, once again, the steady state is
independent of the initial conditions. Some technical issues
regarding the gauge fixing procedure in the context of CTP
have also been discussed.
In the present paper we will extend the results in [20] to

the case of the electromagnetic field in the presence of two
half-spaces of real media separated by a vacuum gap.
Considering the previous results mentioned above, it is not
clear a prioriwhether the initial conditions will be erased or
not in the long time limit for this particular geometry. Using
the formalism of Ref. [20] we will obtain explicit expres-
sions for the Casimir pressure as a function of time,
assuming that the interaction of the vacuum field with
the materials starts at a given time t0. The Casimir pressure
will receive three different contributions, coming from the
field’s initial conditions, the polarization degrees of free-
dom, and from the thermal baths. We will show that, in the
long time limit, only the baths’ contribution survive. This is
the contribution expected in the Lifshitz approach.
Therefore, we will provide a first principles derivation of
Lifshitz formula for nonequilibrium situations in the
framework of quantum open systems.
The paper is organized as follows: In the next section we

present the model and the influence action that includes
noise and dissipation contributions to the calculation of the
Casimir force. Section III contains the expression of the
Casimir pressure in terms of the electromagnetic correlation
functions and, following this, the discussion about the
different contributions to the pressure appears in Sec. IV.
The long-time limit of the complete problem is included in
Sec. V and finally, in Sec. VI we include our final remarks
and conclusions.
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II. THE MODEL AND THE FIELD
INFLUENCE ACTION

In order to include effects of dissipation and noise
(fluctuations) in the calculation of the Casimir force
between two half-spaces of real material interacting with
the EM field, we will develop a full CTP approach to the
problem. Therefore, a microscopic physical model for the
material of the bodies will be introduced. Once the model
is defined, one expects the material to show effective
macroscopic EM properties, that will be contained in the
Feynman-Vernon influence functional included in the CTP
formalism.

A. The total system: EM field plus matter

As in Ref. [20], we will consider a composite system,
consisting in two parts: the EM field Aμ (considered as a
massless vector gauge field) and the real media, which is
modeled as a continuous set of quantum Brownian particles
representing the polarization density degree of freedom P.
These degrees of freedom (DOFs) are basically three-
dimensional harmonic oscillators (with mass M½j� and
frequency Ω½j� in each direction) coupled to the field at
each point of space in a realistic way. The composite
system (EM field and DOFs) is also coupled to external
baths of harmonic oscillators in each direction as in the
well-known quantum Brownian motion theory (QBM).
Therefore, the total action for the whole system is given by:

S½Aμ;Px;qn;x� ¼ S0½Aμ� þ S0½Px�
þ
X
n

S0½qn;x� þ SCurr½Aμ;Px�

þ
X
n

Sint½Px;qn;x�; ð1Þ

where the first three terms are the free actions for each part
of the total system, while the interaction action between
the field and the polarization DOFs is given by a current-
type interaction which can be written in two equivalent
ways by defining the conserved current four-vector as Jμ ¼
ð∇ · P;− _PÞ and the electric field Ej ¼ −∂jA0 − ∂0Aj:

SCurr½Aμ;Px� ¼ λ0½ðgJμÞ � Aμ� ¼ λ0½ðgPjÞ � Ej�; ð2Þ

where A � B≡ R d4xAðx; tÞBðx; tÞ and λ0 is the coupling
constant between them. It is worth noting that, when
writing the interaction actions, we have introduced the
matter distribution gðxÞ, which takes binary values (1 or 0)
depending whether or not there is material at the spatial
point x.
On the other hand, the interaction between the polari-

zation DOFs and each bath is simply linear coupling
through the constants λ½j�n;x for each bath oscillator (n) in
each point (x) and direction (j):

Sint½Px;qn;x� ¼
Z

dxgðxÞλ½j�n;xðPj
x · q

j
n;xÞ; ð3Þ

where A · B≡ R tfti dtAðtÞBðtÞ, λ½j�n;x are coupling constants
between the DOFs and the baths, and [j] denotes that this
superscript is not summed as in Einstein notation. It is clear
that greek indices sum over 0,1,2,3 while latin sum over
spatial components only (1,2,3).
Finally, we will assume that the total system is initially

uncorrelated, thus the initial density matrix is written as a
direct product of each part, which we also assume to be
initially in a thermal equilibrium at a proper characteristic
temperatures (βEM; βPx

; βB;x—the material can also, in
principle, be thermally inhomogeneous),

ρ̂ðtiÞ ¼ ρ̂EMðtiÞ ⊗ ρ̂Px
ðtiÞ ⊗ ρ̂fqn;xgðtiÞ: ð4Þ

B. EM field influence action

As our goal is the study of the dynamics of the EM field
correlation functions, we start by coarse-graining the baths
and the DOFs in order to obtain the exact EM field
influence action. Since we have quadratic actions and
we choose the initial states as Gaussian, the EM field
influence action will have a quadratic form, with dissipa-
tion and noise kernels acting over the EM field.
It is well known from the QBM theory, coarse-graining

the baths will result in QBM influence actions for each
component of each DOF in each point of space, i.e., the
result will be SIF½Pj

x; P
0j
x � including the QBM dissipation

and noise kernels. Therefore, at this point, the EM field
influence action is defined as:

eiSIF½Aμ;A0μ�

¼
Z

dPf

Z
dPidP0

i

Z
Pðtf Þ¼Pf

PðtiÞ¼Pi

DP

×
Z

P0ðtf Þ¼Pf

P0ðtiÞ¼P0
i

DP0eiλ0
R

dxgðxÞð∇A0·PþA· _P−∇A00·P0−A0· _P0Þ

× eiðS0½P�−S0½P0�þSIF½P;P0�ÞρPðPi;P0
i; tiÞ: ð5Þ

Following Ref. [20], and considering an initial thermal
state for the DOFs, the EM field influence action is
given by:

SIF½Aμ; A0μ� ¼
Z

d4x
Z

d4x0ΔAμðxÞ½−2Dμνðx; x0Þ

× ΣAνðx0Þ þ i
2
Nμνðx; x0ÞΔAνðx0Þ�; ð6Þ

with ΔAμ ¼ A0μ − Aμ, ΣAμ ¼ ðAμ þ A0μÞ=2 and the dis-
sipation and noise kernels are given, respectively, by:

Dμνðx; x0Þ ¼ Γμν
jkDjk; ð7Þ
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Nμνðx; x0Þ ¼ Γμν
jkNjk; ð8Þ

which ensures gauge invariance thanks to the fact that
the differential operator Γμν

jk ≡ δμ
0δν

0∂2
jk0 − δμ

0δν
k∂2

jt0 −
δμ

jδν
0∂2

tk0 þ δμ
jδν

k∂2
tt0 satisfies ∂μΓμν

jk ¼ ∂ 0νΓμν
jk ≡ 0.

It is worth noting that the noise kernel presents two
contributions, one associated to the DOFs and the other one
associated to the baths: Njk ≡ NP

jk þ NB
jk.

All in all, the dissipation and noise kernels are given by:

Djkðx; x0Þ ¼ δjkδðx − x0ÞgðxÞ λ
2
0;x

2
G½j�

Ret;xðt − t0Þ; ð9Þ

NP
jkðx; x0Þ ¼ δjkδðx − x0Þ gðxÞλ

2
0;xM

½j�
x

2Ω½j�
x

coth

2
4βPj

x
Ω½j�

x

2

3
5

×
h
_G½j�
Ret;xðt − tiÞ _G½j�

Ret;xðt0 − tiÞ

þΩ½j�2
x G½j�

Ret;xðt − tiÞG½j�
Ret;xðt0 − tiÞ

i
; ð10Þ

NB
jkðx; x0Þ ¼ δjkδðx − x0ÞgðxÞλ20;xG½j�

Ret;x · N
½j�
x · ½G½j�

Ret;x�T;
ð11Þ

where we are considering materials that can be inhomo-
geneous and anisotropic (birefringent) [20].

N½j�
x is the QBM noise kernel generated by the thermal

bath over the DOF in the direction j and located at x. The

Green functions G½j�
Ret;x are the retarded Green functions for

each DOF, which satisfy G½j�
Ret;xð0Þ ¼ 0 and _G½j�

Ret;xð0Þ ¼ 1.
In other words, they are the QBM retarded Green functions
having x and [j] as parameters. These Green functions are
defined once the type of baths are chosen at each point of
space and direction. It is implicit that the chosen directions
defining the anisotropic properties are the Fresnel’s princi-
pal axis’ basis (see Ref. [20]) because, as we shall see, they
will allow us to define a diagonal permittivity tensor in this
basis. In fact, we are considering the same basis for every
point filled with material. This is completely general since
it is clear, for example, that disjoint bodies can have
different Fresnel’s basis. To include these features, it is
necessary to include changes of basis between all the
present basis. For simplicity, this will be omitted and, in
fact, for isotropic materials this is unnecessary since the
permittivity tensor is proportional to the identity matrix.
In the Lifshitz problem there are two different bodies

interacting, which are assumed to be homogeneous and
isotropic. Therefore a few simplifications arise. On the one
hand, homogeneity implies that all the spatial subscripts
reduce to two labels associated to each of the two bodies.
Considering two parallel plates separated by a distance l,
the homogeneity of each body means x → L;R depending
on the spatial point lays in the left or right body

respectively. On the other hand, isotropy of the material
in each body implies that superscripts [j] should be omitted
because there is no dependence with the direction.
However, we will keep generality in the material properties
for now.

III. CASIMIR PRESSURE IN TERMS
OF EM CORRELATION FUNCTIONS

In the present section we will calculate the EM field
CTP-generating functional and derive an expression for the
Hadamard propagator. We shall show how the Casimir
pressure can be easily written in terms of this Hadamard
propagator.

A. The Hadamard propagator and electrodynamics
in the temporal gauge

Once we have calculated the EM field influence action
generated by the material, we proceed to calculate the EM
field generating functional, which is defined by [20]:

ZCTP½Jμ; J0μ�

¼
Z

dAμ
f

Z
dAμ

i dA
0μ
i

Z
Aμðtf Þ¼Aμ

f

AμðtiÞ¼Aμ
i

DAμ

×
Z

A0μðtf Þ¼Aμ
f

A0μðtiÞ¼A0μ
i

DA0μeiðJμ�Aμ−J0μ�A0μÞeiðS0½Aμ�−S0½A0μ�Þ

× eiSIF½Aμ;A0μ�ρEMðAμ
i ; A

0μ
i ; tiÞ: ð12Þ

These integrals can be performed using the Faddeev-
Popov procedure (adapted to the CTP formalism), to extract
the redundant sums over paths on the same gauge class. In
[20], the gauge condition was introduced in the CTP-action
as a typical gauge fixing term. Then, the CTP integral is
worked out by writing the paths as a sum of a homogeneous
solution Aμ

0ðxÞ (satisfying the initial conditions) plus a shift.
The corresponding equations of motion for this solution are
the ones obtained from the EM CTP action (including the
EM field influence action), which in the case of the
temporal gauge reads:

�
ημν□ − ∂μ∂ν −

1

α
tμtν

�
AνðxÞ

þ 2

Z
d4x0Dμνðx; x0ÞAνðx0Þ ¼ 0; ð13Þ

where α is the gauge fixing parameter and tμ is a timelike
four-vector which can be taken as (1,0,0,0) for the temporal
gauge. These are four equations for the four components of
the EM field.
Therefore, the functional integral can be calculated in the

Landau gauge (where the gauge fixing parameter α goes to
0). All in all, the generating functional reads:
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ZCTP½ΣJ;ΔJ� ¼ he−iΔJ�A0iΣAi;ΣΠi
e−iΔJ�GRet�ΣJ

× e−
1
2
ΔJ�GRet�ð∂2tt0NÞ�GT

Ret�ΔJ; ð14Þ

where h…iΣAi;ΣΠi
¼ R dΣAi

R
dΣΠi…WEM½ΣAi;ΣΠi; ti�,

and WEM½ΣAi;ΣΠi; ti� is the initial EM field Wigner
functional associated to the EM field initial density matrix
ρ̂EMðtiÞ in the temporal gauge (see Ref. [20] for its
definition).
It is worth noting that A0 corresponds to the homo-

geneous solution of the EM equations of motion after
imposing the temporal gauge, which is written as:

Aj
0ðxÞ ¼ −

Z
dx0 _Gjk

Retðx;x0; t − tiÞΣAk
i ðx0Þ

þ
Z

dx0Gjk
Retðx;x0; t − tiÞΣΠk

i ðx0Þ: ð15Þ

GRet corresponds to the retarded Green tensor resulting
from Eq. (13) after imposing the temporal gauge condition
in the Landau gauge, which results in a set of three
equations of motion plus a residual gauge condition
obtained from the equation for A0 (which was erased by
the gauge condition). The initial conditions for the retarded
propagator are, as usual,

Gjk
Retðx;x0; 0Þ ¼ 0; _Gjk

Retðx;x0; 0Þ ¼ −δjkδðx − x0Þ: ð16Þ

Once we have calculated the EM field generating func-
tional, we can functionally derive it in order to obtain the
EM n-point functions and, in particular, the propagators.
The calculation of the Wightman function is straightfor-

ward, from which we can read the Hadamard propagator:

Gjk
H ðx1; x2Þ≡ hAj

0ðx1ÞAk
0ðx2ÞiΣAi;ΣΠi

þ ½GRet � ð∂2
tt0NÞ � ðGRetÞT �jkðx1; x2Þ: ð17Þ

This expression holds for every initial state of the field
and depends on the chosen gauge. Note that the Hadamard
propagator has two separated contributions. The first term
is entirely associated to the field’s effective dynamics and
the initial state. The other contribution is associated to the
material degrees of freedom represented by the noise kernel
N, which also splits in two contributions due to the
composite nature of the material (DOFs plus bath in each
point of space).
However, all the dynamics is up to the retarded Green

tensor in the temporal gauge. As it was shown in Ref. [20],
the choice of the Landau gauge naturally implies that
A0 ≡ 0 in order to avoid divergent terms. Considering the
temporal component of Eq. (13), and imposing the gauge
condition, one obtains a residual condition over the
remaining components of the EM field, which can be
written as:

∇ ·

�Z
t

ti

dt0∂tð ε↔ðt − t0;xÞÞ ·Aðx; t0Þ
�
¼ 0; ð18Þ

where the permittivity tensor for the inhomogeneous and
anisotropic material is given by:

εmrðt − t0;xÞ≡ δmrðδðt − t0Þ þ λ20;xgðxÞG½m�
Ret;xðt − t0ÞÞ:

ð19Þ

Since the tensor is diagonal, the expression is given in
the Fresnel’s principal axes basis. The residual condition
in Eq. (18) is a generalization of the condition considered
in Ref. [17]. It was shown in Ref. [20] that in the case of
isotropic and nondissipative material, Eq. (18) reduces to
the generalized Coulomb condition of Ref. [17]

∇ · ½εðxÞAðx; tÞ� ¼ 0; ð20Þ
where the permittivity tensor has been replaced by a single
function.
Also in Ref. [20] it is proved that, in the general case, the

equations of motion for the spatial components of the EM
field in the temporal gauge can be written as:

∂2A
∂t2 þ∇ × ð∇ ×AÞ þ λ20;xgðxÞAðx; tÞ þ λ20;xgðxÞ

×
Z

t

ti

dt0
̈
G
↔

Ret;xðt − t0Þ ·Aðx; t0Þ ¼ 0; ð21Þ

where ðG
↔

Ret;xÞmk ¼ δmkG
½m�
Ret;x. Again, from the fact that we

could write this diagonal tensor (associated to the retarded
Green functions), it is clear that the chosen basis is the
Fresnel’s principal axes basis (in general, the tensor would
be nondiagonal). It is also remarkable the appearance of the
third term, which constitutes a finite renormalization
position-dependent mass term for the EM field as the
one found in the scalar case in Ref. [19]. As we shall see,
this term will be irrelevant in the determination of the Green
tensor.
Considering the equation of motion for the EM field, the

retarded Green tensor G
↔

Retðx;x0; tÞ can be defined as:

0 ¼ ∂2G
↔

Ret

∂t2 þ∇ ×∇ × G
↔

Ret þ λ20;xgðxÞG
↔

Retðx;x0; tÞ

þ λ20;xgðxÞ
Z

t

0

dt0
̈
G
↔

Ret;xðt − t0Þ · G
↔

Retðx;x0; t0Þ; ð22Þ

with the initial conditions given in Eq. (16).
Laplace-transforming the equation, we easily obtain:

∇ ×∇ × G
↔

Ret þ s2 ε
↔ðs;xÞ · G

↔

Retðx;x0; sÞ ¼ −Iδðx − x0Þ;
where the Laplace transform of the permittivity tensor of
Eq. (19) is
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ε
↔ðs;xÞ ¼ Iþ λ20;xgðxÞG

↔

Ret;xðsÞ:

It is clear that including dissipation it is not possible to
define refractive indexes in the time domain. However,
since the Laplace transform of the permittivity tensor turns
out to be diagonal in this basis, the refractive indexes can be
defined in the Laplace variable’s domain. In each direction
j, we can define the complex refractive indexes

n½j�2x ¼ 1þ λ20;xgðxÞG½j�
Ret;xðsÞ

in such a way that the Fresnel’s ellipsoid is a useful picture
to describe the material’s anisotropy.
From Eq. (22) we can see that the Laplace transform

of the EM retarded Green tensor turns out to be the
Feynman’s Green tensor associated to the differential
operator ∇ ×∇ ×þs2 ε

↔ðs;xÞ·, and therefore satisfies
Gij
Retðx;x0; sÞ ¼ Gji

Retðx0;x; sÞ. It is also worthwhile to note
that the reality of the EM retarded Green tensor in the time
domain implies that

Gij
Retðx;x0; sÞ ¼ G�ij

Retðx;x0; s�Þ:

B. Transient and steady pressure

We would like to write the pressure in terms of the
Hadamard propagator. In Ref. [20], an expression for the
expectation values of the components of the Maxwell
tensor is given in terms of the Hadamard propagator, using
the point-splitting technique. As we are interested in the
calculation of the Casimir force in the Lifshitz problem, a
simpler expression than the one in Ref. [20] can be
achieved.
Considering the symmetry of the configuration, the force

between the bodies will be given only by the pressure in the
perpendicular direction to the surfaces, i.e., along the
direction parallel to the separation distance l, which we
will call the z axis. Therefore, in the Lifshitz problem, the
pressure will be given directly by the zz-component of the
Maxwell tensor, which can be written for a field point x1
inside the gap as in Ref. [3]:

T̂zzðx1Þ ¼ −
Λij

8π
½Êiðx1ÞÊjðx1Þ þ B̂iðx1ÞB̂jðx1Þ�; ð23Þ

where the electric field is given by Ei ¼ −∂0Aj, while the
magnetic field is Bi ¼ ð∇ ×AÞi. Λij is the diagonal
matrix Λ11 ¼ Λ22 ¼ 1 ¼ −Λ33.
Then, using the point-splitting technique and typical

relations between the different propagators (see [13]), the
expectation value of the zz-component, can be written in
terms of the Hadamard propagator:

PCasðx1Þ≡ hT̂zzðx1Þi ¼ −
Λij

8π
lim
x2→x1

½δisδjm∂t1∂t2

þ ϵirsϵjlm∂r1∂l2 �Gsm
H ðx1; x2Þ; ð24Þ

once the propagator is renormalized in the coincidence
limit.
It is worth noting that, unlike the one found in Ref. [3]

which is proposed to correspond to the steady situation, the
last expression actually is the Casimir pressure which
emerges at the initial time ti. Therefore, it comprises all
the transient dynamics of the pressure in the way to reach its
final value at the steady situation. The pressure can depend
on time but also on space during the transient stage, until it
finally achieves the steady situation, where its value results
to be time and space-independent:

PCasðx1Þ → P∞
Cas: ð25Þ

As a final remark, given the splitting of the contributions
to the Hadamard propagator in Eq. (17), and also that N ¼
NP þ NB (depending each one on its temperature), it is
clear that the total pressure can be written in terms of three
contributions:

PCasðx1Þ ¼PICðx1ÞþPDOFsðx1;βPx
ÞþPBðx1;βB;xÞ: ð26Þ

Then, each part of the total system will contribute to the
Casimir pressure at a given space-time point. The main
subject of study of the next sections will be to determine
which contributions will survive in the steady situation.
As we are dealing with an initial conditions problem,

every time variable is defined in the interval ½ti;þ∞Þ.
Therefore, we can Laplace transform in each time variable
t1, t2 inside the coincidence limit of Eq. (24). Introducing a
Mellin’s formula for each variable, the second term in
Eq. (24) is easily written in terms of the retarded Green
tensor’s double Laplace transform (note that this term only
involves spatial derivatives):

lim
x2→x1

ϵirsϵjlm∂r1∂l2G
sm
H ðx1; x2Þ

¼
Z

α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞ

× lim
x2→x1

½ϵirsϵjlm∂r1∂l2G
sm
H ðx1; s1;x2; s2Þ�; ð27Þ

where in the right-hand side (r.h.s.) the coincidence limit
was taken for the time variables and where α1;2 are taken to
define vertical lines in the s1;2-complex planes in such a
way that all the poles of the integrands taken as functions of
s1 and s2 are at the left of these lines.
Writing each time variable of the first term of Eq. (24) in

terms of Laplace transforms, we find:
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∂t1∂t2G
sm
H ðx1; x2Þ ¼

Z
α1þi∞

α1−i∞

ds1
2πi

es1ðt1−tiÞL1½∂t1∂t2G
sm
H ðx1; x2Þ�

¼
Z

α1þi∞

α1−i∞

ds1
2πi

es1ðt1−tiÞ½s1∂t2G
sm
H ðx1; s1; x2Þ − ∂t2G

sm
H ðx1; ti; x2Þ�

¼
Z

α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

es1ðt1−tiÞes2ðt2−tiÞ½s1L2ð∂t2G
sm
H ðx1; s1; x2ÞÞ − L2ð∂t2G

sm
H ðx1; ti; x2ÞÞ�

¼
Z

α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

es1ðt1−tiÞes2ðt2−tiÞ½s1s2Gsm
H ðx1; s1;x2; s2Þ − s1Gsm

H ðx1; s1;x2; tiÞ

− s2Gsm
H ðx1; ti;x2; s2Þ þ Gsm

H ðx1; ti;x2; tiÞ�: ð28Þ

The second term between brackets does not depend on
s2. Therefore, for that term, the integral over s2 has the
integrand es2ðt2−tiÞ, which is analytic in all the s2-complex
plane, so the integral over any contour vanishes for t2 > ti.
The same happens for the third and last terms between
brackets. All in all, we have proved that for the first term in
Eq. (24):

lim
x2→x1

δisδjm∂t1∂t2G
sm
H ðx1; x2Þ

¼
Z

α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞs1s2δisδjm

× lim
x2→x1

Gsm
H ðx1; s1;x2; s2Þ: ð29Þ

Finally, the Casimir pressure can be rewritten as:

PCasðx1Þ ¼
−1
8π

Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞ

× lim
x2→x1

½Θsmðs1; s2ÞGsm
H ðx1; s1;x2; s2Þ�; ð30Þ

where we have defined the operator

Θsmðs1; s2Þ≡ Λijðs1s2δisδjm þ ϵirsϵjlm∂r1∂l2Þ:

The last expression for the Casimir pressure seems
formally the same to the one found in Ref. [3], however
there are subtle differences all related to the statement of
both problems. Equation (30) is not a steady-situation
expression (as the one in Ref. [3]), but it also comprises all
the information about the transient evolution of the zz-
component and describes the building up of the Casimir
pressure in the long time regime. In fact, in Ref. [3], the
pressure is calculated from the electric field correlation,
which results to be proportional to a Dirac δ-function in the
frequencies’ difference, imposed by the steady situation
formalism (based on the fluctuation-dissipation theorem) in
stochastic electrodynamics (SED). Thus, the double inte-
gration is automatically reduced to one integration by the
source correlation. In the present work, we calculate the
pressure from the Hadamard propagator, which is related to

the EM quantum field correlation and, as we shall see in
next sections, during the transient evolution it is not
necessarily proportional to a Dirac δ-function. Finally,
all these points are also reflected in the definition of the
Θ operator. In Ref. [3], it only depends on one frequency
variable which appears as a denominator due to the fact that
the pressure is calculated from the electric field correlation.
The present operator is a function of two Laplace variables
which appears as multiplicative factor, since we are
calculating the full time evolution of the pressure from
the EM field correlation.
In the next sections, we will calculate all the contribu-

tions to the pressure and study its time evolution, starting
from the expression in Eq. (30).

IV. DIFFERENT CONTRIBUTIONS
TO THE CASIMIR PRESSURE

The formal expression for the Casimir pressure obtained
in Eq. (30), is written in terms of the Hadamard propa-
gator’s double Laplace transform. From Eq. (17) it is clear
that it has two separated contributions, one associated to the
EM field’s initial conditions (the first term) and the other
one associated to the material (the second term). In fact, the
noise kernel also splits into two parts (N ¼ NP þ NB), one
associated to the DOFs (NP) and the other one associated to
the baths (NB). Then, the Hadamard propagator’s double
Laplace transform reads:

Gjk
H ðx1; s1;x2; s2Þ≡ hAj

0ðx1; s1ÞAk
0ðx2; s2ÞiΣAi;ΣΠi

þ L1;2½ðGRet � ð∂2
tt0NÞ

� ðGRetÞTÞjk�ðx1; s1;x2; s2Þ: ð31Þ

Each contribution will be analyzed separately.

A. Initial conditions’ contribution

Provided that the homogeneous solution is given by
Eq. (15) and the initial conditions for the Green tensor are
given in Eq. (16), the Laplace transform of the homo-
geneous solution results:
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Aj
0ðx; sÞ ¼

Z
dx0Gjl

Retðx;x0; sÞðΣΠl
iðx0Þ − sΣAl

iðx0ÞÞ; ð32Þ

where Gjl
Retðx;x0; sÞ is the Laplace transform of the EM

retarded Green tensor.
Therefore, the first term of the double Laplace transform

of the Hadamard propagator in Eq. (31) results:

hAj
0ðx1; s1ÞAk

0ðx2; s2ÞiΣAi;ΣΠi

¼
Z

dx0
Z

dx00Gjl
Retðx1;x0; s1ÞGkm

Retðx2;x00; s2Þ

× h½ΣΠl
i − s1ΣAl

i �ðx0Þ½ΣΠm
i − s2ΣAm

i �ðx00ÞiΣAi;ΣΠi
:

ð33Þ

It is clear that calculating the brackets average over initial
configurations will introduce the EM field’s initial state
through its Wigner functional. Therefore, this contribution
clearly depends on the initial state for the EM field.
However, instead of proceeding directly to the calculation
of the average, it is more convenient to calculate the
brackets as a quantum expectation value. As the field is
free at the initial time ti, the quantum expectation values in
the operator formalism and these averages (using the
homogeneous solution) are closely related. In fact, as a
particular case of the theory developed in previous sections,
it is easy to show that a free theory (without interactions)
verifies:

h½ΣΠl
i − s1ΣAl

i�ðx0Þ½ΣΠm
i − s2ΣAm

i �ðx00ÞiΣAi;ΣΠi

≡ 1

2
hfΠ̂l

iðx0Þ − s1Â
l
iðx0Þ; Π̂m

i ðx00Þ − s2Â
m
i ðx00Þgi; ð34Þ

where the r.h.s. corresponds to the quantum expectation
value of the anticommutator containing quantum free EM
field operators in the temporal gauge. In the free EM field
case, the temporal gauge also implies the Coulomb gauge
condition (∇ ·A ¼ 0) over the remaining components.
Therefore, the EM free field operators are

Âj
iðxÞ ¼

Z
dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð2πÞ3
p X

λ

εjðk; λÞ
h
âk;λe−iðωkti−k·xÞ

þ â†k;λe
iðωkti−k·xÞ

i
; ð35Þ

Π̂j
iðxÞ ¼

Z
dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð2πÞ3
p X

λ

iωkε
jðk; λÞ

h
âk;λe−iðωkti−k·xÞ

− â†k;λe
iðωkti−k·xÞ

i
; ð36Þ

where λ sums over the transverse electric (TE) and
magnetic (TM) polarizations, âk;λ; â

†
k;λ are the free EM

field photon annihilation and creation operators, εjðk; λÞ is
the j-component of the polarization vectors and ωk ¼ jkj.

Considering the completeness relation for the polariza-
tion vectors:

X
λ−TE;TM

εlðk; λÞεmðk; λÞ ¼ δlm −
klkm

ω2
k
; ð37Þ

and an initial thermal state for the EM field we get

hâk;λâ†k0;λ0 i ¼ δλλ0δðk − k0Þð1þ NðωkÞÞ; ð38Þ

hâ†k;λâk0;λ0 i ¼ δλλ0δðk − k0ÞNðωkÞ; ð39Þ

hâk;λâk0;λ0 i ¼ hâ†k;λâ†k0;λ0 i ¼ 0; ð40Þ

where NðωkÞ ¼ 1
ðeβEMωk−1Þ is the photon occupation number

for the initial thermal state of temperature βEM. Then, after a
change of variables, Eq. (34) can be written as:

h½ΣΠl
i − s1ΣAl

i�ðx0Þ½ΣΠm
i − s2ΣAm

i �ðx00ÞiΣAi;ΣΠi

¼
Z

dk
2ωkð2πÞ3

�
δlm −

klkm

ω2
k

�
coth

�
βEM
2

ωk

�
× eik·ðx0−x00Þðs1s2 þ ω2

kÞ: ð41Þ
Therefore, the average over the initial conditions in

Eq. (33) results:

hAj
0ðx1; s1ÞAk

0ðx2; s2ÞiΣAi;ΣΠi

¼
Z

dk
2ωkð2πÞ3

�
δlm −

klkm

ω2
k

�
coth

�
βEMωk

2

�
½s1s2 þ ω2

k�

×

�Z
dx0Gjl

Retðx1;x0; s1Þeik·x0
�

×

�Z
dx00Gkm

Retðx2;x00; s2Þe−ik·x00
�
: ð42Þ

Having this result, we can obtain an expression for the
contribution of the initial conditions to the Casimir pres-
sure. Replacing Gsm

H in Eq. (30) by the initial conditions’
contribution hAj

0ðx1; s1ÞAk
0ðx2; s2ÞiΣAi;ΣΠi

it is straightfor-
ward that:

PICðx1;βEMÞ¼−
1

8π

Z
dk

2ωkð2πÞ3
�
δlm−

klkm

ω2
k

�

×coth

�
βEMωk

2

�Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

×
ds2
2πi

eðs1þs2Þðt1−tiÞðs1s2þω2
kÞ lim

x2→x1

×

�
Θjkðs1;s2Þ

�Z
dx0Gjl

Retðx1;x0;s1Þeik·x0
�

×
�Z

dx00Gkm
Retðx2;x00;s2Þe−ik·x00

��
: ð43Þ
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Remarkably, this expression is quite general. In fact, it
comprises the full time evolution of the contribution of the
initial conditions to the Casimir pressure at any time for any
point of space in a vacuum region, since the boundaries
appear at the initial time ti. This is the reason why it is
physically expected that the contribution depends not only
in time but also in space until reaching the steady situation.
The information about the specific time evolution of the
problem is encoded in the analytical properties of the
integrand as a function of s1 and s2, i.e. in the poles and
the branch cuts present, as we shall see below.
Moreover, it is important to note that this expression is

valid for any geometry of the boundaries, including at least
one vacuum region (where we calculate the pressure). The
information about the boundaries is contained in the
Laplace transforms of the retarded Green tensors which
have to be calculated in a specific situation in order to
obtain a complete result. In the next sections, we will show
how this works for the Lifshitz problem, deriving the long-
time limit of this contribution.

B. Material’s contribution

Let us consider the second term in the r.h.s. of Eq. (31),
which is associated to the material. Due to the fact that
N ¼ NP þ NB, the contribution splits into twocontributions,
one associated to the DOFs and the other one associated to
thebaths.However, the first step inLaplace-transforming the
contribution is the same. As the contribution reads
L1;2½ðGRet � ð∂2

tt0NÞ � ðGRetÞTÞjk�ðx1; s1;x2; s2Þ and the
retarded Green tensors depend on the time differences,
i.e., Gij

Retðx; x0Þ ¼ Gij
Retðx;x0; t − t0Þ, then the products �

involve convolutions in the time variables between the noise
kernel ∂2

tt0N and one of the retarded Green tensors. Laplace-
transforming is straightforward:

L1;2½ðGRet � ð∂2
tt0NÞ � ðGRetÞTÞjk�ðx1; s1;x2; s2Þ

¼
Z

dx
Z

dx0Gjl
Retðx1;x; s1ÞL1;2½∂2

tt0Nlm�ðx; s1;x0; s2Þ

× Gkm
Retðx2;x0; s2Þ: ð44Þ

A few simplifications arise by considering that the noise
kernels satisfy

∂2
tt0Nlmðx; x0Þ ¼ δlmδðx − x0ÞgðxÞ∂2

tt0N
½l�
x ðt; t0Þ

[see Eqs. (10) and (11)]. Therefore, taking into account the
δ-functions:

L1;2½ðGRet � ð∂2
tt0NÞ � ðGRetÞTÞjk�ðx1; s1;x2; s2Þ

¼
Z

dxgðxÞGjl
Retðx1;x; s1ÞL1;2½∂2

tt0N
½l�
x �ðs1; s2Þ

× Gkl
Retðx2;x; s2Þ; ð45Þ

where the presence of g denotes the fact that this con-
tribution comes from the material regions exclusively.
Considering the definitions in Eqs. (10) and (11),

Laplace-transforming in both time variables the EM
noise kernel [taking into account that N½l�

x;Bðti; tiÞ ¼ 0 ¼
N½l�
x;Bðs1; tiÞ ¼ N½l�

x;Bðti; s2Þ due to the causality of G½l�
Ret;x],

we obtain:

L1;2

h
∂2
tt0N

½l�
x

i
ðs1; s2Þ ¼ s1s2N

½l�
x;Pðs1; s2Þ − s1N

½l�
x;Pðs1; tiÞ

− s2N
½l�
x;Pðti; s2Þ þ N½l�

x;Pðti; tiÞ
þ s1s2N

½l�
x;Bðs1; s2Þ; ð46Þ

where each Laplace transform is given by:

N½l�
x;Pðs1; s2Þ ¼

λ20;xM
½j�
x

2Ω½j�
x

coth

0
@βPj

x
Ω½j�

x

2

1
Aðs1s2 þ Ω½l�2

x Þ

× G½l�
Ret;xðs1ÞG½l�

Ret;xðs2Þ; ð47Þ

N½l�
x;Pðsn; tiÞ ¼ N½l�

x;Pðti; snÞ

¼ λ20;xM
½l�
x

2Ω½l�
x

coth

 
βPl

x
Ω½l�

x

2

!
snG

½l�
Ret;xðsnÞ; ð48Þ

N½l�
x;Pðti; tiÞ ¼

λ20;xM
½l�
x

2Ω½l�
x

coth

 
βPl

x
Ω½l�

x

2

!
; ð49Þ

N½l�
x;Bðs1; s2Þ ¼ λ20;xG

½l�
Ret;xðs1ÞN½l�

x ðs1; s2ÞG½l�
Ret;xðs2Þ: ð50Þ

The last term in the r.h.s. of Eq. (46) is the only one
associated to the baths. Moreover, it is important to note
that the second and third terms only depend on one of the
Laplace variables, while the fourth term does not depend
on them.
Is clear that in order to continue the explicit calculation,

one has to define the type of baths which are considered in
each direction and point of space for the specific problem.
However, we can take a further step in the calculation
without losing generality. From the QBM theory, is clear
that for any type of bath, the QBM noise depends on the
time differences, i.e., in the time domain we have that

N½l�
x ðt; t0Þ ¼ N½l�

x ðt − t0Þ. Therefore, although each time
variable is defined in the interval ½ti;þ∞Þ, its difference
results defined in ð−∞;þ∞Þ. Assuming that the kernel
verifies the convergence requirements (this can be easily
implemented by introducing a cutoff function in the QBM
noise kernel), it can be written in terms of its Fourier
transform:

N½l�
x ðt − t0Þ ¼

Z þ∞

−∞

dω
2π

e−iωðt−t0ÞN̄½l�
x ðωÞ; ð51Þ
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where N̄½l�
x ðωÞ contains the dependencies on the temperatures of the baths βx;B.

Using this general form for the QBM noise kernel, its Laplace transform is given by Eq. (50):

N½l�
x;Bðs1; s2Þ ¼ λ20;xG

½l�
Ret;xðs1ÞG½l�

Ret;xðs2Þ
Z þ∞

−∞

dω
2π

N̄½l�
x ðωÞ

ðs1 þ iωÞðs2 − iωÞ : ð52Þ

Once we have calculated each term of Eq. (46), the Eq. (30) gives expressions for each contribution to the Casi- mir
pressure in Eq. (26). Therefore, we can write:

PDOFsðx1; βPl
x
Þ ¼ −

1

8π

Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞ lim
x2→x1

�
Θjkðs1; s2Þ

Z
dxgðxÞ λ

2
0;xM

½l�
x

2Ω½l�
x

× coth

�
βPl

x
Ω½l�

x

2

�
ð½s21G½l�

Ret;xðs1Þ − 1�½s22G½l�
Ret;xðs2Þ − 1� þ Ω½l�2

x s1s2G
½l�
Ret;xðs1ÞG½l�

Ret;xðs2ÞÞ

× Gjl
Retðx1;x; s1ÞGkl

Retðx2;x; s2Þ
�
; ð53Þ

PBðx1; βx;BÞ ¼ −
1

8π

Z þ∞

−∞

dω
2π

Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

s1s2eðs1þs2Þðt1−tiÞ

ðs1 þ iωÞðs2 − iωÞ lim
x2→x1

�
Θjkðs1; s2Þ

Z
dxgðxÞλ20;x

× Gjl
Retðx1;x; s1ÞG½l�

Ret;xðs1ÞG½l�
Ret;xðs2ÞN̄½l�

x ðωÞGkl
Retðx2;x; s2Þ

�
: ð54Þ

Note that this expression includes an integral over the Fourier frequencies.
Last results are valid in the most general case, which is an inhomogeneous and anisotropic material having local initial

temperatures at each point. However, these expressions are simplified when considering the interaction between n different
but homogeneous and isotropic material bodies of volume Vn, at homogeneous temperatures. In this case, all the spatial
subscripts x (denoting inhomogeneity) and superscripts [l] (denoting anisotropy) have to be replaced by a single index n
denoting the material body. Therefore the integral over the space splits as a sum of integrals over each volume Vn, and both
expressions can be written as:

PDOFsðx1; βPn
Þ ¼ −

1

8π

X
n

λ20;nMn

2Ωn
coth

�
βPn

Ωn

2

�Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞ

× ½ðs21GRet;nðs1Þ − 1Þðs22GRet;nðs2Þ − 1Þ þΩ2
ns1s2GRet;nðs1ÞGRet;nðs2Þ�

× lim
x2→x1

�
Θjkðs1; s2Þ

Z
Vn

dxGjl
Retðx1;x; s1ÞGkl

Retðx2;x; s2Þ
�
; ð55Þ

PBðx1; βn;BÞ ¼
−1
8π

X
n

λ20;n

Z þ∞

−∞

dω
2π

N̄nðωÞ
Z

α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

s1s2eðs1þs2Þðt1−tiÞ

ðs1 þ iωÞðs2 − iωÞGRet;nðs1ÞGRet;nðs2Þ

× lim
x2→x1

�
Θjkðs1; s2Þ

Z
Vn

dxGjl
Retðx1;x; s1ÞGkl

Retðx2;x; s2Þ
�
: ð56Þ

In this case, the quantity

lim
x2→x1

�
Θjkðs1; s2Þ

Z
Vn

dxGjl
Retðx1;x; s1ÞGkl

Retðx2;x; s2Þ
�

is common to both contributions. However, the Mellin’s integrals are the ones that define the time evolution and steady state
of these contributions, and are very different due to the analytical properties of each integrand.
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Moreover, is important to have in mind that in these
expressions, it is implicit that at every point of the material
bodies, the basis of Fresnel principal axis is the same. Each
point defines a Fresnel’s ellipsoid having its axis along the
directions in which each component of the DOFs fluc-
tuates. This is, in principle, a limitation in the present
model, although it could be easily fixed by considering
different basis in each body (or even at each point of space).
As we mentioned before, in order to simplify the calcu-
lations but without losing the anisotropy properties, we will
keep a unique basis for all the material points. This
limitation disappears when considering isotropic materials,
as in the Lifshitz problem analyzed below.
However, it is important to recognize that the ellipsoid’s

picture is valid for real refractive indexes. In our case, as we
shall see, due to the inclusion of dissipation in the problem,
the three refractive indexes are complex, albeit the Fresnel’s
ellipsoid results useful as a conceptual and practical picture.
As final remarks, on the one hand, it is worth noting that

considering this case for the initial conditions’ contribution
has no formal simplification over Eq. (43) since the initial
fieldmodes and the spatial integrals are over thewhole space
[gðxÞ does not appear in those integrals]. On the other hand,
it is important to take into account that all the expressions
containing a coincidence limit have to be regularized before
calculating the limit. For the case of the Lifshitz problem,
this will be done after integrating over the space.

V. THE LONG-TIME LIMIT
OF THE FULL PROBLEM

With the general expressions for each contribution of the
Casimir pressure generated by different bodies of homo-
geneous and isotropic material at different temperatures in a
vacuum region, we can study the Lifshitz problem con-
sisting in two half-spaces by letting n be L or R for the left
and right plate respectively, as we have mentioned at the
end of Sec. II B.

A. Analytical properties of the Green functions
for the Lifshitz problem

From Eqs. (43), (55) and (56) the time evolution and
steady state of each contribution will be governed by the
analytical properties of the integrands as functions of the
Laplace variables s1, s2. Therefore, for a given problem is
critical to know the analytical properties of both Laplace
transforms of the QBM’s retarded Green function GRet;nðsÞ
and EM retarded Green tensor Gij

Retðx;x0; sÞ.
As the DOFs are considered as quantum Brownian

particles, irrespective of what type of environment is
considered the Laplace transform of the retarded Green
function can be easily obtained from the equation of motion
of the QBM’s theory. In the present case, the result is the
same as the one found in Ref. [19]. Then, we can easily
write:

GRet;nðsÞ ¼
1

ðs2 þΩ2
n − 2DnðsÞÞ

; ð57Þ

where DnðsÞ is the Laplace transform of the QBM’s
retarded Green function for the environment (baths) of
the plate n.
Thus, given a spectral density for the baths, the location

of the poles will define the time evolution and the
asymptotic behavior of the retarded Green function.
However, causality implies, by Cauchy’s theorem, that
the poles of GRet;n should be located in the left-half of the
complex s-plane. In fact, assuming that Ωn ≠ 0 and that the
baths include cutoff functions in frequencies, the real parts
of the poles are negative (see Ref. [19]).
On the other hand, the EM retarded Green tensor is

defined by the equations of motion obtained from the EM
CTP action of Eq. (13) after imposing the temporal gauge.
In the inhomogeneous and anisotropic case, by solving

Eq. (22) for a given permittivity tensor defining boundaries
and material bodies, we can obtain the Laplace transform of
the EM retarded Green tensor and calculate the Casimir
pressure through Eqs. (43), (53) and (54). However, the
solution in these cases is very complicated.
Therefore, we turn to the simpler case of considering the

Lifshitz problem, where two different homogeneous and
isotropic parallel half-spaces are separated by a vacuum gap
of length l along the z direction. The origin of the
coordinate system is defined in the middle of the gap. In
this case, each contribution to the Casimir pressure has to
be evaluated from Eqs. (43), (55) and (56), where the last
two equations are simplified versions of the general
inhomogeneous and anisotropic case, but the first one
remains unaltered. In this case, the Fresnel’s ellipsoid turns
out to be a sphere and the permittivity tensor results in a
function times the identity matrix, allowing any basis to
describe each material body. Therefore, as we anticipated
before, we omit the superscripts [j] and replace x by the
indices L, R related to each material body. All in all,
Eq. (22) simplifies to:

ð∇ ×∇ ×þs2εðs; zÞÞG
↔

Retðx;x0; sÞ ¼ −Iδðx − x0Þ; ð58Þ

where the refraction index only depends on z and it is
given by

n2ðs; zÞ ¼ εðs; zÞ ¼ 1þ λ20;LΘ
�
−
l
2
− z

�
GL

RetðsÞ

þ λ20;RΘ
�
z −

l
2

�
GR

RetðsÞ:

It is remarkable that this equation and the one solved in
Ref. [3] are basically the same, but this time the solution
gives the Laplace transform of the retarded EM Green
tensor (see Ref. [21] for more details on the general case).
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Two differences are in order: the equation is formally the
same by replacing the Fourier variable in the solutions
given in Ref. [3] by is; on the other hand, after the
replacement, the r.h.s. of the Green function equation in
Ref. [3] is the r.h.s. of Eq. (58) times 4πs2, because it is
compensating the differences in the definitions of the
operator Θsm in the pressure expression of Eq. (30) as it
was commented at the end of Sec. III B. As the Laplace
variable appears as a parameter in the equation, we can
easily obtain the Laplace transform of the EM retarded
Green tensor by dividing the one given in Ref. [3] by 4πs2.
Due to translational invariance in the parallel coordinates,
the solution is given in terms of the Fourier transform in
those coordinates:

Gij
Retðx;x0; sÞ ¼

Z
dQ
ð2πÞ2 e

iQ·ðx∥−x0∥ÞGij
Retðz; z0;Q; sÞ; ð59Þ

where Q ¼ ðQx;Qy; 0Þ, being x̌; y̌ the parallel directions.
For a field point inside the gap (− l

2
< z < l

2
), the

transform of the EM Green tensor depends on the value
of the source point z0. For z0 < − l

2
we have:

Gij
Retðz; z0;Q; sÞ ¼ −1

2qð1Þz

X
μ¼TE;TM

tμ1
Dμ

½eμ;i½þ�e−qzðz−l
2
Þ

þ eμ;i½−�rμ2eqzðz−
l
2
Þe−2qzl�eð1Þμ;j ½þ�eqð1Þz ðz0−l

2
Þ;

ð60Þ

and for z0 > l
2
:

Gij
Retðz; z0;Q; sÞ ¼ −1

2qð2Þz

X
μ¼TE;TM

tμ2
Dμ

½eμ;i½−�eqzðz−l
2
Þ

þ eμ;i½þ�rμ1e−qzðz−
l
2
Þ�eð2Þμ;j ½−�e−qzle−q

ð2Þ
z ðz0−3

2
lÞ;

ð61Þ

while for a point source inside the gap − l
2
< z0 < l

2
the

tensor splits in bulk and scattered contributions (Gij
Ret ¼

Gij
Ret;Bu þ Gij

Ret;Sc):

Gij
Ret;Buðz; z0;Q; sÞ

¼ −
δizδjz
s2

δðz − z0Þ

−
1

2qz

X
μ¼TE;TM

½eμ;i½þ�eμ;j½þ�e−qzðz−z0ÞΘðz − z0Þ

þ eμ;i½−�eμ;j½−�eqzðz−z0ÞΘðz0 − zÞ�; ð62Þ

Gij
Ret;Scðz; z0;Q; sÞ

¼ −
1

2qz

X
μ¼TE;TM

1

Dμ
½eμ;i½þ�eμ;j½þ�rμ1rμ2e−qzðz−z

0þ2lÞ

þ eμ;i½þ�eμ;j½−�rμ1e−qzðzþz0−lÞ

þ eμ;i½−�eμ;j½þ�rμ2eqzðzþz0−3lÞ þ eμ;i½−�eμ;j½−�rμ1rμ2
× eqzðz−z0−2lÞ�: ð63Þ

Here we are considering the notation given in Ref. [3]
adapted to our case. Therefore, the EM (complex) wave
vector in the medium n is given by:

qðnÞ½�� ¼ Q� iqðnÞz ž; ð64Þ

with n ¼ L, R corresponding to each plate (while omitting
the indices for the vacuum region) and where the signþ (−)
corresponds to an upward (downward) wave. The vector
Q is always a real vector and appears as the projection
of the wave vector qðnÞ½�� on the interface, while the
z-component is given by:

qðnÞz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þQ2

q
: ð65Þ

The wave vector qðnÞ½�� lies in the plane of incidence
defined by Q̌ and ž. We can introduce the transverse
electric (TE) and magnetic (TM) p olarization vectors:

eðnÞTE ½�� ¼ Q̌ × ž; ð66Þ

eðnÞTM½�� ¼ eðnÞTE ½�� × q̌ðnÞ½�� ¼ Qž ∓ iqðnÞz Q̌ffiffiffiffiffiffiffiffiffiffi
εnðsÞ

p
is

: ð67Þ

The reflection (r) and transmission (t) Fresnel coeffi-
cients for each single surface and components are given by:

rTEn ¼ qz − qðnÞz

qz þ qðnÞz

; rTMn ¼ εnqz − qðnÞz

εnqz þ qðnÞz

; ð68Þ

tTEn ¼ 2qðnÞz

qz þ qðnÞz

; tTMn ¼ 2
ffiffiffiffiffiffiffiffiffiffi
εnðsÞ

p
qðnÞz

εnqz þ qðnÞz

; ð69Þ

while the multiple reflections (which does not enter in the
bulk part) are described by the denominator:

Dμ ¼ 1 − rμ1r
μ
2e

−2qzl: ð70Þ

Beyond the apparent complicated expressions for the
Laplace transform of the EM retarded Green tensor, its
analytical properties can be analyzed relatively easy. Each
expression presents several poles and branch cuts. The
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poles basically are the ones associated to Dμ and there is
one pole located at the origin s ¼ 0.
The poles coming from Dμ should be calculated in order

to obtain the time evolution of the system. However,
causality implies that all these poles must lie on the left-
half of the complex s-plane in order to give convergent
contributions in the evolution. It may happen that some
poles have vanishing real part. These poles would contrib-
ute to the long-time behavior of the EM retarded Green
tensor (and therefore to the pressure). However, if we set
s ¼ iImðsÞ (with ImðsÞ ≠ 0) it can be easily shown that
there are no poles of this type.
The pole at the origin appears explicitly in the first term

of Eq. (62). However, in the second term and in Eqs. (60),
(61) and (63), the pole is only associated to the terms with
μ ¼ TM, since in any region the TM polarization vectors
provide the pole through its denominators, as is clear
in Eq. (67).
Besides the poles, the Laplace transforms in each region

present several branch cuts, which provide to the transient
time evolution of the EM Green tensor. In the present case,
by inspection, the branch cuts are given by the square rootsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2∥

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þ k2∥

q
. The extra branch cutffiffiffiffiffiffiffiffiffiffi

εnðsÞ
p

that appears in the expression of the transmission
coefficient for the TM terms in Eq. (69) that enter the
Laplace transforms in Eqs. (60) and (61) should not be
considered, since it cancels with the same square root
contained in the denominator of the polarization vectors

eðnÞTMð�Þ of Eq. (67), that also enter the same Laplace
transforms.
Summarizing, the analytical properties of the Laplace

transform of the EM retarded Green tensor are very simple,
despite its complicated expressions. These properties are
important in order to compute the full time evolution of the
problem and determining the long-time limit of the differ-
ent physical quantities of interest.

B. The steady situation of the Lifshitz problem

Equations (60)–(63) contain the Laplace-Fourier trans-
forms for the EM retarded Green tensor for a field point
inside the gap in the Lifshitz problem, from which we can
calculate the corresponding Casimir pressure in the
steady state.
For all the three contributions of Eqs. (43), (55) and (56),

in order to completely solve its time evolutions we have to
calculate both inverse-Laplace transforms through the
residue theorem and the analytical properties associated
to branch cuts.
However, as our aim is to determine the long-time limit

of the contributions, the work is simpler and related to a
subtle issue of the long-time regime. The “steadiness” of
the physical quantities as the pressure or energy is related to
the fact that they do not depend on time in the long-time
regime. In other words, usually for the systems of interest,

due to physical/intuitive reasons, the complete system is
expected (or assumed) to be in a steady situation in the
long-time limit. In many cases, this allows one to face and
study the steady regime directly, without a rigorous (and
unnecessary) derivation from a full dynamical problem. In
the present case, we are in the opposite situation. We have
solved the full dynamical problem in terms of double
inverse-Laplace transform, that should be calculated using
the residue theorem. But we cannot do that completely due
to the technical impossibility of locating the poles of the
integrands in the complex planes analytically (we only
know a few properties related to causality of the retarded
Green tensors).
Nevertheless, to obtain the long-time limit of quantities

given in terms of double inverse-Laplace transforms
depending on eðs1þs2Þðt1−tiÞ is relatively easier.
As the time evolution depends on the configuration of

poles and branch cuts that the integrand presents, we have
to distinguish which analytical properties contribute to the
steady state of the quantities. As it is stressed in Ref. [22],
we can show that the typical branch cuts that appear in the
Laplace transform of the EM retarded Green tensor do not
contribute to the long-time regime. Then, the steady
situation must be given by some of the poles, which
always result in exponential temporal behaviors depending
on the poles’ values. For example, considering a typical
Laplace transform (i.e., depending only on one Laplace
variable), if a given pole has a nonzero real part, through
causality we know that it must be a negative number.
Therefore, the resulting behavior associated to that pole
will be an exponential decaying with time. On the other
hand, if a given pole has vanishing real part (i.e., the pole is
purely imaginary), the resulting behavior will be oscillating
in time with a frequency given by the imaginary part of the
pole. As a last case, it turns out that if the pole is 0, the
resulting behavior will be of a time-independent constant.
However, in our case, the presence of eðs1þs2Þðt1−tiÞ in the

double inverse-Laplace transforms makes the poles asso-
ciated to s1 to combine with those associated to s2 in order
to determine the time evolution of the quantity. Thus, the
case of a pole at s ¼ 0 is not the only way we can obtain
time-independent behaviors in our quantities of interest. In
other words, if we solve both Laplace integrals, each term
of the full time evolution of the quantity will be a
combination of two of the poles, one associated to the
Laplace integral over s1 (for example s1 ∈ C) and the other
one to s2 (consider it at s2 ¼ s2). Then, if we combine two
poles satisfying s1 ¼ −s2, there will be no exponential
associated to that term in the time evolution, obtaining a
time-independent term. In particular, it is clear that the case
of both poles equal to 0 satisfies the required condition,
giving indeed a time-independent term. However, if we
take a pole with negative real part, for example s1 in such a
way that Re½s1� < 0, the required condition to obtain a
time-independent term would s2 ¼ −s1. As this implies
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Re½s2� > 0, which is forbidden by the causality property,
then for all physical quantities built from causal quantities,
all the poles presenting negative real part cannot be
combined in order to obtain a time-independent term.
As a last possibility, let us consider the poles with real

part equal to 0. In these cases, considering a pole is1 with
s1 ∈ R, we can verify the required condition with a pole
is2 ¼ −is1 in such a way that both oscillating evolutions
cancel out in the exponential giving a time-independent
term.
Following this train of thought, the time-independent

terms will be so from the very beginning. The steady
situation rises when the transient terms vanish, i.e., when all
the time-dependent terms resulting from poles combination
and branch cuts go to 0. Thus, the relaxation time of the
system will be defined by the last term that vanishes
between all the transient terms. Moreover, the relaxation
time will be equal to the smallest nonzero real part of the
combination of poles or branch points in the three
contributions.
All in all, in order to determine the steady state of each

contribution it is necessary to study the combination of the
poles present in both integrands over s1 and s2.

1. The long-time limit of the DOFs’ contribution

We can start by considering one of the parts of the
material’s contribution to the Casimir pressure for the
Lifshitz problem, which is associated to the DOFs’ con-
tribution given by the Eq. (55) where, as we anticipated,
n ¼ L, R. The quantity

lim
x2→x1

�
Θjkðs1; s2Þ

Z
Vn

dxGjb
Retðx1;x; s1ÞGkb

Retðx2;x; s2Þ
�
;

which is present in this contribution as well as in the baths’
one can be simplified in the present case, since in the last
section we have given the Laplace transform of the EM

retarded Green tensor for the Lifshitz problem and its
analytical properties.
Taking into account that for this problem the parallel

coordinates can be Fourier-transformed as in Eq. (59), the
integrations over the parallel coordinates x∥ can be easily
done, obtaining:

Z
Vn

dxGjb
Retðx1;x; s1ÞGkb

Retðx2;x; s2Þ

¼
Z

dQ
ð2πÞ2 e

iQ·ðx1∥−x2∥Þ
Z
Vn

dzGjb
Retðz1; z;Q; s1Þ

× Gkb
Retðz2; z;−Q; s2Þ; ð71Þ

where in the r.h.s. the integration over Vn implies the
integration over each half-space. Then, we can write

Z
Vn

dz ¼ ð−1Þn
Z ð−1Þn∞

ð−1Þn l
2

dz;

where we associate n ¼ L (n ¼ R) on the left-hand side
(l.h.s.) with n ¼ 1 (n ¼ 2) on the r.h.s. of this equality.
By considering Eqs. (60) and (61), is clear that the

remaining integration over z involves exponential functions
in the second argument, being easily calculated, obtaining:

Z
Vn

dxGjb
Retðx1;x; s1ÞGkb

Retðx2;x; s2Þ

¼
Z

dQ
ð2πÞ2 e

iQ·ðx1∥−x2∥Þ 1

ðqðnÞz ðs1;QÞþqðnÞz ðs2;QÞÞ
×Gjb

Retðz1;ð−1Þnl=2;Q; s1ÞGkb
Retðz2;ð−1Þnl=2;−Q; s2Þ:

ð72Þ

Therefore, from Eq. (55), we finally obtain the full time
evolution of the contribution to the Casimir pressure:

PDOFsðx1; βPn
; lÞ ¼ −

1

8π

X
n¼L;R

λ20;nMn

2Ωn
coth

�
βPn

Ωn

2

� Z
dQ
ð2πÞ2

Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

eðs1þs2Þðt1−tiÞ

× ½ðs21GRet;nðs1Þ − 1Þðs22GRet;nðs2Þ − 1Þ þ Ω2
ns1s2GRet;nðs1ÞGRet;nðs2Þ� lim

x2→x1

�
Θjkðs1; s2ÞeiQ·ðx1∥−x2∥Þ

×
Gjb
Retðz1; ð−1Þnl=2;Q; s1ÞGkb

Retðz2; ð−1Þnl=2;−Q; s2Þ
ðqðnÞz ðs1; QÞ þ qðnÞz ðs2; QÞÞ

�
; ð73Þ

where we have stressed the fact that the contribution to the
pressure depends on the plates separation l.
Now, in order to determine the long-time behavior of this

expression we have to analyze the integrand’s analytical
properties in terms of s1 and s2 simultaneously. For a given
n, all the terms will not contribute necessarily. Taking in

account the analytical properties of the retarded Green

functions GRet;n and the EM retarded Green tensor G
↔

Ret

(which splits into TE and TM terms) commented in the last
section, by inspection it turns out that the only poles
of the whole two-Laplace variables integrand resulting in a
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time-independent term are the ones located at the origin
simultaneously for both variables. In other words, the
poles located at the origin for both Laplace variables
(s1 ¼ 0 ¼ s2) associated to the products TM × TM result-
ing from

Gjb
Retðz1; ð−1Þnl=2;Q; s1ÞGkb

Retðz2; ð−1Þnl=2;−Q; s2Þ: ð74Þ

However this is not so straightforward because this product
is also multiplied by

½ðs21GRet;nðs1Þ − 1Þðs22GRet;nðs2Þ − 1Þ
þΩ2

ns1s2GRet;nðs1ÞGRet;nðs2Þ�

and Θjkðs1; s2Þ, containing linear factors s1 and s2 that can
eventually prevent of s1 ¼ 0 or s2 ¼ 0 of being poles in a
given term. At the end, we find poles of first and second
order depending of which terms are considered.
As we mentioned before, the poles at the origin are

related to the terms associated to the TM polarization
vectors of Eq. (67). Therefore, from Eqs. (60) and (61), we
can see that the term TM × TM of the product in Eq. (74)
contains 1=s21 and 1=s22 as factors.
For example, terms associated to the combinations s21

GRet;nðs1Þ [or s22GRet;nðs2Þ] will cancel out the denomina-
tors 1=s21 (or 1=s

2
2) and therefore those terms will have no

pole at s1 ¼ 0 (s2 ¼ 0). Those terms contribute only to the
transient regime.
On the other hand, the term independent of s1 and s2

resulting from

ðs21GRet;nðs1Þ − 1Þðs22GRet;nðs2Þ − 1Þ
þΩ2

ns1s2GRet;nðs1ÞGRet;nðs2Þ

will give poles of first order for both Laplace variables
through it combination with the first term of Θjkðs1; s2Þ
(associated to the electric field’s contribution), and poles of
second order for both variables in the combination with the
second term of Θjkðs1; s2Þ (associated to the magnetic
field’s contribution).
Finally, the term Ω2

ns1s2GRet;nðs1ÞGRet;nðs2Þ will only
present poles of first order when combined with Θjkðs1; s2Þ
for the product with the second term (the combination with
the first term will not have poles at the origin).
Therefore, the contribution to the pressure in Eq. (73)

can be rewritten by grouping the terms according to the
order of the pole at the origin in both variables:

PDOFsðx1; βPn
; lÞ ¼ ðTerms with second order poles at 0Þ

þ ðTerms with first order poles at 0Þ
þ ðTerms without poles at 0Þ: ð75Þ

In the first place, it is clear that the last term has no
contribution to the steady situation, taking part only in the
transient stage.
In the second place, it is easy to show that the second

order poles at the origin result in terms that are directly zero
or that diverge in the long-time limit (ti → −∞). This is
because, in the residue calculation of the second order
poles, it is necessary to differentiate the integrand with
respect to the Laplace variable in consideration (either s1 or
s2). At this point, it is important to consider that the residue
in these terms can be analyzed separately in each variable
and that the integrands have the form of esðt−tiÞ times a

function which depend on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þQ2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þQ2

p
.

First, differentiating the exponential results in ðt1 −
tiÞesðt1−tiÞ times the same function depending onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þQ2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þQ2

p
. The evaluation of this

on s ¼ 0 gives the mentioned term that diverges in the
long-time limit. However, all these terms always have
another term which cancels them, giving no contribution.
Second, differentiation the function depending onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þQ2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þQ2

p
gives terms that appear

accompanied by s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þQ2

p
or ½ε0nðsÞsþ 2εnðsÞ�s=

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnðsÞs2 þQ2

p
, which evaluated on s ¼ 0 are the men-

tioned vanishing terms.
In conclusion, the second order poles at the origin do not

contribute to the steady situation.
The remaining terms are the ones containing first order

poles at the origin. These terms, in the temporal and spatial
coordinates’ domain, are associated to a time derivative of
one of the Heaviside functions Θðt − tiÞ which appear in
the definition of the retarded Green functions or the EM
retarded Green tensor due to its causal behavior.
Mathematically, deriving a Heaviside function gives a
Dirac δ-function. Therefore the expression is proportional
to δð0Þ. However, this is caused by the sudden beginning of
the interaction. Physically, this is an approximation to the
fact that the interaction rises in a very short time. If instead,
for example, we replace the Heaviside function by a smooth
function going from 0 to 1 in finite time, approaching this
value asymptotically, we would avoid this problem, keep-
ing the convergent behavior of the whole expression at the
long-time limit. In summary, the first order poles at 0 are
the result of deriving a Heaviside function representing the
sudden switching-on of the interaction and hence they are
not physical. Therefore, they will not have contribution to
the long-time regime. This agrees with the limit for an
analog contribution considered in Refs. [19,20], where the
same contributions in the coordinates’ domain are dis-
carded by the same reasons.
Then, we have proved that for the contribution of the

DOFs to the pressure, the long-time limit (ti → −∞) is
given by:
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PDOFsðx1; βPn
; lÞ ⟶ P∞

DOFsðβPn
; lÞ ¼ 0: ð76Þ

2. The long-time limit of the baths’ contribution

Now we proceed to calculate the contribution resulting
from the baths.
We recall the general expression of Eq. (56) found

for the baths’ contribution to the pressure in a scenario
of homogeneous and isotropic bodies, considering as in the
last case n ¼ L;R.

As in the DOFs’ contribution, the pressure contains the
expression

Z
Vn

dxGjb
Retðx1;x; s1ÞGkb

Retðx2;x; s2Þ:

For the case of half-infinite parallel plates, Eq. (72)
provides a simplification for the expression and then, the
pressure reads:

PBðx1; βn;B; lÞ ¼
−1
8π

X
n¼L;R

λ20;n

Z þ∞

−∞

dω
2π

N̄nðωÞ
Z

dQ
ð2πÞ2

Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

s1s2eðs1þs2Þðt1−tiÞ

ðs1 þ iωÞðs2 − iωÞ

×
GRet;nðs1ÞGRet;nðs2Þ

ðqðnÞz ðs1; QÞ þ qðnÞz ðs2; QÞÞ
lim

x2→x1
½Θjkðs1; s2ÞeiQ·ðx1∥−x2∥ÞGjb

Retðz1; ð−1Þnl=2;Q; s1Þ

× Gkb
Retðz2; ð−1Þnl=2;−Q; s2Þ�: ð77Þ

Despite the branch cuts, in order to determine the long-
time behavior of this contribution we have to consider again
combinations of poles in the Laplace variables s1 and s2 in
such a way to obtain a time-independent term.
As a first step, as in the DOFs’ contribution, we have to

analyze the pole at s1 ¼ 0 ¼ s2 coming from the TM × TM
terms. However, due to the presence of a factor s1s2 in the
integrand, the only term of Θjkðs1; s2Þ that can have a
contribution through this pole is the second one
Λpmϵprjϵmlk∂r1∂l2 (associated to the magnetic fields), giving
first order poles for both Laplace variables. On the other
hand, the first term of Θjkðs1; s2Þ (associated to the electric
fields) contains an extra factor s1s2 which finally cancels the
denominators in the terms TM × TMwhich provide the pole
at s1 ¼ 0 ¼ s2, having no pole for the first term.
The calculation of the pole implies summing the indexes

in the expressions. Calculating explicitly all the sums and

taking into account the coincidence limit, it is easy to see
that the numerator also vanishes for s1 ¼ 0 ¼ s2. Then,
when the denominator vanishes, the numerator vanishes
too. Using L’Hopital rule one obtains a finite value, and
therefore, s1 ¼ 0 ¼ s2 it is not a pole.
Besides the point s1 ¼ 0 ¼ s2, by inspection is clear

that this contribution also presents another combination of
poles on s1 and s2 that produces a time-independent
term. Due to the fact that the QBM noise kernel depends
on the time difference (and then it can be written in terms of
its Fourier transform), the denominators ðs1 þ iωÞ and
ðs2 − iωÞ appear in this contribution denoting the non-
damped dynamics of the baths. Therefore, the pole at
s1 ¼ −iω combined with the pole s2 ¼ iω gives a time-
independent term.
All in all, the long-time contribution of the baths to the

Casimir pressure can be written as:

P∞
B ðβn;B; lÞ ¼

−1
8π

X
n¼L;R

λ20;n

Z þ∞

−∞

dω
2π

ω2N̄nðωÞ
Z

dQ
ð2πÞ2 ×

GRet;nð−iωÞGRet;nðiωÞ
ðqðnÞz ð−iω; QÞ þ qðnÞz ðiω; QÞÞ

× lim
x2→x1

½Θjkð−iω; iωÞeiQ·ðx1∥−x2∥ÞGjb
Retðz1; ð−1Þnl=2;Q;−iωÞ

× Gkb
Retðz2; ð−1Þnl=2;−Q; iωÞ�: ð78Þ

This is the contribution of the baths to the Casimir
pressure in a general nonequilibrium context. An important
connection with previous works can be established by
employing a fluctuation-dissipation-type relation into the
result. Besides that it is well known that the fluctuation-
dissipation theorem is valid for systems in thermal equi-
librium, and the total system in this case is out of
equilibrium, we can use a fluctuation-dissipation-type

relation for the dissipation and noise kernel of the QBM
(Dn and Nn respectively), i.e., the kernels generated by the
baths in each point of space acting over each DOF.
Therefore, we can write, for the Fourier transforms of
the kernels, the fluctuation-dissipation relation:

N̄nðωÞ ¼ coth

�
βn;B
2

ω

�
Im½D̄nðωÞ�; ð79Þ
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where D̄nðωÞ is the Fourier transform of the QBM’s
dissipation kernel.
From the definition of the permittivity tensor in Eq. (19),

it can be proved that for the present case, the Fourier
transform of the permittivity function is given by

ε̄nðωÞ ¼ 1þ λ20;nḠRet;nðωÞ;

having that ḠRet;nð−ωÞ ¼ Ḡ�
Ret;nðωÞ for the reality of the

QBM Green function. On the other hand, since the Laplace
transform of the QBM GRet;nðsÞ of Eq. (57) is assumed, by
causality, to have poles with negative real parts, then it is

verified that GRet;nð−iωÞ ¼ ḠRetðωÞ and the same happens
for the QBM dissipation kernelDnð−iωÞ ¼ D̄nðωÞ (in fact,
the connection between the Laplace and Fourier transforms
applies for every causal function which is 0 for null value of
its variable). Therefore, it is straightforward to prove that:

Im½ε̄nðωÞ� ¼ Im½D̄nðωÞ�jḠRet;nðωÞj2
¼ Im½D̄nðωÞ�GRet;nð−iωÞGRet;nðiωÞ: ð80Þ

Then, introducing Eq. (79) into Eq. (78) and using
Eq. (80), we obtain:

P∞
B ðβn;B; lÞ ¼ −

1

8π

X
n¼L;R

Z þ∞

−∞

dω
2π

ω2 coth

�
βn;Bω

2

�
Im½ε̄nðωÞ�

Z
dQ
ð2πÞ2

1

ðqðnÞz ð−iω; QÞ þ qðnÞz ðiω; QÞÞ
× lim

x2→x1
½Θjkð−iω; iωÞeiQ·ðx1∥−x2∥ÞGjb

Retðz1; ð−1Þnl=2;Q;−iωÞGkb
Retðz2; ð−1Þnl=2;−Q; iωÞ�: ð81Þ

At this point, we use Eq. (72) in order to go back to the spatial integral having s1 ¼ −iω and s2 ¼ iω. Then, we can
first employ the property associated to the reality of the EM retarded Green tensor in the time domain for the last factor
Gij
Retðx;x0; iωÞ ¼ G�ij

Retðx;x0;−iωÞ, followed by the property of being a Feynman propagator to the last Laplace transform
of the EM retarded Green tensor G�ij

Retðx;x0;−iωÞ ¼ G�ji
Retðx0;x;−iωÞ. Finally, for both Laplace transforms of the EM

retarded Green tensor we use the connection between the Laplace and Fourier transform ensured by the causality behavior
to obtain:

P∞
B ðβn;B; lÞ ¼ −

1

8π

X
n¼L;R

Z þ∞

−∞

dω
2π

ω2 coth

�
βn;Bω

2

�
Im½ε̄nðωÞ� lim

x2→x1

�
ΘjkðωÞ

Z
Vn

dxḠjb
Retðx1;x;ωÞḠ�bk

Ret ðx;x2;ωÞ
�
; ð82Þ

which is exactly the result obtained in Ref. [3] as the total
pressure for the Lifshitz problem, where we have set
ΘjkðωÞ≡ Θjkð−iω; iωÞ from its definition.
All in all, we have proved that the baths’ contribution in

the long-time regime gives exactly the result found in
Ref. [3] for the steady situation of the Lifshitz problem.
However, following this procedure, it is worth noting that

this result can be extended for the case of inhomogeneous
and anisotropic materials since both purely imaginary poles
are always present as it can be seen from the general
expression of Eq. (54) provided one can calculate the
Laplace transform of the EM retarded Green tensor for a
given problem, which is the main difficulty in most cases.
Then, we can in general write:

P∞
B ðβx;BÞ ¼

−1
8π

Z þ∞

−∞

dω
2π

ω2 lim
x2→x1

�
ΘjkðωÞ

Z
dxgðxÞḠjl

Retðx1;x;ωÞ coth
�
βx;B
2

ω

�
Im½ε̄½ll�x ðωÞ�G�lk

Retðx;x2;ωÞ
�
; ð83Þ

which is the full generalization of the steady result found in
Ref. [3].

3. The long-time limit of the initial conditions’
contribution

After determining the contribution of the material to the
Casimir pressure, the remaining contribution is the one
associated to the EM field’s initial conditions.
From Eq. (43), it is worth noting that unlike the other

contributions this one does not simplify when considering

homogeneous and isotropic bodies. In fact, it does not
depend directly on the material properties and boundaries
as the material’s contributions do. The dependence on the
boundaries and the materials is encrypted by the EM
retarded Green tensor but there is no more explicit
dependence.
Nevertheless, for the particular case of the Lifshitz

problem we can perform a Fourier transform in the parallel
coordinates through Eq. (59) and then integrate them,
obtaining:
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PICðx1;βEMÞ¼−
1

8π

Z
dk

2ωkð2πÞ3
�
δbm−

kbkm

ω2
k

�
coth

�
βEMωk

2

�Z
α1þi∞

α1−i∞

ds1
2πi

Z
α2þi∞

α2−i∞

ds2
2πi

ðs1s2þω2
kÞ

×eðs1þs2Þðt1−tiÞ lim
x2→x1

�
Θjkðs1;s2Þeik∥·ðx1∥−x2∥Þ

Z
dz0Gjb

Retðz1;z0;k∥;s1Þeikzz0

×
Z

dz00Gkm
Retðz2;z00;−k∥;s2Þe−ikzz00

�
; ð84Þ

which is a simplification that can be done when the boundaries are parallel surfaces.
The integrals over z0 and z00 are over the whole axis ð−∞;þ∞Þ. Then, as the EM retarded Green tensor is given by

Eqs. (60)–(63) for each region, the integration separates into four integrals. For example, for the first integral we have:

Z
dz0Gjb

Retðz1; z0;k∥; s1Þeikzz0 ¼
Z

−l=2

−∞
dz0Gjb

Retðz1; z0;k∥; s1Þeikzz0 þ
Z

l=2

−l=2
dz0Gjb

Ret;Buðz1; z0;k∥; s1Þeikzz0

þ
Z

l=2

−l=2
dz0Gjb

Ret;Scðz1; z0;k∥; s1Þeikzz0 þ
Z þ∞

l=2
dz0Gjb

Retðz1; z0;k∥; s1Þeikzz0 ; ð85Þ

where the first and the last are the integrations having the source point in each plate, while the other two are the integrations
having the source point inside the gap.
As all the transforms of the EM retarded Green tensors are given in term of exponentials, the integration is

straightforward and can be written compactly as:

Z
dz0Gjb

Retðz1; z0;k∥; s1Þeikzz0 ¼ −
δj3δb3
s21

eikzz1 þ
X2
n¼1

X
μ

� ð−1Þ
2qz½qz þ ð−1Þn−1ikz�

�
eμ;j½ð−Þn−1�eμ;b½ð−Þn−1�

× eð−1Þnqzz1 ½e½ð−1Þn−1qzþikz�z1 − e½−qzþð−1Þnikz� l2� þ 1

Dμ
½eμ;j½ð−Þn−1�rμneqz½ð−1Þnz1−2l�

þ eμ;j½ð−Þn�eqz½ð−1Þn−1z1−lþð−1Þn2l��eμ;b½ð−Þn−1�rμ3−n½e½qzþð−1Þn−1ikz�l2 − e−½qzþð−1Þn−1ikz�l2�
�

−
e½ð−1Þnikz−½ð−1Þnþ1�qz�l2

2qðnÞz ½qðnÞz þ ð−1Þn−1ikz�
tμn
Dμ

eð−1Þnq
ðnÞ
z leðnÞμ;b½ð−Þn−1�½eμ;j½ð−Þn−1�eð−1Þ

nqz½z1−l
2
�

þ eμ;j½ð−Þn�rμ3−neð−1Þ
n−1qz½z1−l

2
�e½ð−1Þn−1�qzl�

�
: ð86Þ

It is clear that in order to obtain the result for the other
integral

R
dz00Gkm

Retðz2; z00;−k∥; s2Þe−ikzz00 , we only have to
make the replacements z1 → z2, s1 → s2, j → k, b → m,
k∥ → −k∥ and kz → −kz in Eq. (86).
Therefore, studying the analytical structure (poles and

branch cuts) of the results of both integrals will give us the
transient evolution and also the steady regime of the initial
conditions’ contribution to the Casimir pressure. The
branch cuts present in the integrands can be considered
by pairs (see Ref. [22]) and the regions in the complex
plane where the integrands in each variable are multi-
valuated can be reduced to vertical intervals of finite
length characterized by nonpositive real parts. From
Eq. (86) we see that the branch cut interval with null real
part corresponds to the straight line s ¼ i ImðsÞ with
ImðsÞ ∈ ð−k∥; k∥Þ, although it does not contribute to the

steady state, it is important to know that it can be always
considered as a finite-length interval in the complex plane.
Then, as for the material contributions, the key point to

determine the long-time regime of the present contribution
is to combine the poles in each variable in such a way that
eðs1þs2Þðt1−tiÞ gives no temporal dependence. Therefore, we
must consider complementary poles.
At first sight, the pole at the origin in each variable

(provided by the analytical structure of the retarded Green
tensor) satisfies the requirement to give a steady term.
Now, to see which terms present this pole in both

variables, we have to consider the combinations of the
terms of Θjkðs1; s2Þ and ðs1s2 þ ω2

kÞ. As it happened
before, the terms TM × TM in the integrals product in
Eq. (84) are the ones which give the poles at the origin in
each Laplace variable. The different combinations finally
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give terms without poles at the origin and terms with poles
of first and second order in both variables.
As for the material contributions, the terms without poles

do not contribute to the residue calculation, while the terms
with poles of second order at the origin result in terms
which cancel out or directly vanish.
On the other hand, as it happened before, the poles

of first order, in the temporal domain, correspond to
derivatives of the Heaviside functions which gives Dirac
δ-functions. This is associated to the sudden beginning of
the interaction and then these terms give no additional
physical information. They are only mathematical conse-
quences of the description introduced for the switching-on
of the interaction. Therefore, the poles of first order do not
contribute either.
All in all, the pole at the origin for both variables does

not contribute to the pressure associated to the initial
conditions.
However, in this case, the poles at the origin are not the

only ones that may contribute. The spatial integration over
z provides additional poles which are not present in the
material’s contribution. These poles provide the (3þ 1)
EM generalization for the modified modes which are
considered as an ansatz in Refs. [8,23] and fully demon-
strated in Ref. [19], for the scalar case. In the present
case, from Eq. (86), it is clear that integration over z results
in additional denominators given by qz þ ð−1Þn−1ikz and

qðnÞz þ ð−1Þn−1ikz depending if the integration is carried out
over the vacuum gap or over the material plates
respectively.
In fact, for the terms associated to the integrations over

the material plates, the roots provided by the denominator

qðnÞz þ ð−1Þn−1ikz, due to the presence of εnðsÞ inside qðnÞz ,
present negative real parts, in agreement with the causality
properties and the fact that the field dissipates in such
regions. For the cases where these roots are effectively
poles of the integrand (which is not necessarily true as we
will see below), this implies that the calculation of the
residue will give exponential decays in time, resulting in
terms with vanishing long-time limit.
On the other hand, it can be immediately seen that for the

terms associated to integrations over the vacuum gap, the
roots provided by qz þ ð−1Þn−1ikz are s ¼ �iωk for n ¼ 1
and kz < 0 or for n ¼ 2 and kz > 0, having null real parts
due to the free propagation of the field inside the gap. This
shows that s ¼ �iωk could be poles in general, because the
multivalued region for the integrand is given by the finite-
length interval s ¼ iImðsÞ with ImðsÞ ∈ ð−k∥; k∥Þ, and
these poles are always located outside it since we always
have ωk > k∥ for every k. Moreover, as we anticipated
before, these poles are associated to the mentioned modi-
fied modes for the EM field.
However, beyond the general case, for the present one we

only have shown that s ¼ �iωk are roots of the denom-
inator of certain terms for n ¼ 1 and kz < 0 or for n ¼ 2

and kz > 0. Moreover, for the Lifshitz problem, the given
form of the Laplace transform of the retarded Green tensor
makes that s ¼ �iωk are also roots of the numerator for the
same cases of n ¼ 1 and kz < 0 or n ¼ 2 and kz > 0.
Therefore, the limits of the integrands in each variable
when the variable tends to �iωk are indeterminate limits.
Applying the L’Hopital rule we can compute the limit
giving a finite result. This means that, for the Lifshitz
problem, despite s ¼ �iωk are roots of the denominator,
they are not poles. Therefore, there is no residue for this
case and, moreover, there is no steady nor transient
contribution for s ¼ �iωk.
All in all, we have proved that for the Lifshitz problem

the initial conditions’ contribution to the Casimir pressure
vanish at the steady state (ti → þ∞):

PICðx1; βEM; lÞ → P∞
ICðβEM; lÞ ¼ 0: ð87Þ

This result means that there are no modified modes for
this problem that contribute to the long-time regime of the
Lifshitz problem. Physically, the result expresses a relax-
ation process where the field dissipates during the transient
stage until reaching a steady state in the long-time regime.
Moreover, for the initial conditions’ contribution, the
process is given by the competition between the dissipation
of the field on the material bodies present and the free
fluctuation in the dissipationless regions (see next section
for further conclusions about these features). For the case of
the Lifshitz problem, as the material regions are two half-
spaces while the vacuum gap has finite length, dissipation
wins over free fluctuation and there are no modified modes
in the long-time regime. When interactions begin, the
transient stage take place and the initial free field vacuum
modes start to adapt to the presence of the material bodies
(which has also a transient dynamics). During this process,
the free fluctuations inside the gap attenuate due to the
dissipation exerted by the material plates and no modified
modes can raise, to finally settle at the steady state.
Finally, after calculating each contribution of Eqs. (76),

(82) and (87), we can write the Casimir pressure in the
steady state (ti → −∞) as:

PCasðx1Þ → P∞
Cas ¼ P∞

B ðβB;n; lÞ; ð88Þ

i.e., the bath contribution at the long-time regime is the one
that gives the total Casimir pressure for the composite
system.

VI. FINAL REMARKS AND OUTLOOK

Having solved the Lifshitz problem from a well-defined
initial condition problem, and achieved expressions for the
three contributions to the total pressure for all times, we
have shown that in the long-time limit ti → −∞, the
Casimir pressure is given only by the baths’ contribution.
We also proved that this corresponds to the only
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contribution considered in Ref. [3], using an approach
based on the macroscopic Maxwell equations and the
source theory. Thus, we have presented a first principles
calculation in the context of nonequilibrium quantum open
systems that shows that the initial conditions are erased in
the steady state.
Although this looks absolutely natural at first glance, the

results in the previous works [19,20] suggest that there
should be important modifications for slabs of finite width.
Indeed, for plates of finite width and for a δ-plate in 1þ 1
dimensions, the contributions of the initial conditions are
present in the steady state [19] and agree with the one
obtained from the modified modes of Refs. [8,23]. Looking
back to the situations analyzed in Refs. [19,20], and
considering the results of the present paper, the whole
picture becomes clear. It follows that a nonvanishing
contribution of the initial conditions at the steady state is
related to the existence of dissipationless regions of infinite
size. The physical interpretation is the following. When
there are regions of infinite size where the field dissipates, it
happens that the free fluctuations in the dissipationless
regions vanish in the long time limit because the damping
generated by the dissipative regions overcome the free
fluctuations. Therefore, the initial conditions’ contribution
to the pressure also vanishes. On the contrary, for situations
where the infinite regions are the ones without dissipation
(while the dissipative regions are of finite size), the free
field fluctuations are damped only in the dissipative
regions, resulting in modified modes at the steady situation
(as it happens in Ref. [19] for the appropriate cases).
In fact, these modes are associated to the poles�iωk that

result from the spatial integrations over the direction
orthogonal to the boundaries. As we mentioned before,
the contribution of the initial conditions can be matched
with a contribution associated to homogeneous solutions in
“steady” quantization schemes [8,10,18,23], but here we
are showing that the modified modes of that contribution
are the result of the dynamical adaptation of the free field
vacuum modes to the material boundaries. Therefore, on
one hand, the modified modes become associated to the
creation and annihilation operators of the initial free field.
On the other hand, from the perspective of a steady
canonical quantization scheme, the Hilbert space of the
modified modes in the nonequilibrium situation is spanned

by the same creation and annihilation operators that for a
free field.
All in all, we have successfully proved the foundations of

Lifshitz theory in nonequilibrium scenarios. To reach this
goal, we have set up a first principles quantum dynamical
problem of the EM field interacting with matter and
subjected to uncorrelated initial conditions. We then solved
the full dynamical problem and derived Lifshitz theory as
the steady state by taking the long-time limit. The physical
understanding of the contributions that enter in the full
dynamical problem allowed us to gain powerful insights
about the occurrence of the steady state in different systems
involving the interaction between quantum fields and
material bodies, that commonly appear in Casimir physics.
It would be of high interest to generalize the results of the
present work to situations of slabs of finite width, in order
to quantify the relevance of the contribution of the initial
conditions to the Casimir pressure in the long time limit.
Work in this direction is in progress.
As a final comment, regarding the material controversy

around the Drude and plasma models for the conduction
electrons, we can say that the first principle microscopic
approach could give fruitful results to bring light to the
discussion. As we mentioned before, here we have proved
the nonequilibrium Lifshitz foundations for insulator
material plates, with permittivity functions that result
from the bounded electrons modeled as polarization
degrees of freedom. Including conduction electrons at
the microscopic model requires an action for representing
their dynamics. This may result in different analytical
properties for the retarded Green functions, giving new
contributions to the steady state depending on the material
model considered and exposing in an explicit way the
limitations of the Lifshitz formula. This is left as pending
future work.
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