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Abstract

Unobtrusive activity monitoring can provide valuable information for medical and sports applications.
In recent years, human activity recognition has moved to wearable sensors to deal with unconstrained
scenarios. Accelerometers are the preferred sensors due to their simplicity and availability. Previous
studies have examined several classic techniques for extracting features from acceleration signals, includ-
ing time-domain, time-frequency, frequency-domain, and other heuristic features. Spectral and temporal
features are the preferred ones and they are generally computed from acceleration components, leaving the
acceleration magnitude potential unexplored. In this study, a new type of feature extraction stage, based
on homomorphic analysis, is proposed in order to exploit discriminative activity information present in
acceleration signals. Homomorphic analysis can isolate the information about whole body dynamics and
translate it into a compact representation, called cepstral coefficients. Experiments have explored several
configurations of the proposed features, including size of representation, signals to be used, and fusion
with other features. Cepstral features computed from acceleration magnitude obtained one of the highest
recognition rates. In addition, a beneficial contribution was found when time-domain and moving pace
information was included in the feature vector. Overall, the proposed system achieved a recognition rate
of 91.21% on the publicly available SCUT-NAA dataset. To the best of our knowledge, this is the highest

recognition rate on this dataset.
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I. INTRODUCTION

Research interest in human activity recognition (HAR) has increased in the last two decades. Nowadays,
HAR applications spread over physical monitoring [1]-[4], health [1], [S]-[7], entertainment [5], [8], [9],
sports [10], security [5], [9], [11], and industry [9], [12]. For instance, activities of patients can be reliably
tracked, which can help a physician to counsel behaviors for physical activity and healthy lifestyle [3],
[6]. Historically, research in computer vision has been in the vanguard of HAR [5], [9]. However, efforts
to recognize activities in unconstrained daily life settings caused a shift toward the use of wearable
sensors. Accelerometers, gyroscopes, and compasses are the sensors typically used, either individually
or combined. In this work, we will focus on HAR systems that consider accelerations as input signals.

The first studies on activity recognition using accelerometers were published in the middle and late
1990s, with applications in medical assessment [13]. They used unidirectional accelerometers on two
or three locations of the body, and applied a set of simple rules to distinguish between dynamic and
static activities. At present, HAR systems are based on triaxial accelerometers and they aim to recognize
a broader set of activities. These systems rely on pattern recognition, in which the fundamental stages
include signal pre-processing, feature extraction, and activity classification. Several proposals for each of
these stages have been made to improve said systems [1], [2], [8], [14]-[16].

Ideally, a feature extraction stage should be able to extract all the discriminative information in a
compact representation. Discriminative information helps to distinguish activities from one another. For
example, the periodicity combined with a spectral description of movements are good candidates. A
compact representation helps to keep the recognizer as simpler as possible and avoids high computational
costs. Previous studies have explored a wide range of techniques for extracting features from acceleration
signals. However, features related to activities are not discriminative enough and others are not compact.
In this study a compact representation is proposed and its potential is fully assessed.

Feature extraction techniques explored in previous studies can be grouped by the type of their outputs as
heuristic, time-domain, time-frequency, or frequency-domain features [14]. Heuristic features are derived
from and characterized by an intuitive understanding of how an activity produces changes in the signal.
For example, a static posture such as standing or lying can be recognized by the direction of the recorded
gravity [17]. Other examples are signal magnitude area, mean rectified value, peak-to-peak acceleration,
and root mean square, which have been related to the intensity of an activity [18].

In contrast to heuristic features, time-domain features are not directly related to specific aspects of
individual movements or postures. Instead, they are computed from a windowed signal and they are

typically statistical measures. Common examples include mean, median, variance, skewness, kurtosis,
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Fig. 1. General diagram of the proposed recognizer with its two main stages: feature extraction and classification. CCs: cepstral

coefficients; TM: time-domain measures; FP: fundamental period.

interquartile range, and correlation between accelerometer axes [14], [19], [20]. Recently, a two-directional
feature for incremental learning showed promising results [21]. Both time-domain and heuristic features
are the simplest to compute, and they were useful for distinguishing between static and dynamic activities.
However, they were barely successful in discriminating between dynamic activities [14], [22].

Time-frequency features, such as wavelets, were effective for detecting transitions between activities,
but they were outperformed by other features in the activity classification task [23]. By contrast, frequency-
domain features are usually the preferred choice in HAR [19], [22], [24]-[27]. These features are obtained
using the fast Fourier transform (FFT) or the discrete cosine transform. Basis coefficients may be directly
adopted as features or an additional method may be used to characterize the spectral distribution, such
as subsets of coefficients, or filter banks. Several studies have reported their best results using FFT
coefficients as features, either individually [19], [22], [25], [26] or fused with time-domain features [20],
[24], [28]. In these studies, features are usually extracted from each of the acceleration-component signals,
leaving the capabilities of acceleration-magnitude signal unexplored, which have processing and storage
advantages.

The feature extraction stage proposed in this work uses a well-known technique: the cepstral analysis. It
is based on the theory of homomorphic analysis and has been successfully used for characterizing seismic
echoes, deblurring images, and recognizing speech [29], but it has not been considered on HAR, except
for two studies [30], [31]. However, these studies have neither examined the compliance of hypothesis
to apply such analysis nor exploited all the information that cepstral representation can capture. Li et al.
[31] claimed that signals have quasi-periodic characteristics although the analysis was applied on narrow
windows, which cannot encompass that periodicity. In [30], a mel scale was used to map frequency bands
in a nonlinear fashion. This mel scale was designed for speech analysis and recognition based on the

perceptual scale in the human cochlea [29]. Although this makes no sense for HAR, a high resolution at



low frequencies could be useful. In a related study [32], the features proposed in [30] were also used for
user identification. For this task, adapted perceptual linear prediction coefficients were the best alternative.

In the present study, the proposed representation explores the capabilities of cepstral coefficients as
is (i.e., without using intermediate filter banks or dimension reduction techniques). In addition, it is
the first time that body dynamics and activity periodicity are explained in terms of cepstral features.
The advantage of the proposed cepstral representation is that it compresses the spectral information of
body dynamics in few coefficients while retaining its discriminative power. In the experiments, features
extracted from magnitude and components of acceleration were contrasted based on their discriminative
power and an exhaustive analysis on the number of required coefficients was performed. Furthermore,
we assessed the performance improvements when including time-domain measures and the fundamental
period of the signal. To complete the system, a support vector machine was chosen for the classification
stage, because it showed better performance compared to other well-known classifiers, such as multilayer
perceptron, random forest, and naive Bayes. In addition, the selection of support vector machine allows
a fair comparison with previous studies.

The remainder of this paper is organized as follows. Section II describes the proposed HAR system.
Section III presents the experimental setup. Results and discussion are given in Section IV. Finally,

conclusions are drawn in Section V.

II. PROPOSED RECOGNITION SYSTEM

As most automatic recognition systems, the proposed recognizer can be seen as a pipeline with two main
stages: feature extraction and classification. An schematic diagram of the system based on homomorphic
analysis is shown in Figure 1. The first stage will be explained in detail from Section II-A to II-C. The

second stage will be covered in Section II-D.

A. Acceleration signals

In this study, a three-dimensional accelerometer is used for capturing information about movements. The
captured signals are the acceleration components a,(t), a,(t), and a(t). In addition, the acceleration
magnitude |a(t)| is computed from components as another input signal. Components are recorded in
directions relative to the orientation of the device, thus being altered by gravity when the device rotates.
On the contrary, magnitude is unaltered by the orientation of the device because gravity is a constant
offset. These signals are processed as described below for a generic signal called a(t).

In what follows the acceleration signal a(t) is considered as the output of a linear convolutive system.

The excitation m(t) is associated to the moving pace, which is originated by muscle activity and



external body interactions. Body dynamics is modeled in the impulse response h(t), which will depend
on the activity that is being performed. Since the goal is to recover information about said activity,
the analysis should be able to isolate h(t). However, excitation and impulse response are unknown;
therefore recovering h(t) is not straightforward and a blind deconvolution is required. We propose using

a homomorphic analysis to carry out the recovering task.

B. Cepstral coefficients

Homomorphic analysis was developed as a general method for separating signals that have been
non-additively combined [29]. Homomorphic processing involves converting this mixture into a linear
combination, in which the analysis techniques are well understood. For instance, if two signals are
convolved in time-domain as

a(t) = m(t) = h(t),

their Fourier transforms will be multiplied in frequency-domain as

and an appropriately defined logarithm will produce the sum

log |A(f)| = log |M(f)| + log |[H(f)]-

At this point, log |M(f)| and log |H(f)| are additively combined. Taking the inverse Fourier transform

of log |A(f)|, a new time-representation,

c(q) = F~H {log |A(f)[},

can be obtained. This is known as the cepstrum and its domain is the quefrency. At the beginning of
¢(q), the low-rate variations of log |A(f)| are codified. The remaining information of ¢(q) codifies the
high-rate variations of log | A(f)|. Generally, low- and high-rate variation components are separated, and
they can be linked to the impulse response and the excitation, respectively. Thus, by taking the first
coefficients of ¢(q), the homomorphic analysis can recover the desired information about the underlying
system. In the quefrency domain, this operation is known as liftering.

In the time domain, acceleration signals exhibit a quasi-periodic behavior, as exemplified in Figure 2.a.
For this example, the period is ~0.5 s, which is the expected moving pace for a daily human activity. This
signal gives some insight into the excitation signal m/(t), but the impulse response h(t) remains hidden.
In the frequency domain, this period can be seen as a peak of fundamental frequency at ~2 Hz and its

corresponding harmonics (Figure 2.b). These are the major contributions, but they mask the remaining
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Fig. 2. Computation of cepstral coefficients. (a) Quasi-periodic acceleration signal a(t); (b) spectrum of a(t); (c) logarithm of

the spectrum; (d) cepstral coefficients; (e) recovered approximations of log |H (f)|.

information about the impulse response of the system. Figure 2.c shows the signal obtained by applying
the logarithm to |A(f)|. Afterwards, the inverse Fourier transform is applied and the cepstrum, ¢(q), is
obtained (Figure 2.d). Peaks related to excitation are still present at ~0.5 s and ~1.0 s but no longer
overlapped with the cepstrum of impulse response.

For example, if a(t) is captured on the hip of a subject performing an activity, the first coefficients of
¢(q) codify the dynamics of hip movements. The hip was reported as the best position to represent the
whole body, thus the coefficients at the left of the first peak codify the global dynamics of the body [2],
regardless of the activity pace. Besides, the separation between peaks in ¢(q) represents the pace at which

the activity is performed.



As explained above, the beginning of ¢(q) contains the low-rate variations of log |A(f)|, which is the
isolated information about A(t). To verify this, a smooth representation of log |A(f)| can be recovered
by applying the Fourier transform only to the first coefficients of ¢(q), i.e., the transform is applied to a
liftered c(q). The lifters used in the recovering are indicated by dashed rectangles in Figure 2.d and the
smoothed versions of log |A(f)| are plotted in Figure 2.e using the respective colors. These curves are
estimations of log |H (f)|. It is clear that the number of coefficients defines the degree of details retained
in the recovered information about the impulse response of the body dynamics.

Computation of cepstral coefficients requires the application of a Fourier transform, a logarithm
and an inverse Fourier transform. These transformations require O(nlog(n)), O(n), and O(nlog(n)),
respectively, where n is the length of the signal analyzed. Thus, cepstral features computation is of the

same order as any other FFT-based feature, which requires O(nlog(n)).

C. Feature vector composition

In this study, the analysis of a signal a(¢) may lead to three kinds of features: cepstral coefficients,
time-domain measures, and fundamental period. Cepstral coefficients (CCs) refer to the first coefficients
of ¢(g), up to a predefined quefrency. Time-domain measures (TM) are five values computed directly from
a(t): standard deviation, energy, maximum amplitude, minimum amplitude, and peak-to-peak amplitude.
The fundamental period (FP) contains a value that represents the moving pace.

The example in the previous section shows that FP is revealed as one or more peaks in ¢(q) (Figure 2.d).
However, there are activities that present an unclear or absent peak. Therefore, we chose to extract FP
with the unbiased autocorrelation of a(t) [33]. To be considered as a periodical activity, the amplitude
of autocorrelation must exceed a given threshold. In such a case, the lag corresponding to the first local
maximum is assigned to FP. On the contrary, FP will be set to zero, which means that no periodicity was
detected.

As a(t) can be a,(t), ay(t), a-(t), or |a(t)|, each of these signals can generate its own set of features.
Thus, different combinations could be selected to define the final feature vector. Tables I and II summarize
the combinations evaluated in this study. Vectors composed by cepstral coefficients of a,(t), ay(t),
and a.(t) are given in Table 1. Vectors composed by cepstral coefficients of |a(t)| are presented in
Table II. These tables present the names assigned to each composition, which will be used in Section IV.
Combinations were selected to perform a comparative study which can assess the partial contribution of
each feature. First, the study will evaluate the influence of the number of CCs, without additional features
(F1 in Table I and Fi7 in Table II). Then, the contributions of temporal and pace information will be

considered in Fo, F3 and F4 (Table I), and Fig, F19 and Fyg (Table II). The study will also consider the



TABLE I
COMPOSITION OF FEATURE VECTORS WHEN CEPSTRAL COEFFICIENTS (CC) ARE OBTAINED FROM a,(t), ay(t), AND a,(t).

FP: FUNDAMENTAL PERIOD. TM: TIME-DOMAIN MEASURES.

Composition of feature vectors

Feature
Signal

F1 F2 F3 F4 Fs Fg F7y Fg Fg Fio F11 F12 F13 F14 F15 F16

™ |a] . . ° . ° . . .

FP |a| o o o o o o e o

™ ax e o o o e o o °

FP ax e o o o o o o °
TABLE 11

COMPOSITION OF FEATURE VECTORS WHEN CEPSTRAL COEFFICIENTS (CC) ARE OBTAINED FROM |a(t)\ FP:

FUNDAMENTAL PERIOD. TM: TIME-DOMAIN MEASURES.

Composition of feature vectors

Feature
Signal

F17 F18 F19 F20 F21 F22 F23 F24 Fos F26 F27 F28 F2g9 F30 F31 F32

™ |a] ° ° . ° . ° . .
FP \a| e o e o e o ° o
™ ax ° ° ° ° ° 3 ° °
FP ax e e o o o o o °

influence of the signal which gave origin to a feature. For instance, Fo and F5 are comprised by the same
CCs but differ on the source signals to compute T™ (|a| or a,). Finally, combined effects will be studied
by considering all the combinations of these variants.

The above description assumes that there is only one three-dimensional acceleration signal of short
duration. However, each of these signals may be of long and variable duration. Thus, a collection of
acceleration signals a'(t),a?(t),--- is obtained from a raw acceleration data by a fixed-size sliding
window, with overlap between consecutive windows (top of Figure 3). Therefore, the feature extraction
process generates a sequence of feature vectors X = {xl,x2,x3, o xb } where L is the number of

windows (bottom of Figure 3).

D. Classification

In the classification stage, a well-known static classifier is used: the support vector machine (SVM) [34].

This classifier has proven to be one of the best machine-learning techniques for binary classification
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Fig. 3. Sequence of feature vectors generated from a raw acceleration signal. In this example, feature vectors are composed by

time-domain measures (TM) and ten cepstral coefficients (CC) extracted from the acceleration magnitude.

problems [35]. First, input features are non-linearly mapped to a very high-dimension feature space.
The mapping is done using a kernel function. Then, a linear decision surface is built in this new feature
space. That surface is a hyperplane and it is located so that the maximum margin of separation is achieved
between the two classes (see Hastie er al. [36] for a detailed explanation). In this study, a radial basis
function K (x,y) = e~ 7*=¥I" was chosen as a kernel, where x and y are feature vectors. Other kernel
choices were discarded in preliminary experiments. Also, a soft margin penalty for misclassifications was
considered. Penalty coefficient C' and parameter v were optimized with a logarithmic grid search on the
training dataset. In the proposed system, the number of classes is equal to the number of activities to
recognize. For this multiclass classification task, the one-against-one approach was followed [37], [38].

An SVM requires a number of operations during training that is different from classification time.
During training, complexity of an SVM depends greatly on the number of vectors in the dataset, rather
than the dimension of those vectors. In addition, SVM can perform very well with relatively large feature
vectors. During classification, the number of required operations is linear with the number of support
vectors and the dimension of feature vectors.

Feature selection may be included prior to classification and there is a vast diversity of techniques
proposed in the literature for this task. For instance, there are techniques that can be applied to any kind
of classifiers [39] and others that are embedded and specifically designed for SVM [40]. However, there

is no clear definition on which technique is suitable in advance. In general, it depends on chosen classifier



and dataset characteristics, such as number of examples and inter-relationship among features. A thorough
evaluation of selection methods with cepstral representation falls outside the scope and extension of the
present study.

As was previously described, a raw acceleration data corresponding to a single activity is translated
into a sequence of feature vectors X = {xl, x2, - ,XL}. SVM classifies each vector x* independently

from one another and assigns an activity label ¢; to each one. Then, the label count is computed by

activity, and the label that corresponds to the maximum count is assigned to the input acceleration data.

III. EXPERIMENTAL SETUP

The recognition experiments were carried out on the publicly available SCUT-NAA dataset [22], which
contains 1278 records from 44 subjects collected in naturalistic settings. During the recording sessions,
subjects were asked to perform ten activities, one time each, thereby being a dataset with balanced classes.
Each recorded signal represented a single activity (i.e., the provided signals were already segmented by
activity), with sample frequency fixed at 100 Hz. Subjects wore a triaxial accelerometer on their waist
belts, trouser pockets, and shirt pockets, alternately. Previous studies have demonstrated that the waist is
the best location for a single sensor because it can better represent the major human motion [2]. Thus,
only records captured on waist belt position will be used in the following experiments. Features extracted
considering this position will contain information of the whole body dynamics.

Features were extracted from raw acceleration signals using a window size of 5.12 s. The overlapping
between consecutive windows was 50%. Signals were sampled at 100 Hz, hence, windows size was of
512 samples, with 256 samples overlapping between consecutive windows. Each segment was smoothed
with a Hamming window. Several cepstral lengths were tested: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 s (in quefrency), which correspond to n.. = {10, 20, 30, - - -, 90} coefficients, respectively. Regardless
of final cepstrum length, time-domain signals were transformed with a 512-points FFT. A previous study
[31] performed cepstral analysis with narrow windows (<1 s) that cannot capture a single period of an
activity. Also, the resolution of cepstral representation was not explored. Authors in [30] tested different
length of their speech-adapted representation but the performance of isolated acceleration features was
not studied.

In this study, leave-one-subject-out cross-validation was used to conduct the experiments, which allows
a fair comparison with previous results on the same dataset. In the first fold of this scheme, signals from
subject 1 were taken for testing, while the remaining signals (from the other subjects) were used for
selecting the best parameters of the classifier and for training the models. The following folds switch the

test signals to another subject until all subjects are considered in the test. As in previous studies [19],



[22], activity recognition rate will be used as a performance measure, which is simply defined as the
number of correctly classified signals over the total number of classified signals. Also, the standard recall
(tp/[tp + fn)) and precision (t,/[t, + fp]) are reported on confusion matrices, where ¢, are true positives,
fp false positives, and f,, false negatives counts for class c. In addition to standard measures, the relative
error reduction will be used to compare the performance of different systems. This measure is useful
when the recognition rates are close to 100%. For two recognizers with absolute errors €4 and ep, where

A is the reference system, the relative error reduction is 6 = (ep — €4)/€4.

IV. RESULTS AND DISCUSSION

The following subsections present a detailed analysis of the results obtained. First, feature vector com-
positions are compared based on their discriminative power. Second, these compositions are distinguished
from other approaches based on cepstral analysis. Third, the proposed system is compared with state-
of-the-art systems. Fourth, a related recognition task that joins similar activities is formulated. For this

modified task, the proposed system and some adaptations are evaluated and discussed.

A. Comparative analysis of feature vector compositions

Feature vectors can comprise features extracted from |a(t)|, a,(t), ay(t), and a.(t). A comparative
study was conducted to select the most suitable composition. This included the influence of the number
of CCs, and the contributions of temporal and pace information. Both points will be addressed in the
following paragraphs.

The influence of the number of CCs on the recognition rate per activity is shown in the violin plots
of Figure 4 for F; and Fi7. The composition F; corresponds to the CCs obtained from the acceleration
components and Fi7 corresponds to the CCs obtained from the acceleration magnitude (Tables I and II).
As more coefficients are selected (from 10 to 90), the mean of recognition rates improves and the
distributions get narrower. Particularly, improvements are obtained with up to 50 coefficients. A possible
explanation is that this resolution of the cepstral representation can capture most of the discriminative
information in the impulse response. Also, discriminative cues can be associated with the first periodicity
peak that typically appears between the 35th and the 50th cepstral coefficient (i.e., 0.35 and 0.50 s at
100 Hz sampling frequency). Using more coefficients showed no significant improvements. Hence, up to
70 ccs will be considered in the following experiments.

The possible compositions were expanded when other features are appended to CCs. The results for
all of the proposed compositions when CCs are extracted from a,(t), a,(t), and a.(t) are compiled in

Table III. The number of CCs is specified in the header of the table. The results in each row correspond
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Fig. 4. Violin plots of the recognition rate per activity versus the number of CCs. Feature vector composition: (blue) CCs of

the acceleration components (F1), (orange) CCs of the acceleration magnitude (Fi7).

to an exclusive composition that only differs in the number of CCs. The improvements in recognition
rates are clearly higher when TM or FP are appended to a small number of CCs, because they compensate
the lack of discriminative power of low-resolution cepstral representations. However, when more CCs are
used, the cepstral representation by itself achieves high recognition rates and the contribution of other
features is reduced. For example, if 10 CCs are used (Fy), the recognition rate is 74.82%, and the rate
improves to 83.85% when T™M and FP (F4) are added. However, if 70 CCs are selected (F1), the recognition
rate is 90.02%, and no improvement is observed when T™M and FP (F4) are added. In the absence of TM,
FP helps to distinguish between activities, achieving a high rate of 90.97% for 70 CCs (F1g).

Table IV presents the results for CCs extracted from |a(t)| (F17-Fsz2). Clear improvements are achieved
by appending TM or FP obtained from |a(t)| to CCs (compare the results for Fig-Foo with Fi7). Time-
domain measures help to avoid confusion between activities that are clearly different in their waveform.
For example, jumping involves a high acceleration that must oppose to gravity. Thus, the recorded
signal |a(t)| will exhibit a great amplitude and energy that can be easily distinguished from the other
activities. However, adding TM slightly improves the discriminability of similar activities. For example,
activities such as walking and walking quickly are expected to be very similar in their temporal and
cepstral representations. Fundamental period can be of help in this situation, when repetitive actions
are performed at different paces. As a result, it is observed that, regardless of the number of CCs, the

recognition rates are higher when TM and FP (Fgg) are combined than when they are used individually.



TABLE III

ACTIVITY RECOGNITION PERFORMANCE WHEN CCS ARE OBTAINED FROM a; (t), ay(t), AND a,(t).

) nee: Number of cepstral coefficients
Features (size)

10 20 30 40 50 60 70

F1 (0+3nce) 7482 7743 8242 8599 8741 90.02 90.02

Fo (5+3nce) 78.86  80.76 87.17 8694 87.65 89.07 89.31
F3 (1+3nce) 79.57 8266 8551 8812 88.60 90.74  90.97
F4 (6+3ncc) 83.85 84.09 8836 87.89 8884 90.02 90.02

F5 (1543n..) 80.05 8432 8575 87.41 87.89 8931 8931
F¢ (20+43n..) 80.05 83.61 8575 8741 87.89 8741 88.60
F7 (16+3n.:.) 8337 8694 88.12 8931 88.60 89.07 89.79
Fg (214+3n.:) 83.85 8694 8836 88.60 88.60 83.12 90.12

Fo (3+3ncc) 79.81 84.56 8432 8622 88.84 89.79  90.26
F1o (84+3ncc) 81.47 8480 8646 8741 87.65 89.07 89.07
F11 (4+3ncc) 80.29 8432 8646 8741 89.79 90.26 90.26
F12 (9+3ncc) 81.00 8575 87.89 88.84 88.12 89.31 89.55

F13 (184+3ncc) 83.61 8599 86.70 86.70 88.84 83.60 88.84
F14 (23+3ncc) 83.14 8599 87.17 87.65 8836 83.60 88.84
F15 (19+3ncc) 8432 8694 8836 87.41 88.84 88.84 89.79
Fi6 (24+3ncc) 8290 8741 8836 88.12 88.60 89.07 89.79

As presented in Table III, the improvements in recognition rates are greater if TM and FP are appended
to low-resolution cepstral representations rather than high-resolution representations. It is evident that
discriminative information of both features is overlapped, since the improvement is lower when they
are combined (Fy) than when they are used individually (Fig or Fig). In addition, a recognition rate
of 90.02% is an interesting result for a composition (Fgg) that uses features exclusively obtained from
ja(t)

is comparable to the ones presented in Table III, although it was obtained with a smaller feature vector

, because this signal is independent of the orientation of the recording device. Moreover, this result

(corresponding sizes are specified in Supplementary Material).

Additional information can be included in feature vectors by appending T™M and FP from acceleration
components (Fa1-F32). For example, activities such as walking and walking upstairs involve only one
direction, thereby affecting only one particular component of the acceleration. Walking primarily modifies
the acceleration in the axis related to forward movement, while walking upstairs affects axes related to
vertical and forward movements. Thus, temporal information of acceleration components could reveal
unseen differences between activities. This may explain why higher recognition rates are achieved with

Fog, Fa4, and Fog compared to Fog. Although compositions that use TM and FP obtained from components



TABLE 1V

ACTIVITY RECOGNITION PERFORMANCE WHEN CCS ARE OBTAINED FROM \a(t)\

) nee: Number of cepstral coefficients
Features (size)

10 20 30 40 50 60 70

F17 (0+nce) 6698 7221 7458 8290 86.22 88.12 89.31

F18 (5+ncc) 7553 8337 8599 8551 88.12 87.89 88.36
F19 (1+ncc) 76.72  80.52 83.85 8432 87.65 83.60 88.84
F2o (6+ncc) 82.66 8504 87.17 87.65 8884 89.07 90.02

F21 (15+ncc) 80.76 8456 84.56 8551 86.70 88.84 89.31
Foo (20+ncc) 82.66 8575 84.80 87.65 88.84 89.31 90.97
F23 (16+ncc) 83.61 88.84 86.70 87.65 88.12 90.02 88.84
Foq (214nce) 84.09 87.41 8741 8836 90.02 9050 91.21

Fos5 (3+nce) 76.01 82.19 83.61 8504 8836 89.79 88.84
Fog (84+ncc) 80.05 8551 86.94 87.65 89.07 89.07 89.07
For (44ncc) 7577 82.66 8456 8599 88.84 8931 §9.31
Fog (9+ncc) 8195 8646 88.84 88.60 90.50 90.50 90.02

Fog (184ncc) 8527 8670 8836 8599 87.17 89.31 88.84
F30 (23+ncc) 84.56 87.80 8836 89.07 89.79 88.84 88.12
F31 (194+ncc) 8527 87.890 87.65 87.89 87.17 89.07 88.36
F32 (244ncc) 83.61 87.65 8836 88.60 90.50 89.31 89.31

(Fo9-F32 in Table IV) achieve good recognition rates, they are not as good as the ones mentioned above.
Specifically, said compositions show their best results for 50 and 60 cCs. This may be explained by the
combined contributions of TM and FP from components, which compensate the loss from the use of a
slightly coarse cepstral representation.

The best recognition rate (91.21%) was achieved with the feature vector Fo4. Other well-known
classifiers such as Naive Bayes, Random Forest, and Multilayer Perceptron were tested but none of
them showed better results than SVM. Table V compare activity recall and overall recognition rate for
Fo4 composition and these classifiers. This composition combines the best of all the proposed features.
It has the best cepstral representation (70 CCs), a complete compendium of temporal information (TM
from the acceleration magnitude and components), and the pace at which the activity was performed (FP
from |a(t)|). The second best result (90.97%) corresponds to a similar composition (Fa2), which only
lacks the latter feature. Finally, it is remarkable the good result (90.02%) obtained with Foy composition,
which comprises features extracted from a single signal (Ja(¢)|). The computational cost of processing a

single signal is a clear advantage.



TABLE V

PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS FOR FEATURE VECTOR Fa4 WITH 70 CCS.

Activity SVM NaiveBayes  Random Forest MLP

Step walking (s) 97.73 13.64 90.91 95.45
Jumping (j) 100.00 100.00 100.00 100.00
Bicycling (b) 100.00 36.67 100.00 100.00
Walking (w) 75.00 0.00 65.91 75.00
Walking backward (wb)  90.70 83.72 69.77 90.70
Walking quickly (wq) 76.19 2.38 66.67 73.81
Running (r) 100.00 93.18 100.00 100.00
Relaxing (re) 97.73 100.00 97.73 97.73
Downstairs (d) 86.36 72.73 81.82 81.82
Upstairs (u) 90.70 81.40 81.40 79.07
Overall 91.21 59.14 85.04 89.07

B. Discussion about other approaches based on cepstral analysis

In the present study, the cepstral coefficients were exclusively extracted from acceleration signals and
an exhaustive analysis on the number of required coefficients was performed. In addition, the inclusion
of time-domain and moving pace information was also evaluated. As already mentioned, two earlier
studies used cepstral analysis for feature extraction. However, those approaches presented some important
differences with our study such as they used extra input signals in addition to the acceleration, their data
was captured in a laboratory environment, and actual feature vectors are different from ours.

In [30], body and gravitational acceleration, and gyroscope signals were the inputs to the recognizer
and they were fused at feature level. This study considered only 3 dynamic activities. Also, it assumed
that body and gravitational accelerations can be separated by low-pass filtering from recorded acceleration
components. However, components were recorded in directions relative to the orientation of the device,
thus being altered by gravity when the device rotates. In addition, proposed features compute frequency
band energies using an stretched mel scale. This scale was designed for speech analysis based on the
perceptual scale in the human ear, which makes no sense for HAR. In contrast, in the present study
cepstral coefficients were computed without any intermediate filter bank. Moreover, body dynamics was
explained in terms of cepstral features and a dataset with a vast diversity of dynamic activities was
considered.

In a related study [32], the same features proposed in [30] were evaluated for a completely different task:

user identification. The authors have found that adapted perceptual linear prediction (PLP) coefficients



yielded the lowest error rate for user recognition. Computation of PLP coefficients consider frequency
bands defined by a filter bank with a Bark distribution [33], similar to the mel scale discussed before.
Since mel and Bark scales were designed for audio signals, it would be interesting to explore the design
of a filter bank for acceleration signals. Future works could evaluate evolutionary approaches [41] to
obtain an optimized filter bank for activity recognition.

In [31], acceleration and electrocardiogram signals were separately analyzed and fused at decision level.
Feature vectors were obtained applying heteroscedastic linear discriminant analysis on normalized cepstral
features and their first derivative. Thus, actual features were derived from cepstral analysis but they are
not cepstral coefficients. Proposed systems were trained in a subject-dependent fashion, considering 5
subjects in the experiments. By contrast, the present study evaluated subject-independent recognizers,
considering 44 subjects in the experiments. Finally, the feature extraction proposed in [31] was applied
on too narrow windows (such as 0.48 s) that cannot reveal the quasi-periodic characteristics of human
activities in cepstral domain. Our system used a longer window (approx. 5 s) that can exhibit several

periods of an activity, which makes sense to capture that periodicity.

C. Comparison with previous results on the same dataset

The comparative analysis was performed using the feature vector Fo4 with 70 CCs, a composition that
was selected as the best proposal. This vector comprises 91 features, 76 of which are computed from
the acceleration magnitude and the remaining 15 from the acceleration components. The features from
acceleration components boost the magnitude features by considering extra information related to axis
signals. The comparison will be made with the best system proposed by Xue et al. [22], which obtains the
best recognition rate reported on the SCUT-NAA dataset. The system uses an SVM as the classifier and
a feature vector based on the spectrum of acceleration components. The feature vector has a total of 189
attributes, comprising 63 FFT coefficients obtained from each signal, a,(t), a,(t), and a.(t). SVM with
a radial basis function was used for a fair comparison with previous studies. As in the present proposal,
features are extracted from raw acceleration data using a fixed-size sliding window with overlap between
consecutive windows.

In Table VI, the proposed system and the reported system are compared by recognition error rate. A
comparison with other features is not shown for the sake of space. Features like discrete cosine transform,
time-domain features, and autoregressive coefficients were included in [22], with the same experimental
setup. The recognition error per activity was highly reduced by the system based on CCs, between 25%
and 100%, except for walking and walking quickly. Notably, three activities (jumping, bicycling, and

running) were perfectly recognized. The overall recognition error was reduced by 33%. The statistical



TABLE VI

GLOBAL PERFORMANCE COMPARED BY RECOGNITION ERROR.

Relative error

Activity Xue et al. [22]  Fo4 with 70 CcCs
reduction (%)
Step walking (s) 13.64 2.27 83.36
Jumping (j) 2.33 0.00 100.00
Bicycling (b) 16.67 0.00 100.00
Walking (w) 22.73 25.00 -
Walking backward (wb) 18.18 9.30 48.84
Walking quickly (wq) 18.18 23.81 -
Running (r) 2.27 0.00 100.00
Relaxing (re) 4.55 2.27 50.1
Downstairs (d) 18.18 13.64 24.97
Upstairs (u) 1591 9.30 41.55
Overall 13.18 8.79 33.31

significance of this reduction was verified with a binomial test performed for the overall recognition
rate [42]. Specifically, the binomial test rejected the null hypothesis of both overall rates being equal
with a p-value of 0.016.

The confusion matrix (Table VII) shows that walking and walking quickly were misclassified because
the system usually confused between them (low precision and recall). Nevertheless, this confusion is
not serious since both activities are expected to be very similar, only differing in their pace. Indeed, an
activity that may be considered as walking quickly for one subject may be just normal walking for others.
This may explain why the system does not distinguish between them correctly. The remaining activities
were classified without important mistakes, as shown by the almost diagonal confusion matrix.

The comparative analysis indicates that the proposed recognition system based on CCs outperformed
other reported systems. The proposed feature vector combines a variety of information (cepstral, temporal,
and pace), therefore it is more robust than a single type of spectral information. Cepstral features give a
compact representation of the impulse response (body dynamics) but use a smaller number of coefficients
than spectral representations. For instance, 70 CCs are used, in comparison to the 189 FFT coefficients
used in [22]. Also, higher recognition rates were obtained by extracting cepstral features from a single
signal (|a(t)|), rather than computing frequency-domain features for each of the acceleration components.
Adding temporal and pace information prevents confusions based on cepstral information, because they
show other aspects of the signals that are not necessarily present in the cepstral or spectral domain. Finally,

temporal features from acceleration components add the final piece of information for a minimum extra



TABLE VII

CONFUSION MATRIX OF FEATURE VECTOR Fa4 WITH 70 CCS.

Activity s j b w wbwqgr re d u Recal
Step walking (s) 43 1 97.7
Jumping (j) 43 100
Bicycling (b) 30 100
Walking (w) 33 2 5 1 3 75.0
W.  backward 2 39 1 1 90.7
(wb)
W. quickly (wq) 6 1 32 2 1 76.2
Running (r) 44 100
Relaxing (re) 1 43 97.7
Downstairs (d) 1 3 38 2 86.4
Upstairs (u) 1 3 39 907
Precision 100 100 93.7 80.5 88.6 84.293.6 100 86.4 84.8
TABLE VIII

CONFUSION MATRIX OF FEATURE VECTOR Fa4 WITH 70 CCS ON THE WALKING ACTIVITIES JOINED.

Activity s j b w+twgwb r re d u Recall
Step walking (s) 43 1 97.73
Jumping (j) 43 100.0
Bicycling (b) 30 100.0
W. forward 80 1 2 3 93.02
(wW+wq)

W. backward 3 39 1 90.70
(wb)

Running (r) 44 100.0
Relaxing (re) 1 43 97.73
Downstairs (d) 1 3 38 2 86.36
Upstairs (u) 1 1 3 38 88.37
Precision 100 100 93.795.2 92.993.6 100 88.4 86.4

cost.

D. Recognition with walking activities joined

In these experiments, the recognition task was slightly modified. On the assumption that walking and
walking quickly are very similar activities, they were joined in a single walking-forward activity. The

outputs of previously discussed systems can be post-processed to deal with the new problem, with no



need for retraining. If the system has classified a signal as walking or walking quickly, then this signal
will be labeled as walking forward. Hence, only 9 activities can be recognized in the new recognition
task.

An overall error rate of 10.35% was obtained using the system based on FFT (21.5% of relative error
reduction compared to the 10-activity task). The recognition error of walking forward was 6.82% and
the recognition errors of the remaining activities were preserved as shown in Table VI. Regarding the
system based on CCs and considering the confusion matrix presented in Table VII, the overall error was
reduced to 6.18% (29.7% of relative error reduction compared to the 10-activity task). In this case, the
recognition error of walking forward was 11.63%. Therefore, when walking and walking quickly are
joined, the overall error rate of both systems is significantly reduced.

A different approach for solving the 9-activity task involves building a new classification model, i.e.,
training a new SVM. Under this scheme, the SVM is trained to recognize 9 activities, including walking
forward. This approach assumes that a single model can be a good representation of the walking-forward
activity defined above. The results are summarized in the confusion matrix of this approach presented in
Table VIIL. In the 10-activity task (Table VII), signals that correspond exclusively to walking or walking
quickly were misclassified 10 times. By contrast, in the 9-activity task, the same signals that correspond
to walking forward were misclassified only 6 times (Table VIII). This comparison demonstrates that
joining the activities is a good strategy. As a global result, the newly trained recognizer for 9 activities
and the feature vector Foy with 70 CCs identified walking forward with a 6.98% error, and it increased
precision and recall above 93%. Moreover, the new recognizer reduced the overall error from 6.18% to

5.46%, i.e., a relative error reduction of 11.7% compared to the best 10-activity task recognizer.

V. CONCLUSIONS

In this study, a human activity recognition system was developed based on the homomorphic analysis of
acceleration signals. Body dynamics was captured by a single accelerometer and it was then translated into
a compact representation known as cepstrum. The advantage of this representation is that it compresses
spectral information while retaining its discriminative power. High recognition rates were achieved with
this exclusive representation, which were later improved by the fusion of cepstral, temporal, and pace
information at feature level. Error recognition rates were reduced from 100.00% for some activities to
24.97% for others. Therefore, the overall recognition error rate was reduced by 33.31%. The highest
recognition levels were achieved with cepstral, temporal, and pace features extracted from acceleration
magnitude, combined with temporal features from acceleration components. This is an advantage since

acceleration magnitude is known for its independence of the orientation of the recording device (relative
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to the human body), and the temporal features from acceleration components are not expensive in

computational terms.

Future research includes extending the system to work with continuously recorded signals, which

requires modeling the long-term dynamics of the system and the automatic segmentation of activities.
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