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Abstract

Biodegradable and non-retrogradable starch-glydeséd films were obtained
using citric acid (CA) as crosslinking agent at’@ This material allowed
decreasing water vapor permeability (WVP) more tBaf6, remained
amorphous for at least 45 days as a result of éh&ark formed by the CA that
avoided starch retrogradation and maintained. tipeagdiability in compost,
occurring only six days after the films withoutrmtacid. A simulation of the
8elat|n|z_at|on process of starch-glycerol with avithout CA, using a

ifferential thermal analysis devicé, showed that$ystem with CA completed
the gelatinization 5 °C before than the other &Alfirst reacted with glycerol
and then starch-glycerol-CA reaction occurred. erature at which the
gelatinization process was carried out was criticalbtain the best results. An
increase of gelatinization process temperatur® aC38in system with CA, led to
a worsening on WVP_and its integrity after a svagllprocess with
dimethylsulphoxide (DMSO), compared to the filmsgessed at 75 °C.

Keywords: starch, citric acid, crosslinking, biodedable edible films,
biodegradability.

1. Introduction

In light of the global concern for the accumulatminwvaste, biodegradable and
compostable materials were extensively investigatedrder to partially
replace petroleum-based plastics. Among the malyrnaos used to develop
biodegradable films, starch has been focus of iy&sons because it is a
natural polymer from renewable resources, abunaiagiiow cost, that is
capable of forming continuous thermoplastic mateiiBertuzzi, Armada, &
Gottifredi, 2007; Fama, Bittante, Sobral, Goyage§erschenson, 2010;
Flores, Fama, Rojas, Goyanes, & Gerschenson terrez, Pérez, Guzman,
Tapia, & Fama, 2015; Romero-Bastida et al., ZOHB)Never,_ its hydrophilic
character leads to materials with poor moisturei®aproperties and high water
sensitivity, being very dependent to ambient hutpjdimiting their application
as alternative packaging (Averous & Boquillon, 2004 _ _
Another starch problem’is its h|%h retrogradatiomiimy storage time, causing
changes in its crystallinity and thus in itS pemi@ance such as texture, color, etc.
Farhat, Blanshard, & Mitchell, 2000). _ _
etrogradation process occurs. in two differentestadhe first and faster one is
due to the amylose retrogradation, while the se slower one is due to the
formation of an ordered Structure of amylopectiar@sell, Hulleman,
Myllarinen, Moates, & Parker, 1999). o
Crosslinking reaction appears as a common appfwaahnit starch _
retrogradation and to improve its performance fmous applications. This
Process uses multifunctional group reagents (qrdss%,a_g_ents? to react with
he hydroxyl groups of starch (responsible folhydrophiliCity), leading to new
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chemical bonds between molecular starch chainsnged different polymer
network. BY introducing hydrophobic ester groupsuostitute hydroxyl groups
of thermoplastic starch, itS hydrophilic charadan be reduced and _
retrogradation can be prevented (Ghanbarzadeh,s\li&&ntezami, 2011; Shi
et al., 2007; Zhou, Zhang, Ma, & Tong, 2008). _
Citric acid E)CA) Is a natural organic acid with iwdarboxylic structure, reason
why it can be used as starch crosslinking agenbv(&o Garcia et al., 2014;
Zuraida, Yusliza, Anuar, & Mohd Khairul MuhaiminQ22). There are several
researches showing that the addition of CA to hthase compounds, improves
their barrier properiies and that the effectiversdsgtric acid to crosslink the
starch strongly depends on manufacturln? condit(Menzel et al., 2013;
Olsson, Hedengvist, Johansson, & Jarnstrom, 2 Gagn, Hedengvist,
Johansson, & Jarnstrom, 2013b; Reddy & Yang, 2010).
Several works of literature use citric acid as slioging agent for starch. In the
case of films obtained by casting technique, tiere agreement about the

rotocol stage in which citric acid must be add&oime authors (Reddy &

ang, 2010; Ghanbarzadeh et al., 2011) mix citrid &ith water, %cherol and
starch before gelatinization process, while othiarsyder to avoid hydrolysis,
first gelatinize starch, cool the mixture, add @ and finally do the drying
stage (Shi et al., 2008; Menzel et al., 2013; Qissaal., 2013a; Olsson et al.,
2013b). In particular, the work of Menzel et al0{8) should be mentioned. In
that investigation the authors reported that it ible to obtain crosslinked
starch gela |n|2|n91 starch at low temperature *tbmfol_lowmg protocol: first,
the starch was gelatinized in boiling water bathdfd min; then, the gel was led
to room temperature and, at that moment, CA waedniced; finally, Starch-CA
system was dried at 70 °C for 5 h. In the caseshich it is included after starch
ﬂelatlnlz_atlon, the influence of the drying temgera in the crosslinking or

drolysis of starch is one of the most discuss®dtp in the literature.

[lowever, there is agreement in the fact that higind temperatures lead to a
gbqlhggs/drolyss degree (Menzel et al., 2013; Olssbal., 2013a; Olsson et al.,

For thé crosslinking reaction between starch andddccur, temperature is
required. The discussion is in which stage of teeetbpment of the films this
reaction occurs, and what is the order in whichdiffierent components of the
films react. In the case where CA is added aftergilatinization process,
obviously the crosslinking reaction occurs during tirying of the mixture.
However, when CA is introduced prior to s_tarchggalaatlon the reactions
may occur at any stage of the films o_btalnln_? psscd o the best of our
knowledge there are no researches in the liferaligoeissing this point.
Moreover, there have not been reported studieslaimg the reactions between
CA, starch and glyceral during gelatinization _sta%eir#ng of the films, using
(Ié)lff’erer%tllja_lll_gcannlng Calorimetry (DSC) or Diffefteal Thermal Analysis

evice :

Nor are there studies in the literature that disdhe influence of the maximum
temperature at which the mixture is brought dugetatinization process.
However, this step could be critical in the cradaing process. For example
Ghanbarzadeh et al. (2011) obtained films of starosslinked with CA,
heating the mix of all components at 90 °C for 30 and drying at 60 °C in
oven. Marques et al. (2006) report crosslinkedchtaims with tetraethylene

lycol dl?crylate, heating the mix of all comporeat 90 °C and drying at room
emperature.

On the other hand, low field nuclear magnetic resae {H NMR) is a
technique used to characterize the water mobifi mers and polymer
composites ﬁMendes et al., 2012; Preto, Tavar ilva, 2007), rarely used
in natural polymers such as chitosan and starchd&et al., 2014, Gaudin et
al., 1999) and there is no precedent of its aBtudman crosslinked starch.

Finally, one of the most important points to beleated in films to be used as
packaging is their biodegradability. Starch camdaalily metabolized by a range
of microorganisms to fermentation products suchthanol and methane (Tang
& Alavi, 2011). It is quickly attacked by microongi@ms when it is buried in
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121 Soil. Prakash Maran et al. (2014) showed, usmgp%astarch_ based composites
122 that the increase of water sorption promotes they emn soil microorganisms,

123 which use the starch films as a source of enengihfar growth. There is

124 agreement in the literature that crosslinking $tavgh citric acid modifies

125 water sorption. Moreover, Maiti, Ray, & Mitra (2018nd Imam, Cinelli,

126 Gordon, & Chiellini (2005) showed in starch-poly{yi alcohol) blends

127 crosslinked with different crosslinking agents ttré starch deégradation rate
128 buried in soil is slowed when the system is crogsld. While it is expected that
129 the esterified or citric acid crosslinked starchnadd degrade too slow, no studies
130 in the literature reported this point. _ N

131 Therefore, the purpose of this report was to p@wadomplete characterization
132 of cassava starch crosslinked with citric acid. Tdwis was to show the

133 influence that has the maximum temperature readhedg starch ,

134 gelatinization process on the film properties wttas procCess is performed in
135 presence of citric acid. Besides, the goal wastaahstrate that heating the

136 Mixture up to 75 °C is enough to obtain a compyegelatinized crosslinked

137 material, whereas if the final temperature is 8 s of incipient hydrolysis
138 are obtained. The manuscript also aimed to |mPhnvaed e aboutthe

139 reactions between the different components (s zﬂéhandé:) cerol) during the
140  gelatinization stage. To achieve this, the reastiogtween different’ components
141 Were simulated using a DTA. After characterizatbyymeans of Fourier

142 transform infrared spectroscopy (FTIR) the pos rification or crosslink

143 reaction were identified. Furthermore, the influewé the final temperature of
144 the gelatinization process and the presence aititt on the mobility of water

1s  contained jn the formed films were analysed by f@id nuclear magnetic

146 resonance d NMRJ_. The efficiency of CA as crosslinking agevds

147 determined by studies of swelling’in dimethylsulplde (DMSO) and XRD,

148 through the evaluation of the material retrogramtatMoisture content, moisture
149 absorption and water vapor permeability were allgdied. Finally o
150 biodegradability studies were performed to evaltiateeffect of crosslinking in
151 the films degradation. The combination of all thdeterminations allowed

152 proposing a model that describes the interactioesegnt in the developed

153 Mmaterials, helping to design new materials withrowed properties.

154

155 2. Experimental

156

157 2.1. Materials

158

159 Cassava starch (18 wt.% amylose and 82 wt.% amsliopavas provided by

160 Industrias deMaiz S.A, Buenos Aires Argentir@itric ‘acid (Biopack) and

161 glycerol (J. T. Baker) were of analytical grade.

162

163 2.2. Preparation of plasticized starch films

164

165 Thermaplastic starch was processed by castlng%w reported (Garcia,
166 Fama, Dufresne, Aranguren, & Goyanes, 2009; M amillo, Gonzalez

167 Seligra, Goyanes, Bernal, & Fama, 2015). Four diffesystems using the same
168 manufacturing protocol were developed. Table 1 plesthe composition of

169 the samples on dry basis. Two of the systems waistituted by aqueous

170 suspensions containing cassava starch (5.0 g/bd@ystem), gl1\5cerol_(1.5

111 g/100 g of sYstem) and distillate water (93.5 g/@tf 'System). The mixture

172 was smoothly stirred during 45 minutes at room em@afure and constant

173 agitation of 250 rpm. After that, the mixture waesated at 3 °C/min under the
174 Same rgm. The heating process was_completed & TbPS75) or at 85 °C

175 (TPS85). Then, the stirring was continued for 5utes at the same final

176 temperature in each case (75 °C or 85 °C). Thdteskgel was degassed with a
177 vacuum pump for 10 min, cast in glass petri disdre$sdried at 50 °C during 24
178 h. Qther two systems were prepared mcorpor_atl_laggmf citric acid into a

179 Similar aqueous suspension previously describea RUEG same processing

180 methodology (TPS75-CA y TPS85-CA). This is CA wasarporated at the
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initial staq_e of the process. This is CA was incogbed at the initial stage of the

process. The thickness of the obtained films wa&)(& 0.02) mm.
Table 1. Samples composition of the different depetl systems on dry basis.
Component Dry basis (wt.%
Starch /6.9 (1.4
Glycerol 23.1 21.4
Citric Acid 0 7.2

2.3. Characterization techniques

The developed films were stored for 15 days, é&@5over saturated solution of
NaBr (RH ~ 56 %), before being characterized.

2.3.1. Thermal characterization

A simultaneous Thermogravimetric/Differential ThelmAnalyzers (TGA/DTA
DTG-60 Shimadzu instrument) was used to simulategatinization process
of all materials studied and to explore chemica physical interactions
between the reagents involved in the films. Fog EID ose, mixtures of starch,
lycerol and water (S/G/W: 10/3/20), starch, egxtECPA and water
i/G/CA/W: 10/3/1 % gilgcerol CA and water (G/@W& 3/1/20) and starch
A and water (S/CA/W: 10/1/20), maintaining theatens of starch, Fglycer_ol
and CA showed in Table 1, were performed. The arnowater employed in
all the cases was less than that used in castqt?ps due to the limit mass and
volume of TGA/DTA capsule, and the sensibility bistequipment. In this
sense twice the amount of starch was used. Theqmiatised to carry up the
tests was similar to that of casting: systems Viiesestirrer at 250 rpm during
45 min at room temperature and then the simulatias made heating the
mixtures from 25 to 100 °C at 1.7 °C/min in a dityagen atmosphere with
flow rate of 30 mL/min. _ _
A kinetic reaction stud)( of starch, glycerol, CAdanater system, immediately
%Bteorc C19m2|8etr?d the gelatinization process, wakpmed by isothermal DTA at
or .

2.3.2. Attenuated total reflectance Fourier tramsianfrared spectroscopy
(ATR/FTIR)

Infrared spectra of the films were recorded on eolit Nexus (Madison, WI)
Fourier transform infrared spectrometer using titenaiated total reflectance
(ATR) accessory. Measurements.were obtained asvitia e_ﬁojf 32 scans, in
the range from 4000 cfrto 600 crit, with a resolution of 2 ¢

2.3.3. Swelling in DMSO

The swelling power of the films was determined adow to Liu et al. (2012).

All films were immersed in 25 mL of dimethylsulphde (DMSO) at room
temperature (25 °C £ 2 °C) for 48 h. The in3ol t was filtered out, lightly
wiped and weighted (g For the extraction of DMSO, the swollen filmsree
immersed first in water and then in ethanol (fd@ #mes). After that, they were
dried at 50 °C to constant weight{mThe swelling degree (SD) was calculated
from.the fallowing equation:

SD =

M (1)
2.3.4. Low field nuclear magnetic resonantdg KMR)
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Transversal or spin-spin relaxation tlmeg(\_mere measured by time resolved
roton nuclear magnetic resonanté NKMR) in a Bruker Minispec mg20
Bruker Biospin Gmbh, Rheinstetten, Germany) eqe itha0.47T

magnetic field operating at a resonance frequén Hz. All the

determinations were performed in triplicate at €5 Proton populations of
different mobility were measured using single putsethod: free induction
decay analysis {FID).

2.3.5. Moisture content

Moisture content (MC) of the different films wastelenined using standard
methods of analysis of the AOAC (1995). Piecesathesystem(("0.5 g? were
dried in an oven at 100 °C, for 24 h. Thé percemtagmoisture content was
calculated,as fallow:

MO0 =—" %100

e 2)

wherem, is the mass of the wet sample angds the mass of the dried sample.
The reported results represent the average otavaples in each case.

2.3.6. Moisture absorption

Moisture absorption (MA) was measured accordiniléwhew & Dufresne
(2002|). The specimens were cut in rectangular pietd cm x 1 cm. The
samples were first dried overnight at 100 °C, theghted, and finally
conditioned at room temperature in desiccatorsasomig copper sulfate (RH
98 %). The weight of the samples was measuremenmny epecific time interval
until reaching constant value.

The moigturgsabsorption of the samples was cakedlas follows:

M A(og) = ®x 100

M, 3)

whereM is the weight of the sample before its exposur@8iéo RH andV,is it
weight in the time (min) at this RH.

2.3.7. Water vapor permeability (WVP)

Water vapor. _ermeabilitgof the films was deterrdila¢ room temperature
using a moditied ASTM E96-00 procedure (Fama, G , Bernal, &
Go%anes, 2012). Samples were placed into circalyia cells containing
CaCl, and then'located in desiccators at RH of ~ 7h&raom temperature.
Water vapor transport (WVT) was determined from ht gain of the
permeatign,smeasuring over 24 h for 10 days. WVRewalculated as:

Wyp=—"—
P, X RH (4)

wheree is the films thickness arié, the saturation vapor pressure of water at
room temperature (Gennadios, Weller, & Goodlng,%99

2.3.8. X-ray diffraction (XRD)

A Siemens D 5000 X-ray diffractometer was usedidseove the diffraction
atterns of all the developed films. X-ray generé&osion and current were 40
V and 30 mA, respectively. The radiation was Gudf wavelength 1.54 A.

The diffraction patterns were obtained at room terafre in the range oft2

between 10 ° and 35 ° by step of 0.02 °.

2.3.9. Biodegradation of the films in vegetable post

The samples were cut in pieces of 2 cm x 2 cm. ¥&dxe compost, which was
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used as soil, was sifted to remove large clumps poured into a plastic tray up
to a thickness of about 6 cm. Samples were burdalhb4 cm of soil , under
ambient temperature (~ 25 °C) and humidity coodgi(70-80 %). Water was
sprayed twice a day to sustain the moisture ‘ottmpost. The films were
removed at different times and dried in a vacuumnoat 50 °C for 24 h.

3. Results and discussions
3.1. Thermal Analysis

The effect of citric acid in the gelatinization pess of all materials was studied
by its simulation uslng_a thermogravimetric analy§&sA). The obtained
curves are shown in Fig. 1a. System with CA sholea@r mass loss during
gelatinization than that without citric acid. CAaleases intra and
intermolecular interactions between starch-staleins and strengthens the
h¥drogen bonding interactions between the hydrgryups of starch and those
of CA(Shi et al., 2007), leading to more amountrapped OH that cannot
easily evaporate. _ _

The reactions between the different componentbafitms, as well as the
temperature at which 100 % gelatinization_is oladim each system, were
determined by DTA using mixture compositions ddsadiin e%)erlmental part
(Fig. 1b). As Can be seen, first system showingtrea was G/CA/W,
suggesting the formation of esters between glmCA, while the system
that reacts at higher temperature was starch, er (S/ICA/W). This
behaviour was expected taking into account thadrssery hydroxyl groups of
starch are less reactive than primary OH of PI carth respect to esterification
by CA (Holser, 2008). Peak temperatures of theti@asystems used to obtain
the films (S/G/CA/W and S/G/W) were similar anddted between the
G/CA/W and S/CA/W mixtures. Although the presenteitric acid did not
affect the temperature corresponding to gelatimagteak (T 52 °C), systems
with CA reached to complete gelatinization at lowamperature than that
without CA. While S/G/CA/W reached 100 % of gelatation atl] 75 °C, the
s&ste_m without CA required 80 °C. Then, all filmgheut CA processed at 85
°C will be completely gelatinized while that Prosed at 75 °C will reach 82 %
of gelatinization. Paes, Yakimets, & Mitchell (20G8udied the effect of the
temperature on the formation of cassava starcls fi

h |Ith microscopy,

showipng-that some-granules-were not : ; they

com Stween 80 ° ’C. o

Fina e fact thatsS¢#@/CA/W reaction occul er tempeéraiures than that
ofﬁﬁ A ~(ndicates that starch preferentiallye Ne ester than
W . u\ '5 / .'.‘

With.the aim\{o. study if any reaction éc ess, an
isgthermal study of S/GICA/MY, immediats ©atinization
pHCcEss, was parforme D °C for 48 ram
obtainned and no e ds were obsened:” / : el ®

O_tn_tka S basis, it is con e the structure SHOWFIQ. = rormwmrch-glycerol-
citric acid-gelatinized , e

Temperature (°C) Temperature (°C)

Fig.1. (a) Thermogravimetric analysis of S/G/W &1&/CA/W, (b) Differential
thermal analysis ot kinetic reactions between iffferg@nt components of the
films, and (c) DTA result of S/IG/CA/W at 50 °C 48 h.

The scheme of crosslinked system in Fig. 2 showspam structure with a
decrease in intra-molecular interactions of stattins and with free OH
g|1roups very available to easily interact with tlyelnmx%/l grougs of water.

herefore, although films with citric acid shouldve fewer OH groups than
those without CA due to the interactions betweancst glycerol'and CA, they
form a more open network, so the diffusion of waeiecules is faster
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explaining the acceleration of gelatinization psxe

In order t0 confirm the proposed model for filmsusture and ascertain if CA
generated a_crosslinked structure, three typesalf/sis were performed: FTIR,
swelling and'H NMR.

CH,OH

2
Citric Acid K_& \
Ho//\\T//\\OH :;ii%:;;k\ CH,OH

OH
Glycerol Starch o
CH,OH HO
.0 2 on o OH
e} (0]
HO OH HO
OH O OH "o
o)
HO
CH,0H
56 O.o
o)
A\
O HO o OH
HO OH
OH ©
HO
o .
o o O o)
A\
o)
HO HO OH
o) No O

o) o)
N
Crosslinked system

Fig chematic illustr \r‘@;no%ltnc acid, giyol, starch d possible
structyy rossllnked sys

HO 0]
3.2. ATR/FDF'IF@;i o
ATR/FTIR spect ur d_ev_el oed

showed the following €Haracte?isticCbands: 330
stretching of OH group belongm

O

3. All spectra
OiPES ponds tolgrr]le
ar: 2980 2900 ¢

dueto C stretchmg and 16 d 1o thev adsorbed by starch
molecules. OH O o
HO
OH ©O ;
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To compare the amount of available OH i the odffeersystems, the ratio
between the intensity of the peak at 330 and that at 1149 ¢
(I1149), associates to the stretchin vrbratlon o CHO'C-O-H’ group and
previously use by Shi et al. (2007) as a referdraged in modified starch with
citric, were calculated. The |ntensrty ratigsflf11149 Of TPS-CA films was
lower than TPS, indicating a smallér amount of Ovdilable groups. This
decrease is related to a decrease in the numitH afue to t e esterrfrcatron
reaction between COOH ¢ rouPs of citric acid with (()j)rldnqu lycerol.
Additionally, the band related to hydroxyl grou was Wrder and
less intense in the case of the ma erraIs Wrth wrdenrng was both to
minor and major wavenumbers with respect to thakpmdicating that there
are OH that more easily vibrate and, also, thezarare OH forming hydrogen

bond.

On the other hand, in the films with citric acicbapred a band at 1720 ¢that
could be assigned'to C=0 (Reddy & Yang, 2010) femm groups esters
between CA and glycerol, and esters between stardiCA, suggesting that
crosslinking was eveloped

The effects_of CA-are dependents of the proc(%eaamr%m—ﬂé%S_-CA the
intensity ]ro (t}@dtm was rm;her than in 175-CA films,.indi trnlg the
Y!

existe re amount of QH groups, [ blglpced by‘theshydrolysis o
stareh["Agcofdipg o Shiet al. (2007), hydrolysishe glycogsidid lifkages by
citri€ acid ¢can pe. eviden decreas€ of th&:pesj -

stretching vilyration of ‘C—1'h ‘C-O-C’ ; 11919 ¢
strétching vjbration of ‘C—’ in ‘C-O-H')| FTIR serlts shawed t is|effect
onhzin case of the filmsgjwith CA heated at’8

Olssof . (2013b) demonstrated that th gl e ol-CA
films w ost camplgtely hindered at 3 s

of the esulted: approxXimately 6.9, 6

CA and ERSBS-CAsespechvely), indicatingsint ralys w.s. 2e in the
samples wrtnAgrgpLgbact processed at 85 ; Wavenumber (cm?)

Fig. 3. ATR/FTIR spectra of all the studied filnfa) Systems processed at 75

TPS85-CA

osslinked materials.
OMSO in accordance
O Kumar & Singh,

eir integrity until
es cause an increase
‘swelling. However,
into pieces.
lycoside bonds
ncipient hydrolysis in

Fig. 4. Photographs of TPS75-CA and TPS85-CA afterlling process.
3.4. Low field nuclear magnetic resonant¢ KMR)

Molecular mobility was evaluated by measuring #lexation time with a low
resolution magnetic resonance spectrometer. Th&agbn times are affected
by the presence of free OH and free volume; thda,axpectable to find
differences in water mobility of TPS-AC with respéz TPS, due to the

crosslinking.
The proton transverse magnetization decay curvax@gon time }), presented
similar behaviour for all materials studied. Aseas@ample, in Fig. 5 is shown the

curve obtained for the sample TPS75. Two diffeckrdays were observed,
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indicating the existence of two water populatiohdifferent mobility
associated with two decay times: a shorter relardtme, 5;, and a ionger
relaxation time, 7, (Choi & Kerr, 2003; Leung, Steinberg, Wei, & Nelson
1976). T, is related with the water populations that arertabonore tightly to
t1h9e7r6n)acromolecules, whileJinvolves the less strongly linked (Leung et al.,
Both decays can be adjusted by an exponentialibmes follow:

[=de T+ (5)

The relaxation time parameters obtained from tharé fPresente_d in Table 2. In

NO Cross ) only a s$layfierence in the decay

time T, . P n TPS85. Con fihat the process

tempera R e matestalicture, this result, indicated

that the 3 N more amofetailable water than films
rocess 2 ~ T : . . .

Pn thefil . 2| “~ her thamthe films without CA. This

mean€ t = \ less styoingted is more mobile.

pre mobility 1), the obtained values

g ro u p ) 0,008 0,012 0,016 0,020 0,024

of T, ®r Time (sec) ? a more openarétthat favours
vvfattter mt iIrm that &#ed as crosslinking agent
of starc

The incr spect to TPS85 was lower coeghémw
the systt.iojors Lo o —egg2StiNG thiersesof an additional
phenometftn that céuldobe the chhain Séission bgtstaydrolysis in agreement
with previous studiesn{&EER, swelling).

Takin%i /y on led tmwaer number of free OH

Fig. 5. Free induction decay (FID) for TPS75 systehnowing two relaxation
processes.

Table 2. Moisture content (MCr)f water vapour peroiégs (WVP) and
relaxation times, 7; and T,, of the developed films.

Systen  MC (%) WVP To1 (WS, T2 (M5,
&%%sPa) X

TPS75 301 28%02 057F 12404
TPS85  34+2 29+0.2 0.59+0.01 135+0.4
TPS75- 20+1 1.8+0.2 0.56 + 157 *
CA 0.0T" 0.5
TPS85- 261  2.2%0.2 0.55+0.01 159 +
CA 0.€

Values with the same Ietter are not significantfjedent (p< 0'.05)
3.5. Moisture content and moisture absorption

Moisture content (MC) and moisture apsorption (MiAdicate the proportional
amount of maisture in"the film and their capacttyabsorb moisture from the
environment in the time, respectively. Both MC &4 of the films decreased
with the addition of citric acid (Table 2 and F&). The decrease of moisture
content in TPS-CA films supports the proposal ahrma‘ssllnkln(hg/land the
consequent decrease of free OH groups Fprewomgrminned. oisture
absorption reduction of TPS75-CA and TPS85-CA Wwareeted taking in to
account the least amount of OH that they contarnss§linking of starc
supplemented the natural intermolecular hydrogerdbimnproving water
resistibility (Krumova, Lopez, Benavente, MijangésPerefia, 2000). The
decrease’in MA by the incorporation of CA was obedrby several researches
(Ghanbarzadeh et al., 2011; Yu, Wang, & Ma, 2005s@n et al., 2013a). In the
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caseof systems without (éA o*iri sat_u*ration_ imit actb@B % was obtained, which
accérds with the valyes réported in the literafarestarch-glycerol films
Ghanbkarzadeh gt al., 2011) The reduction of mmsabsorption by the use of

A \#as plso dependent of the progcess temperatugdeyas around 30 % for
TPSZ5*CA and 20 % for TPS85-CA. The effect of the gelatinizatjrocess
temgergturegwas iexpected considering that TPS85y8#&ems could be
hydrelyzed. has a more open network
In thg matr, , only water contemt showed a . _
Pron?jsét erature (Table 2%. Thi¥$gcr confirg@rathe conclusions inferred
rontth sults of the other charact&tization mégphes, and can be explained
considertg that, in.TPS85,_a more openinetworkfoased and with more
free OH @as & rexultof mcipt :

Time (h)

Fig. 6. Moisture absorption of the different stutiféms.

d a sligtrease with increasin

3.6. Water Vapor Permeability

The values of water vapor permeability (WVP) angoréed in Table 2. WVP of
samples without CA is of the same order of magmitiit those reported in the
literature (Garcia et al., 2009; Bertuzzi et alQ?2). The addition of CA led to a
significant decrease in WVP af36 % for TPS75-CA and 17.2 % for TPS85-
CA, confirming again the formation of a network.rGalering that food
packaging films are often required to limit moigtdaransfer between the food
and the surrounding atmosphere, WVP should bevasi$opossible. Several
authors reported that the addition of CA in stdirlchs |led to a decrease in
WVP, because the hydrophilic OH groups were sulistkwith hydr0ﬁh0b|c
ester groups (Ghanbarzadeh et al., 2011; Reddyr&),Y2010; Ma, C an_?, Yu,
& Stumborg, 2009). However, beyond this idea, #tigly showed that citric
acid is_efficient to crosslink starch at low prosieg temperatures. The
formation of this network reduced WVP and gener r important
advantages from the point of view of annlicatinrilidfce materials for example,
thev avnided starch retrnnradation Starch retaggtran occurs during the
starch films storage and lead tn ervstallizatinmfMes Candal Famg,
Govanes & Rithinln 201K5) Then the effect oficiticid on the films

retrogradation can be studied through X-ray diticat
3.7. X-ray diffraction

Fig. 7a shows X-ray diffraction patterns '(tXRD) bétstudied films after 15
da)és of storage. Films without CA exhibit mostlatiere of amorphous patterns
with only two small peaks at@®= 19.8 ° and 22.1 °, characteristics of B- type
crystalline structure.lt is well known that cryditaity of starch films occurs due
to’retrogradation process (Morales et al., Z01Bjs process, strongl|
dependent of water content, provokes an increasgyatallinity withthe
increment of h¥drat|on degree %Buleon, Vérones®ugaux, 2007). We
demonstrated that TPS85 had higher water contantTRPS75 (Table 2) and,
while TPS85 completed the gelatinization proce$575 reached only 82 %
Fig. 1b), which means that some grains remaindulaken (crystalline).
herefore, in the case of TPS75, two effects cbuted to crystallinity:;
retrogradation and incomplete gelatinization; winl@PS85 crystallinity was
due only to starch retrogradation, which was highan TPS75 as consequence
of their greater water content.
TPS75-CA and TPS85-CA were completely amorphou$ atays of storage
which accords with the idea that CA provoked cnoi_;sh%.
In order to support this idea, XRD to all the systewith 40 days of stor%ge
were performed (Fig. 7b). The diffractograms of 1B films correspond to
amorphous materials, confirming the effectivendssasslinking reaction,
while non-crosslinked films incréased their cryiatitly. Two new peaks at @ =
17 ° and 24 °, corresponding also to the B-cryisialétructure, appeared in TPS
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00253
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5] Influence of
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s temperature and the
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ble. These results
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]Elig. 8. Macroscopic appearance of biodegradati@oihof the different studied
iims.

4. Conclusions

The addition of 7.2 wt.% (dry basis) of citric a¢cadstarch/glycerol/water
system modifies the gelatinization process, makipgssible to be complete 5
°C before than the system without CA. The kinetigly of the reactions
between the components of the films during thet tion process showed
that the first reaction occurs between ?cherol aititc acid in order to form an
ester of CA and glycerol. Then, these two compatgether react with the
starch. This study allowed predlctln a structunetfie material which was
verified by different techniques (FTIR{ NMR, swelling, MC, MA, WVP and
XRD). Asthe result of the different reactions beén the components of the
films, the systems with CA lead to a crosslinkedenal after gelatinization.
Gelatinization process temperature is a crltlcahgm) obtain the best results.
While the material processed at 75 °C has the Bigtresslink density and
maintains its integrity after swelling in DMSO, tbae processed at 85 °C
shows a S|I%\ht damage attributable to an incipséartch hydrolysis.

Film with CA processed at 75 °C allows decreasingPRNnore than 35 %,
remains unchanged in time since it does not reqii®and degrades in compost
only 6 days after the films without CA.
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Highlights

« Starch-glycerol eco-films using citric acid (CA) @®sslinking were developed.
» CA first reacts with glycerol and then starch-glydeCA reaction occurs.

« Different temperatures, 75 °C and 85 °C, were usgeélatinization process.

» Biodegradable and non-retrograde starch-glycerolfi®#s are obtained at 75°C.

* Films heated at 75°C show decreases in WVP angrityt@after swelling in DMSO.
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