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Automatic reconstruction of physiological gestures used in a model of
birdsong production. J Neurophysiol 114: 2912-2922, 2015. First
published September 16, 2015; doi:10.1152/jn.00385.2015.—Highly
coordinated learned behaviors are key to understanding neural pro-
cesses integrating the body and the environment. Birdsong production
is a widely studied example of such behavior in which numerous
thoracic muscles control respiratory inspiration and expiration: the
muscles of the syrinx control syringeal membrane tension, while
upper vocal tract morphology controls resonances that modulate the
vocal system output. All these muscles have to be coordinated in
precise sequences to generate the elaborate vocalizations that charac-
terize an individual’s song. Previously we used a low-dimensional
description of the biomechanics of birdsong production to investigate
the associated neural codes, an approach that complements traditional
spectrographic analysis. The prior study used algorithmic yet manual
procedures to model singing behavior. In the present work, we present
an automatic procedure to extract low-dimensional motor gestures
that could predict vocal behavior. We recorded zebra finch songs and
generated synthetic copies automatically, using a biomechanical
model for the vocal apparatus and vocal tract. This dynamical model
described song as a sequence of physiological parameters the birds
control during singing. To validate this procedure, we recorded
electrophysiological activity of the telencephalic nucleus HVC. HVC
neurons were highly selective to the auditory presentation of the bird’s
own song (BOS) and gave similar selective responses to the automat-
ically generated synthetic model of song (AUTO). Our results dem-
onstrate meaningful dimensionality reduction in terms of physiolog-
ical parameters that individual birds could actually control. Further-
more, this methodology can be extended to other vocal systems to
study fine motor control.

dynamical systems; vocal learning; bird’s own song; peripheral vocal
production model; modeling software

BIRDSONG PRODUCTION REQUIRES the exquisite coordination of
multiple sensory and motor systems. The motor commands
generated in the songbird’s central nervous system (CNS) are
translated to the periphery into muscular activity driving the
syrinx (the avian vocal organ) and the respiratory system.
Singing-related information modulates auditory responses in
the forebrain (Coleman et al. 2007; Keller and Hahnloser
2009), and auditory feedback potentially has multiple path-
ways into the forebrain song system (Bauer et al. 2008; Cardin
and Schmidt 2004; Mandelblat-Cerf et al. 2014). Information
from the brain stem respiratory nuclei ascends bilaterally
(Reinke and Wild 1998; Striedter and Vu 1998) and ultimately
reaches forebrain song system nuclei. This suggests that bot-
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tom-up information may regulate top-down control of singing
more strongly than has been traditionally conceived (Schmidt
et al. 2004). This new perspective on birdsong production
places it in the context of principles of neuromechanical
control that have been elucidated for many systems (Nishikawa
et al. 2007).

How to conceptualize information processing in the song
system given this wealth of pathways and influences has been
challenging. Is there a potentially simplifying organizing prin-
ciple? The common physical phenomenon involved in the
production of all birdsong sounds is the modulation of the
airflow passing through the syringeal labia (Mindlin and Laje
2005). Songbirds accomplish this by generating self-sustained
oscillations of the labia, presumably by coordinated dynamical
recruitment of the complex musculature of the syrinx. This acts
in coordination with dynamical respiratory patterns (Goller and
Suthers 1996a, 1996b; Suthers et al. 1999). Finally, upper
vocal tract filters strongly modulate the sound emitted by the
syrinx. The study of the physical mechanisms behind birdsong
production has included the generation of synthetic songs with
simple models (Gardner et al. 2001; Laje et al. 2002), the direct
measurement of the parameters proposed to be controlling the
syrinx (Mindlin et al. 2003), and the study of the correlation
between the conjectured time-dependent parameters needed to
synthesize songs and the recorded parameters used in the
generation of the song (Perl et al. 2011). This line of research
opens the possibility that a low-dimensional model of birdsong
production capable of producing realistic sounds would pro-
vide, through its time-dependent parameters, a proxy for the
output of the forebrain song system during singing.

Recent results have assessed the biological significance of
such low-dimensional models by measuring neuronal re-
sponses to songs generated by a biomechanical model of song
production (Amador et al. 2013). The songs of that study
represented synthetic copies of the bird’s own song (BOS). The
strategy was using a replay phenomenon found in several
species of songbirds. Neurons in the forebrain’s song system
nucleus HVC are highly selective to auditory presentation
(playback) of BOS (Doupe and Konishi 1991; Margoliash
1986). Similar phasic/tonic patterns of activity are observed for
individual neurons while the bird is singing and for BOS
playback (Dave and Margoliash 2000; Prather et al. 2008). In
zebra finches (Taeniopygia guttata), this replay phenomenon is
highly state dependent: the neurons respond to auditory rendi-
tions of BOS when the bird is asleep or anesthetized, but the
auditory response is highly diminished when the bird is awake
(Cardin and Schmidt 2003; Dave et al. 1998; Rauske et al.
2003; Schmidt and Konishi 1998). These neurons are deemed
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selective on the basis that they give weaker or no responses to
other auditory stimuli, including white noise, simple tones,
songs of conspecifics, and spectrally or temporally modified
versions of BOS (Margoliash 1983). With this replay phenom-
enon, it was observed in sleeping zebra finches that robust
responses of neurons in the telencephalic song system nucleus
HVC were elicited by auditory presentations of BOS and its
synthetic copy (SYN) but very weak or no responses to the
songs of conspecific birds (CON) or to BOS played in reverse
(REV) (Amador et al. 2013). This synthesis was driven by a
small number of time-dependent parameters emulating physi-
ological instructions that the bird can control during the song
production process.

Beyond the validation of a low-dimensional description for
the biomechanics of birdsong production, the small number of
time-dependent parameters required to generate the synthesis
motivated the introduction of the concept of motor “gestures”
in birdsong production: a sequence of trajectories occurring
near bifurcations in a parameter space of subsyringeal air sac
pressure and syringeal membrane tension. An intriguing result
was that the timing of the gesture trajectory extrema (GTEs)
gave insight into the neural code in HVC (Amador et al. 2013).
The possibility of interpreting activity at different areas of the
CNS in terms of parameters directly controlling behavior opens
the possibility of addressing unresolved problems of motor
coding and sensorimotor integration.

An important aspect of this program is to have an automatic
procedure to reconstruct trajectories in parameter space that
can drive the production model to synthesize realistic songs. In
Amador et al. (2013) the authors made algorithmic choices
manually in the song reconstructions. The songs were recon-
structed prior to the electrophysiological experiments, reveal-
ing SYN as one of the stimuli effectively stimulating HVC
neurons and thus demonstrating the validity of the manual
approach. It remains to be determined, however, what solution
space yields effective SYN stimuli. Manual fitting might in
principle be biased toward some regimes of the solution space
and/or be biased against other regimes of possible solutions.
Furthermore, the fitting procedure is complex and requires a
level of bioacoustics knowledge that makes it challenging to
adopt. Finally, many of the songs studied in Amador et al.
(2013) were relatively simple, containing harmonic stacks
(almost constant fundamental frequency and high spectral
content) and syllables with well-defined fundamental frequen-
cies, preferentially with long notes. These syllables are optimal
for distinguishing between the GTE representations presented
in Amador et al. (2013) and the “clock” representation previ-
ously hypothesized (Fee et al. 2004; Hahnloser et al. 2002). It
would be valuable, however, to evaluate the effectiveness of
the production model with a larger number and more complex
song types better representing the range of variation in zebra
finch song. Thus, if an algorithmic and automatic procedure
was shown to have general utility, this would facilitate further
research into coding of birdsong vocal production.

Here we develop an algorithmic and automatic method to
reconstruct the trajectories in parameter space that are required
to synthesize realistic copies of zebra finch song. Importantly,
we confirm the validity of the synthetic songs by comparing the
activity of highly selective HVC neurons in response to BOS
and AUTO. Having an automatic procedure opens the possi-
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bility of exploring additional simplifications that might still
support realistic song synthesis.

MATERIALS AND METHODS
Automatic Reconstruction of Gestures

The computational model for birdsong production consists of
equations describing the dynamics for the separation between the
syringeal labia. These are obtained by writing Newton’s equations for
each labium, which is assumed to be an elastic tissue capable of both
lateral displacements as well as sustaining longitudinal waves (for a
detailed description see Amador and Mindlin 2008; Gardner et al.
2001; Mindlin and Laje 2005; Perl et al. 2011). The assumed kine-
matics enables computation of the pressure between the labia, an
essential step in the derivation of the physical equations of motion,
which ultimately consists of autosustained oscillations. When the
equations are integrated for different values of the control parameters
(tension of the syringeal labium and the air sac pressure), regions of
the parameter space presenting qualitatively similar dynamics can be
identified (Amador and Mindlin 2008). The boundaries between those
regions are called bifurcation lines. It is possible to further simplify
the original system of equations, which emerges from physical con-
siderations, to a simpler set of “normal form” equations (Gucken-
heimer and Holmes 1997) capable of displaying the same dynamical
regimes (Sitt et al. 2010). This simplified dynamical system is our
basic computational model and reads

dx_

a
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where x represents the position of the syringeal labia, therefore
describing the dynamics of one phonating source. In previous work,
we have shown that this model is capable of producing realistic copies
of songs of several songbird species, including zebra finches (Sitt et
al. 2008), canaries (Serinus canaria) (Gardner et al. 2001), Chingolo
sparrow (Zonotrichia capensis) (Laje et al. 2002), and others. In the
normal form equations (Eg. /) this is achieved by varying vy (a scaling,
static parameter) and the time-dependent, dimensionless parameters «
and 3, which are related to the air sac pressure and syringeal labial
tension, respectively (Amador et al. 2013; Perl et al. 2011). Although
this is a simplified version of the sound source [songbird syrinx has
two phonating sources whose tension (3) can be independently
controlled], many sounds are generated using either one side of the
syrinx or both synchronized, and hence the model would be appro-
priate for reproducing these sounds.

The reason why this simple dynamical system can account for
many of the sounds present in zebra finch songs is the existence of
different classes of bifurcations that this system presents: qualitatively
different ways in which stationary solutions (representing labia move-
ments) transition from stability toward oscillating solutions (repre-
senting oscillating labia that periodically obstruct the airflow). The
Hopf bifurcation is a mechanism by which oscillations are born with
infinitesimally small amplitudes and a well-defined, nonzero fre-
quency (Guckenheimer and Holmes 1997; Strogatz 1994). The peri-
odic obstruction of the flow that occurs in that process has little
harmonic content, and therefore the resulting sound is almost tonal.
The other mechanism by which oscillations are born occurs for
smaller values of the parameter 8 and is called saddle node in limit
cycle (SNILC) bifurcation. In this process, an oscillation is born with
substantial amplitude and zero frequency. The oscillations generated
in this way have high harmonic content, and therefore correspond to
rough sounds. For a detailed comparison between sounds generated
through different bifurcations see Figs. 3 and 5 in Amador and
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Mindlin (2008). Crossing a SNILC bifurcation, the farther away from
the bifurcating curve in parameter space, the larger the frequency of
the oscillations and the more tonal the sound gets. Therefore, the
dynamical process in which an oscillatory regime is generated will
determine the relationship between the harmonic content of the signal
and its frequency. The sound source model used here has been
extensively characterized, e.g., showing that oscillations born in a
SNILC bifurcation give rise to sounds whose harmonic (spectral)
content and fundamental frequency obey specific relations (Sitt et al.
2008). This relationship was empirically observed in the vocalizations
of zebra finches containing low-frequency sounds (fundamental fre-
quency < 1.2 kHz). In this way, a preliminary step for our recon-
struction procedure consists of generating a database where, for
different values of the parameters (o, ) we list the fundamental
frequency (w) and the spectral content index (SCI), which is the
centroid of the spectrum normalized to the fundamental frequency
(see Sitt et al. 2008). The database is generated by integrating the
equations of our complete model [nonlinear sound source and linear
filters (Perl et al. 2011)] for each point (e, ) in parameter space. Then,
the generated solutions are spectrally analyzed. In this work, we used
a value of @ = 0.15 to represent “on” states (i.e., solutions corre-
sponding to phonation). The range of (3 values explored for solutions
with different values of fundamental frequency and spectral content
was 0.002 < B < 2.99. This range of o and 3 values allowed us to
synthesize sounds with fundamental frequencies between 413 Hz and
6,780 Hz, which correspond to the range of fundamental frequencies
found in zebra finch song.

We worked with sound files sampled at 44,100 Hz. We performed
a sliding-window Gabor filtering on the time series data by defining
segments of 1,024 samples centered at each point. For each segment,
a Gabor filter was applied (o = 220 samples). This filtering eliminates
sharp edges in the sliding-window spectrographic analysis, achieved
by a fast Fourier transform to each filtered segment. For segments
corresponding to phonation, clear maxima above a threshold were
obtained in the power spectrum. Each segment qualifying as phona-
tion had at least one frequency for which the square root of its power
was larger than 12,000 (arbitrary units). This corresponds to ~5% of
the power at the fundamental frequency of a typical zebra finch
vocalization. If the segment qualified, the first peak between 400 Hz
and 8,000 Hz was identified as the fundamental frequency. The
procedure was repeated for every sample in a phonating interval.
Autocorrelation function (ACF)-based pitch detection algorithms
(PDAs) were tested, including YIN (De Cheveigne and Kawahara
2002; Tchernichovski et al. 2000). These methods efficiently capture
fast frequency sweeps but tend to present many artifacts as frequency
jumps in segments with slower, subtler amplitude modulation. Since
we consider continuity to be an important feature in the motor gesture
hypothesis, first peak from power spectrum was chosen over ACF-
PDAs because it allowed us to extract a continuous time trace of the
fundamental frequency for each phonating segment.

Once a fundamental frequency was computed from the sound
segment, the B value associated with the closest fundamental fre-
quency was retrieved from the database. Since the variation of SCI
along isofrequencies in the range of « values where SNILC bifurca-
tions take place is small, we chose in this work a,, = 0.15, o =
—0.15, leaving frequency control to the variations of 3. This allows us
to simplify the task of reconstructing time-dependent parameters
leading to realistic synthesis of song. The pair (a = 0.15,8) computed
at every sample of a phonating interval provides the time-dependent
parameters of the equations ruling the behavior of the labia. This
constitutes a computational simplification with respect to previous
studies, in which both («,3) were chosen to simultaneously minimize
the differences between the SCI and fundamental frequency of the
synthetic sounds and the recorded sound segments. In this new
reconstruction strategy, [3 represents the tension, while the pressure is
approximated by a series of “on” and “off” values that place the
dynamical system within the oscillatory or stationary regimes, respec-
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tively. Note that although we present a computational simplification
for the parameters of the sound source oscillations, in physical terms
we are not reducing the dimensionality compared with previous
descriptions of the problem (Amador et al. 2013; Perl et al. 2011). As
shown below, a proxy for the pressure is still needed in order to
synthesize realistic songs.

To synthesize sound, one has to emulate a time-dependent airflow.
This requires the geometrical variable x(7) computed with the dynam-
ical system (Eq. ) and the average velocity of air through the lumen.
The sound envelope was used as a proxy for the average velocity since
the sound envelope will monotonically follow the air sac pressure,
which is a monotonic function of the average velocity. We computed
the envelope by integrating a first-order differential equation driven
by the rectified sound trace:

daenv

1
o = —;aem, + |sound(t)| 2)

with 7 = 1 ms.

Following the results of Perl et al. (2011) and Amador et al. (2013),
the synthesis also includes two successive filters: a closed-open tube
representing the trachea and a Helmholtz resonator accounting for the
oropharyngeal-esophageal cavity (Fletcher et al. 2006; Riede et al.
2006). The effect of the tracheal tube is to differentially amplify
frequency components around 2,500 Hz and 7,500 Hz of the signal
emerging from the syrinx. The effect of the Helmholtz resonator is to
amplify frequency components around 4,000 Hz. Operationally, the
pressure P;(¢) at the input of the trachea and the pressure fluctuations
transmitted to the resonator P (f) were computed as

Pi(1) = ey (1)x(t) — rPi(t = T)
P(t) = (1 —r)Pi(t — 0.57) 3

where 7 stands for the time it takes to a sound wave to traverse the
trachea back and forth once, and r stands for the reflection coefficient
of the wave at the interface between the trachea and oropharyngeal-
esophageal cavity (OEC). In our simulations » = 0.1, and 7 = 0.2 ms.

Note that in order to synthesize realistic songs we need the
envelope of the original sounds as a proxy of the air sac pressure (Eg.
3). Thus the computation of sound source parameters by fitting the
parameters of a nonlinear model is simplified in this algorithmic
procedure, but the dimensionality of the physical processes remains
unchanged compared with previous approaches (Amador et al. 2013;
Perl et al. 2011). The pressure is estimated from the sound itself when
the sound envelope is computed.

The final filter, a Helmholtz resonator with losses, was computed
by solving the linear system of differential equations representing its
equivalent circuit, namely,

dr

Bkt

dQ, dp,
—— =ai; + bQ, + ciy + d— + eP,
dr dr

di3 .
AU EREUE “

where the sound output is proportional to i; and P, is the input to the
Helmbholtz resonator (the pressure fluctuations transmitted from the tra-
chea). The parameters, in arbitrary units, are a = —540 X 10%, b =
—7,800,c =18 X 10%,d=12X102e=72%X10"",f= —083
X 1072, g = —5 X 10% and & = 10~ * In prior studies, songs
synthesized with a simpler resonance model of the OEC failed to drive
HVC neurons (see Supplemental Fig. 1 in Amador et al. 2013).

The final element required for the synthesis of artificial songs is
noise (Perl et al. 2011). Absence of noise leads to synthetic sounds
eliciting only weak responses in sleeping or anesthetized birds (see
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Amador et al. 2013, Supplemental Fig. 1). The noise was added to the
parameter representing the labial tension (f3), compatible with elec-
tromyography (EMG) recordings of syringeal muscles (G. B. Mindlin,
personal observations). In the simulations of this work, Gaussian
noise was added to (3, with amplitude three orders of magnitude
smaller than the total 3 range.

The codes for implementing this procedure can be downloaded
from http://www.lsd.df.uba.ar.

Automatic Reconstruction of GTEs

The automated analysis approach developed here can be extended
to approximate the timing of GTEs through the analysis of the sound
envelope. The key observation is that the transitions between time
intervals with qualitative different behaviors in the fundamental fre-
quency are reflected as local minima in the sound envelope. These
instances are often computationally more robust than more subtle
changes in fundamental frequencies occurring in transitions between
some tension gestures. For example, in the transition between an
exponential decay and a harmonic stack, the derivatives at the tran-
sition point can take similar values, making the identification of the
gesture transition very difficult. Thus here we will define the compu-
tational steps that we followed to reconstruct these significant time
instances (GTEs) from the sound envelope. In RESULTS, we describe
the application of the method to different songs.

Computing GTEs

A second, “GTE identification” algorithm was developed. Sound
was first Hilbert transformed into s(¢). This time trace was then
integrated by a one-dimensional linear dynamical system:

dz 1

5 = 2t sO] ()
with 7 = 1 ms. A Savitzky-Golay filter (Press et al. 2007) was then
applied (np = 513, nr = nl = 256, 4th order of the smoothing
polynomial). Finally, the obtained time trace was normalized into n(z),
our envelope (normalization with respect to the absolute maximum of
the envelope). A five-point stencil derivation of the signal was
computed and further filtered with a Savitzky-Golay filter (same
parameters as above) to obtain d(f), representing a smoothed deriva-
tive function of the original song.

The computation of syllable beginnings and ends involved detect-
ing the time instances at which the normalized signal n(r) exceeded a
threshold set to 0.025 [as n(?) is a normalized signal, this corresponds
to 2.5% of the maximum value]. Intrasyllabic maxima and minima
were computed, inspecting the changes in sign of the smoothed
derivative d(f). After calculating all the minima, we extracted the
significant minima, comparing the value n(f) of the minima with the
adjacent maxima, and evaluating that the amplitude ratio between
minima and maxima was lower than a factor w, < 1. This avoids
having small fluctuations interfering with the identification of the
minima of the envelope that correspond to qualitative changes in the
sound. A similar criterion was adopted to identify significant maxima,
defined as the maxima with an amplitude ratio between the maxima
and adjacent minima being higher than a factor w, > 1. With these
definitions, we selected as candidates for GTEs the starts and ends of
syllables, significant minima (indicating the instances when gesture
transitions within a syllable take place), and significant maxima (as
proxies of pressure maxima). We chose (u,, n,) = (0.8, 2.6), which
minimized the distance between manual GTEs and algorithmically
computed ones for four birds previously analyzed in the literature
(Amador et al. 2013).

The codes for implementing this procedure can be downloaded
from http://www.Isd.df.uba.ar.
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Subjects

Experiments were performed on adult male zebra finches in
accordance with a protocol approved by the University of Buenos
Aires (FCEN-UBA) Institutional Animal Care and Use Committee
(CI.C.UAL).

Stimuli

Before each experiment, songs were recorded with a directional
microphone from a male zebra finch individually housed in a sound-
isolation chamber. For each bird, the song motif and most common
bout length were determined. Stimuli were crafted by repeating a
recording of the bird’s stereotyped song motif three times consecu-
tively. Intermotif times were adjusted such that the crafted stimulus
had a similar temporal pattern, as did a typical song bout. This
procedure eliminated variability across motif renditions in a stimulus.

Stimuli presented included the following: 7) BOS; 2) BOS played
in reverse (REV), in which the temporal structure of individual
syllables and the global syllable order were reversed but overall
spectrum was the same as the BOS; 3) song from a conspecific adult
male (CON); and 4) synthetic copy generated by an automatic recon-
struction of BOS (AUTO). Twenty presentations of each stimulus
were presented, one stimulus every 10 s, with random choice of
stimuli between presentations.

Surgeries

Preparatory surgeries were conducted 2 days before the days of
experiments. Animals were anesthetized with isoflurane (Baxter
Healthcare). The birds were head-fixed in a stereotaxic device, and
lidocaine ointment (2.5% Denver Farma) was applied to the scalp,
after which the scalp was dissected along the midline. A stainless steel
post was then attached to the caudal part of the bird’s skull with dental
cement and cyanoacrylate.

On the days of experiments, an animal was anesthetized with 20%
urethane (60—100 ul total; Sigma, St. Louis, MO) administered into
the pectoral muscle in 20- to 30-ul aliquots at 30-min intervals. The
bird was placed in a sound-attenuating chamber, and its head was
immobilized via the mounted post. Small craniotomies were made
over HVC following stereotaxic coordinates, and the dura was opened
with an insect pin. Recording microelectrodes were lowered into HVC
with a single-axis hydraulic micromanipulator (Narishige MO-10).

Electrophysiological Recordings

Recordings were made with single-channel tungsten microelec-
trodes (3—5 M(), Microprobes). HVC neurons were identified by
stereotaxic coordinates, firing rates, and the selective response to
BOS. Signals were recorded with a data acquisition board (National
Instruments DAQ PCI-6251) interfaced with MATLAB (The Math-
Works, Natick, MA). Data acquisition onset was synchronized with
stimulus presentation onset (delay < 0.03 ms), achieved by the use of
the RTSI bus on the DAQ board (proprietary NI bus). Sampling
frequency was set at 20 kHz, and data were band-pass filtered between
300 Hz and 5,000 Hz during acquisition.

Data Analysis and Processing

Spike sorting. Spike detection and sorting were implemented with
the software wave_clus (Quiroga et al. 2004), which allows the
automatic extraction of the different spike features in the data with a
wavelet transform and an automatic classification of the data in
different clusters by using superparamagnetic clustering. After the
automatic extraction of spikes was performed, we checked the soft-
ware performance by inspecting spike shape and amplitude, ISI
distributions, and separation of the clusters along the wavelet coeffi-
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cient space. Typically, one to three neurons were isolated per record-
ing site. Sites where the recordings degraded before the entire stim-
ulus repertoire was presented were discarded.

PSTH analysis. After single units were isolated from the spike
records, the trials corresponding to a given stimulus were used to
calculate raster plots and poststimulus time histograms (PSTHs) with
10-ms bins. Bin values were converted to spike rates (spikes/s),
yielding an average of the time-dependent firing rate of the unit. Mean
spike rates were calculated over the duration of the stimuli. The
variance of the PSTH for each stimulus across all trials was also
calculated, with the rationale that a high variance is consistent with a
well-defined neural activity pattern of excitation and inhibition. All
measurements were corrected for the spontaneous firing rate of the
neuron, by subtracting a spontaneous rate (or variance) measured over
an interval of duration equal to the duration of the stimulus. Finally,
we normalized the response strengths to the response to BOS, as
follows:

My — My
RRS X = —~ 5 )
BOS  Mpos — M
Oy — O
RRV X =% °S )
BOS  0pos ~ Os

where RRS is the relative response strength, RRV is the relative
response variability, X stands for either AUTO, REV, or CON, S
stands for the spontaneous activity, and M indicates mean and o
variance.

Correlations. Pearson’s correlation coefficients were computed to
assess the temporal course similarity between the neural responses to
BOS with respect to AUTO, CON, and REV motifs. We calculated
each stimulus’ average motif response by time-shifting the neural
response to all subsequent motifs presented in each protocol and
aligning them with the first. To achieve this with high temporal
resolution, for each protocol we constructed a 10-ms sliding window
histogram sampled at the sound signal’s sampling frequency. This
allowed us to precisely align the neural responses between different
motifs. Finally, to construct the stimulus’ motif response for each
protocol, we computed the mean between all responses and smoothed
it with a Savitzky-Golay filter. Pearson’s correlation coefficients were
computed for each protocol with these smooth histograms of the
neural data. When computing correlations between responses to mo-
tifs of different lengths (BOS-CON correlation), we padded the
shorter signal with a segment of spontaneous activity from the smooth
histogram.

RESULTS
Automatically Synthesized Songs

The automatic procedure transformed a recorded song into a
series of instructions, which were then capable of driving the
dynamical system (Egq. ) to synthesize realistic sounds. Figure
1 displays an example. Note the similarities between a re-
corded zebra finch song (Fig. 1A; sound trace, fop, sonogram,
bottom) with the AUTO song (Fig. 1B). The power of the
dynamical model is reflected in the different spectral contents
of sounds of different frequencies. In other words, fundamental
frequency and SCI (see MATERIALS AND METHODS) of the sound
traces did not require a delicate simultaneous control of several
parameters.

Close inspection of the spectrographs shows that for some
syllables the estimated fundamental frequencies of the synthe-
sized sounds tend to be lower than the fundamental frequencies
in the natural songs. This is an effect of the finite grid that is
used to generate the database containing, for different values of
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Fig. 1. Song recording and synthesis. Recorded zebra finch song (A) and
automatically synthesized song (B). The sound signal is shown at top and its
corresponding sonogram at bottom. The automatically reconstructed motor
instructions that drive the model produce a synthetic copy capturing syllables’
fundamental frequency and spectral content.

B, the fundamental frequencies and spectral content indexes.
For example, compare the third and the final syllables of the
natural song, both of which have clear harmonic structure (Fig.
1A), with the corresponding syllables in AUTO (Fig. 1B),
which have lower fundamental frequencies. The automatic
procedure also does not fully capture the most complex,
aperiodic sounds. The timing of transitions between distinct
vocal gestures, however, is faithfully reproduced.

Automatic reconstruction of the time-dependent parameters
was performed for the songs of five adult male zebra finches.
This resulted in exploration of a wide range of stereotypical
zebra finch song syllables (see Figs. 1, 2E, 4F, and 5). The
range of fundamental frequencies explored with these songs
(from ~400 Hz to 6.7 kHz) is represented in the model by
differences in the parameter time traces that generate them.
The automated procedure is robust in the range of zebra finch
vocalizations explored, meaning that it is capable of reproduc-
ing both the fundamental frequency and the SCI of each sound
segment with the reconstruction performed from the recorded
sound signal.

Electrophysiological Experiments

Given the selectively of HVC neurons for BOS over con-
specific songs (Margoliash 1986; Margoliash and Konishi
1985) and the sensitivity of HVC to slight changes in the
acoustic parameters of BOS (Margoliash 1983; Theunissen and
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Fig. 2. Neural selectivity experiment. Electrophysiological recordings of the response activity of an HVC single unit to auditory presentations of different stimuli.
The protocol consisted of 20 randomly organized auditory presentations of each stimulus. Neural activity was processed through a spike sorting algorithm
(wave_clus). A-D: raster plots of the 20 trials (bottom), poststimulus time histograms (PSTHs; middle) and the sound signal of each stimulus presented (top).
E: sonograms for a song motif of each of the presented stimuli. The symbol patterns at bottom are the same as in A—D. The activity elicited as response to the
bird’s own song (BOS; A) presents a well-defined pattern of excitatory and inhibitory activity; and B shows a similar activity pattern elicited by the automatically
synthesized song (AUTO). C and D represent the weak activity in response to presentations of the reverse song (REV) and the song of an adult male conspecific

(CON).

Doupe 1998), a strong standard to test the model is whether
synthetic songs can drive HVC neurons. Previously, songs
synthesized with expert supervision (SYN) were capable of
eliciting HVC-selective activity (Amador et al. 2013). Here we
assess whether similar results are obtained with the fully
automated version of the synthesized song (AUTO).

Twenty selective HVC neurons were isolated in five birds,
arising from one to five recording sites per bird. A neuron was
considered as BOS selective when it presented a statistically
significant response to BOS compared with spontaneous activ-
ity (comparing mean spike rates, P < 0.05, paired t-test) and
had stronger responses to BOS than to REV and CON. For the
20 neurons thus selected, the average mean response CON/
BOS was 0.20 = 0.22. This is comparable to the average mean
response CON/BOS (0.16 = 0.34), similarly analyzed, from a
larger sample of HVC single units recorded in anesthetized

zebra finches in a previous study (Margoliash et al. 1994). Thus
the two data sets reflect similar underlying parent distributions.
Anesthetized birds were presented with BOS, REV, AUTO,
and the song of a conspecific adult male (CON). Exemplar data
for one neuron are shown in Fig. 2. The responses to BOS and
AUTO are much stronger than the responses to REV and CON.
Moreover, there is a clear temporal pattern of suppression and
excitation that is consistent across all trials in BOS and all trials
in AUTO and is similar comparing BOS and AUTO. This
result is of particular interest taking into account the simplifi-
cations of the model and the BOS selectivity of the neurons.
Similar results were obtained for all 20 neurons. All 20
neurons showed tonic excitation in response to BOS and were
probably HVC interneurons (Hahnloser et al. 2002). To quan-
tify the response, we computed the PSTH and considered two
features from them: the mean activity during stimulus presen-
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Fig. 3. Results in terms of response strength and variability. Results for the set of experiments performed (n = 5 birds, N = 20 HVC single units measured). Thick
bars represent the mean value, and error bars represent =SD of the data. RRS: relative response strength (RRSy,50s; see Eg. 6): mean RRS , yrop0s = (0.63 = 0.12),
which is significantly larger than the mean of RRSconpos (0.20 + 0.22) and RRSgiy/pos (0.17 = 0.13). RRV: relative response variability (RRV y50s. see Eq. 7):
mean RRV  yrop0s = 0.73 = 0.15, which is significantly larger than the mean of RRVgnpos (0.24 = 0.20) and RRVypypos (0.21 * 0.14). Measurements are
corrected in all cases by the spontaneous firing of each unit. Pearson’s r: pairwise correlation coefficients: mean rpog vs. auto = 041 = 0.20, which is significantly larger
than mean rgog vs. con = 0.04 £ 0.15 and mean rpog o rev = 0.03 £ 0.12. *Paired r-test (P < 0.001).

tation and its variance (see MATERIALS AND METHODS). The first
quantity reflects whether the overall response is larger during
the presentation of the stimulus (mean firing rate across a BOS
presentation can get as high as 70 spikes/s) than during spon-
taneous firing (0.5-26 spikes/s in a window with the same
length as BOS). We then computed the RRS of this quantity
compared with BOS (see MATERIALS AND METHODS).

The variance reflects whether there is a pattern formed by
inhibition and excitation across the stimulus presentation,
while RRV measures the magnitude against BOS. Figure 3
shows the results of all the experiments (n = 5 birds, N = 20
single units), displaying the calculation for each neural re-
sponse, the mean, and error bars indicating =SD. Since these
are BOS-relative measurements, a value of 1 means the same
level of response as BOS and a value of 0 would mean no
significant activity in response to that particular stimulus.

In terms of both response strength and response variability,
the artificial songs synthesized with automatically recon-
structed parameters elicited a significantly larger level of ac-
tivity than the reverse song and the song of a conspecific adult
male (paired t-test, P < 0.01). It is noteworthy that the
RRS suto/mos mean value is 0.63 £ (.12, significantly larger
than the mean value of both RRScgn/pos and RRSgev/s0ss
which are 0.20 = 0.22 and 0.17 = 0.13, respectively. For RRV
we have similar results: the RRV 10,505 mean value is 0.73 =
0.15, while the RRV gnos mean value is 0.24 * 0.20 and the
RRVy¢gvmos mean value is 0.21 = 0.14.

Features of the pattern of excitatory-inhibitory responses to
BOS are also observed in responses to AUTO (Fig. 2). The
presence of response patterns is revealed as a high mean value
for the RRV  yro/mos- In other words, AUTO was not only
capable of producing an increase in the firing activity of HVC
neurons but also did so with a pattern of excitation and
inhibition.

To quantify the similarity to the BOS response pattern, we
computed the pairwise linear correlation coefficients (Pear-
son’s r) between neural responses to BOS with respect to
AUTO, CON, and REV. Each neural response was averaged
across each stimulus’ motif presentations within a protocol and
smoothed with a Savitzky-Golay filter (see MATERIALS AND
METHODS). The resultant correlation coefficients are AUTO vs.

BOS 0.41 £ 0.20, REV vs. BOS 0.03 = 0.12, and CON vs.
BOS 0.04 = 0.15, and the distributions (with =1 SD error
bars) are shown in Fig. 3, right. These results show that there
is a shared temporal response pattern to the AUTO and BOS
stimuli presented, with the AUTO vs. BOS correlation signif-
icantly higher than REV vs. BOS and CON vs. BOS correla-
tions (paired -test, P << 0.001). It remains to be seen whether
the correlation between AUTO and BOS would be greater in
sleeping or singing birds. In summary, these results show that
AUTO is able to elicit significant responses in HVC single
units by increasing the firing rate of the cell (RRS analysis),
that it does so with the presence of a certain pattern of
excitation and inhibition in the unit (RRV analysis), and that
these response patterns, while not identical, share some of the
temporal course features with BOS-elicited patterns (Pearson’s
correlation analysis).

Figure 4 illustrates an unexpected result: an automatically
reconstructed synthetic song capable of eliciting a response
that, at specific temporal instances, is stronger than that elicited
by BOS (see PSTH at ~125 spikes/s). Since selectivity
involves measuring the response strength across the stimu-
lus, even in this case the total response to BOS is larger than
the response to AUTO (RRS yromos = 0.53 and
RRV utomos = 0.83). Yet the reported higher local re-
sponse can be appreciated in Fig. 4 as a sharpening of the
PSTH around specific instances of the song motifs. At those
precise times, higher values are reached, and a clear excit-
atory-inhibitory pattern in the raster plots emerges. Since
the highly precise responses take place after particularly
pronounced inhibitory valleys, they might be the result of
inhibitory rebounds. In the higher-order auditory nucleus
caudomedial mesopallium (CMM) in starlings, stimuli com-
prising isolated notes of a motif can elicit excitatory re-
sponses that are not observed when the entire motif is
presented, and deleting individual notes from a motif can
release excitatory response peaks that are not otherwise
present in the unmanipulated motif (Meliza et al. 2010). If
similar processes are at work here, then the unanticipated
excitatory peaks might result from incomplete modeling of
preceding notes causing a release from inhibition. CMM
projects to the caudomedial lobule (CLM), a distinct region
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Fig. 4. Neuron presenting higher response to AUTO than to BOS. Same layout and data processing as in Fig. 2 but this time showing the recordings and results
for a particular case: a selective HVC neuron that presented locally sharper responses (in terms of the excitatory-inhibitory pattern) to AUTO than to BOS.

of which projects to HVC (Akutagawa and Konishi 2010;
Bauer et al. 2008).

Automatic Reconstruction of GTEs

To test the algorithmic procedure of parsing the song into
gestures (identifying the times of GTEs), we applied the GTE
identification algorithm (see MATERIALS AND METHODS) to the
songs of four of the birds analyzed in Amador et al. (2013).
Figure 5 displays the result for the song of one of the birds. The
sound trace and its spectrogram are illustrated in the top two
panels in Fig. 5, while the reconstructed sound envelope is
shown in the bottom panel. The dotted vertical lines across the
middle and bottom panels in Fig. 5 are located at the time
instances selected by running the algorithm described in ma-
TERIALS AND METHODS (automatic identification of GTEs); the
square dots indicate the GTEs as identified using a manual
reconstruction of gestures (Amador et al. 2013). A total of 25
of the 26 manually computed GTEs in this example were closer
than 5 ms of their closest automatically obtained set of 30
GTEs. The largest source of variance comparing the two

approaches was that the automated reconstruction tended to
identify clusters of closely spaced GTEs in some limited
regions of song while this was uncommon with manual recon-
struction (Fig. 5). The average time distance between the
manually and automatically obtained GTEs for the example
shown in Fig. 5 was 1.9 = 2.8 ms (mean = SD). Analogously,
for the other three birds analyzed the mean time differences
were 2.6 = 3.0 ms, 1.1 = 1.3 ms, and 3.5 £ 3.8 ms. These
results show that automatically extracted GTEs are in good
agreement with previously defined GTEs in Amador et al.
(2013).

The reliability of the automatic method was further explored
by reconstructing the GTEs from several song renditions for
one of the birds in the present study. The results are illustrated
in Fig. 6. In Fig. 6A, one sound trace and its sonogram are
displayed at top and the envelope is shown at bottom. The
automatic GTEs for different song renditions are displayed in
a raster plot (Fig. 6B). We used syllable onsets and offsets as
the reference frame to evaluate the timing of GTEs across
renditions. We performed a linear time scaling on each syllable
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Fig. 5. Automatic reconstruction of gesture trajectory extrema (GTEs). Sound
pressure (fop) and sonogram (middle) of a zebra finch song. GTEs were
extracted with a manual method (square dots) and by an automatic procedure
(dashed lines, see MATERIALS AND METHODS). Automatically extracted GTEs
are obtained by finding significant maxima and significant minima of the
smoothed envelope of the sound wave (bottom), in addition to syllable onsets
and offsets. The procedure to manually extract GTEs is explained in Amador
et al. (2013).

and then quantified the temporal jitter for each successive GTE
within a syllable as the standard deviation for all the presen-
tations of that syllable. Excluding syllable onsets and offsets,
for the remaining 10 GTEs, the average dispersion was 3.4 =*
2.28 ms, with 9 of 10 GTEs showing a dispersion of <5.5 ms,
with values ranging from 0.84 to 5.48 ms. This result gives
additional confidence that the new automated detection of
GTEs described here is a robust method.

DISCUSSION

We have tested over the years the hypothesis that low-
dimensional dynamics was capable of providing a succinct yet
biologically meaningful description of singing behavior (Ama-
dor et al. 2013; Gardner et al. 2001; Mindlin et al. 2003; Perl
et al. 2011). Taking this approach has resulted in models that
reduce the description of singing behavior to a low number of
parameters. Since the syrinx is a nonlinear phonating device
that transduces these parameters into sound, even simple pa-
rameter time traces can capture rich information about the
acoustics. It is for this reason that these parameter time traces
might be thought of as a coordinate system to interpret the
neural coding involved in birdsong production. The demon-
stration here of the validity of an automated procedure to
model song in a low-dimensional framework furthers this
program, allowing us to rule out subjective evaluations of
parameter features that may end up increasing the dimension-
ality of the reconstruction. Typically, sound analysis is per-
formed in terms of acoustic features such as fundamental
frequency, amplitude, and some measure of the entropy (Sober
et al. 2008; Tchernichovski et al. 2000). A description in terms
of motor coordinates complements the analysis and has some
elements in common: the activity of some syringeal muscles is

AUTOMATIC RECONSTRUCTION OF VOCAL GESTURES

transduced into fundamental frequency, and in some species
such as the zebra finch for which the fundamental frequency is
reasonably lower than resonances of the passive vocal tract the
sound amplitude is a good proxy for the air sac pressure. On
the other hand, as has been extensively reported, the physical
mechanisms involved (and in particular, the bifurcations in-
volved in the onset of the labial oscillations) link several
acoustic features together, as fundamental frequency and spec-
tral content. This results in simple instructions being trans-
duced into sounds with a high degree of internal logic (for
example, a precise spectral content for each sound of a given
fundamental frequency). Similarly, the shape of the air sac
pressure pattern determines the nature of the attack of the
sound (by conditioning the sound envelope), and therefore its
timbre (a most elusive acoustic feature, difficult to express in
terms of simple acoustic measures).

The automatic reconstruction was bounded to reduce the
number of parameters to be fitted. We used the normal form of
a SNILC bifurcation as the nonlinear dynamical system emu-
lating the labial dynamics in the syrinx. The reconstruction of
the fundamental frequency gave rise, through a lookup table, to
time-dependent parameters of the normal form. The integration
of these equations with the reconstructed parameters generated
sounds with the desired spectral content. For filtering the
sounds, we used a closed-open tube connected to a Helmholtz
resonator of fixed parameters. Noise was added to the recon-
structed parameter (Amador et al. 2013). This process is fully
automatic and requires as input only the recorded sound signal
for each bird. Note that simplicity in the reconstruction of
gestures from the model does not imply an additional reduction
of the amount of information needed to synthesize realistic
sounds: the air sac pressure was not computed by fitting
parameters in the dynamical model of the labia, but a proxy
was computed from the sound.

The synthetic sounds generated in this way were capable of
eliciting responses in HVC neurons selective to BOS. This is
remarkable, given the dramatic fall of response reported in
previous works as soon as the parameters of a successful
physical model were slightly changed (Amador et al. 2013). In
terms of both mean activity as well as variance, neurons
responded significantly to the algorithmically generated sounds
that we developed. We chose variance as a relevant response
parameter to investigate because it reflects a coding strategy
that stands out from random activity. Correlating the response
to BOS and automatically reconstructed sounds is more restric-
tive: it would likely require that we reproduce all the relevant
features of BOS and properly weight them (see Meliza et al.
2010). But even so, we have shown that responses to automat-
ically reconstructed songs (AUTO) have a significantly higher
correlation coefficient to BOS than either REV or CON,
meaning that AUTO- and BOS-elicited responses share some
features of their temporal time course pattern of excitation and
inhibition. As an example of strong responses to synthetic
sound, highly structured and yet poorly correlated with the
response to BOS, we report one case where in certain regions
of song the response to our synthetic sound was larger than that
to BOS.

It is never clear, a priori, whether the physics paradigm of
dramatically reducing the complexity of a problem will give
rise to a pertinent description of it. When dealing with biolog-
ical systems, this issue becomes particularly acute, as the
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times were linearly scaled to a fixed syllable duration. This
takes advantage of the highly reliable estimates of syllable
onsets and offsets as a reference frame to study the robustness
of GTE timing within a syllable. The dispersion for all the
GTEs (excluding onsets and offsets) across all the renditions
was 3.4 = 2.28 ms.
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systems generally express an enormous number of degrees of
freedom. In this work, we analyzed birdsong under this para-
digm and found that an automatic reconstruction of parameters
of a low-dimensional model can give rise to songs that are
biologically relevant in the sense that they can elicit responses
from neurons highly selective to BOS. Whether we use the
reconstructed parameters as motor coordinates to interpret
neural coding or use them to drive bio-prosthetic devices,
simplified models usually anticipate deeper understanding.

In machine learning and statistics, dimensionality reduction
has been used as a process of reducing the number of variables
under consideration. The data transformation can be linear (as
in the widely used method of principal component analysis) or
nonlinear, but in general when this method is applied to
biomechanical problems the variables extracted are hard to
relate to the physiology. The method presented here constitutes
a nonlinear dimensionality reduction that is derived from
physical principles studying the biomechanics of the peripheral
system. In this way, the variables can be more easily related
with physiological parameters the subject can control. More-
over, since we are not fitting the parameters of a physical
system but those of a normal form, the number of parameters
is reduced to a minimum expression. This means that even if
many physiological instructions participate synergistically in
the control of a given feature, we reduce the parameter search
to find a minimal number of instructions from which the
feature can be controlled. In our example, both air sac pressure
and syringeal tension are involved in the control of the funda-
mental frequency, yet in this work we show that it is possible
to generate pertinent synthetic songs by reconstructing the

parameters of a normal form with only one fitted parameter
[B(®].

Given the biomechanical similarities between the sound
sources of vocalizations in songbirds and mammals (Amador
and Margoliash 2013; Riede and Goller 2010), the method
presented here can be used to generate synthetic vocalizations
in a wide variety of species. Recently, our model for the vocal
source was used to reproduce macaque monkeys’ calls, corre-
lating motor cortical activity with estimated time-varying pa-
rameters [a(7), B(7)] (Fukushima et al. 2014), showing that this
framework might be useful for decoding motor cortical activity
with a nonlinear dynamical model during vocal production.
Reducing the high dimensionality of produced sounds could be
advantageous for applications of brain-machine interface for
speech production.

More generally, the methodology of analyzing the biome-
chanics of the peripheral system in terms of its physical
properties and generating nonlinear dynamical models to re-
produce behavior can also be extended to other systems,
paving the road from the CNS to the control of the peripheral
devices in charge of executing the actions implied in behavior.
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