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a b s t r a c t

The P-type ATPase ATP13A2 protein was originally associated with a form of Parkinson's Disease (PD)
known as Kufor Rakeb Syndrome (KRS). However, in the last years it has been found to underlay variants
of neuronal ceroid-lipofuscinoses and hereditary spastic paraplegia. These findings expand the clinical
and genetic spectrum of ATP13A2-associated disorders, which are commonly characterized by lysosomal
dysfunction. Nowadays it is well known that lysosomes are not merely related to the degradation and
recycling of cellular waste, but are also involved in fundamental processes such as secretion, plasma
membrane repair, signaling, energy metabolism and autophagy. The essential role of lysosomes in these
cellular processes has significant implications for health and disease. ATP13A2 is localized in lysosomes
and late endosomes and its mutation leads to lysosome dysfunction, diminishes the exosome secretion
and impairs autophagic flux. In this review, we first describe ATP13A2-associated disorders and their
relation with the endolysosomal pathway. We then describe the ATP13A2-involvement in iron homeo-
stasis and its potential linkage with new pathologies like cancer, and finally, we consider the putative
role of ATP13A2 in lipid processing and degradation, opening the interesting possibility of a broader role
of this protein providing protection against a variety of disease-associated changes affecting cellular
homeostasis.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Parkinson's Disease (PD) and neuronal ceroid-lipofuscinoses
(NCLs) are neurological diseases usually described as separate
clinical entities. However, at the cellular level they show similar
alterations of the endolysosomal pathway and autophagic flux.
Both of these pathologies are characterized by the accumulation of
toxic products. PD is characterized by the presence of Lewy Bodies
formed by the cytosolic aggregation of a-synuclein protein (a-syn),
while NCLs are a group of neurological disorders produced by the
accumulation of autofluorescent material (ceroid-lipofuscin)
within lysosomes. Several monogenic forms in which the inheri-
tance of a mutated gene causes PD or NCL are well established.
Notably, mutations of the ATP13A2 gene, also known as PARK9, were
initially associated with a form of PD known as Kufor Rakeb
ells; EE, Early Endosome; LE,
, Multi-Vesicular Body; NCL,
e; TGN, Trans-Golgi Network.

os Pinto).
Syndrome (KRS) (Ramirez et al., 2006), but more recently theywere
also found to underlay a form of NCL (CNL12) (Bras et al., 2012;
Kollmann et al., 2013) and of hereditary spastic paraplegia
(SPG78) (Estrada-Cuzcano et al., 2017). The ATP13A2 gene codes for
a protein that features all the essential structural domains that are
characteristic of the family of P-type ATPases, These proteins
comprise a large group of enzymes that couple active substrate
transport with the hydrolysis of ATP, and form a phosphorylated
intermediate during their reaction cycle. The best known members
of this family of proteins are the Ca2þ-ATPase from sarcoendo-
plasmic reticulum or SERCA and the Naþ-Kþ-ATPase (Palmgren and
Nissen, 2011). P-ATPases have been classified into five subfamilies
termed P1-P5 (or type I-V) according to their similarity in primary
structure (Axelsen and Palmgren, 1998). The P5 subfamily remains
the most poorly understood P-type ATPases for which a putative
transported substrate has not yet been identified. Five genes named
ATP13A1-ATP13A5 that belong to the P5-ATPase group are present
in humans, while two P5-ATPases named Cod1p (or Spf1p) and
Ypk9p were found in the yeast Saccharomyces cerevisiae. By protein
sequence alignment it was shown that this type V ATPases are
divided in two groups named P5A and P5B; the mouse ATP13A1
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and the yeast Cod1p (or Spf1p) are members of the first group,
while the mouse ATP13A2-ATP13A5 and the yeast Ypk9p are
clustered into the second one (Mollerup Sørensen et al., 2010).
P5A-ATPases have been identified in the endoplasmic reticulum
and seem to have basic functions in protein maturation and
secretion; while P5B-ATPases localize to vacuolar/lysosomal or
apical membranes and in animals play a role in hereditary neuronal
diseases (Ramirez et al., 2006; Bras et al., 2012; Kollmann et al.,
2013; Estrada-Cuzcano et al., 2017). The ATP13A2 gene codes for a
transmembrane protein named ATP13A2 strategically located in
lysosomes and late endosomes (LEs), a late endosomal compart-
ment located at the convergence point of the endosomal and
autophagic pathways. Dysfunction of ATP13A2 diminishes lyso-
somal degradation (Dehay et al., 2012a, 2012b; Usenovic et al.,
2012; Gusdon et al., 2012), autophagic flux (Dehay et al., 2012b;
Usenovic et al., 2012; Gusdon et al., 2012), exosome externaliza-
tion (Kong et al., 2014), and induces an accumulation of fragmented
mitochondria (Gusdon et al., 2012; Grünewald et al., 2012;
Ramonet et al., 2012). Moreover, ATP13A2 is present in Lewy
Bodies, and studies using various cellular models have shown that
its overexpression reduces the intracellular a-syn levels by
increasing a-syn externalization in exosomes (Dehay et al., 2012a;
Usenovic et al., 2012; Kong et al., 2014); although the link be-
tween ATP13A2 and a-syn externalization in mice is less clearly
established (Kett et al., 2015). Altogether, these findings point to a
key role of ATP13A2 in the function of the endolysosomal and
autophagic pathways.

2. The endolysosomal and autophagic pathways

Lysosomes and LEs are cellular organelles that receive and
degrademacromolecules from the secretory, endocytic, autophagic,
Fig. 1. The endolysosomal and autophagic pathways. The primary endocytic vesicles del
cytoplasm. EEs convert into LEs or MVBs through multiple fusion events and are character
endosomes and the trans-Golgi network (TGN) is a continuously ongoing process responsible
maturation (red arrows). In LEs, cargo can be transported to other organelles such as the TGN
that have to be degraded are delivered from LEs to lysosomes, together with new lysosomal
the phagophore and autophagosome formation followed by fusion of autophagosomes eith
subsequently fuse with lysosomes. (For interpretation of the references to colour in this fig
and phagocytic membrane-trafficking pathways. They are involved
not only in degradation, but also in fundamental processes such as
secretion, plasma membrane repair, signaling, and energy meta-
bolism. Because they are responsible for the physiologic turnover of
cell constituents, defects in their function lead to the development
of a complex set of disorders with often-severe consequences for
human health (Huotari and Helenius, 2011). Briefly, the cargo
internalized by ongoing endocytosis in mammalian cells first ar-
rives to an early endosome (EE), where most receptors are returned
to the plasma membrane via the recycling endosomes. Cargo
destined for degradation is retained in the EE, which through a
process involving exchange of material and multiple fusion events,
converts into a late endosome. LEs are also called multi-vesicular
bodies (MVBs) since they contain intraluminal vesicles (Huotari
and Helenius, 2011; Hyttinen et al., 2013). LEs also can fuse with
autophagosomes to form amphisomes; autophagosomes are the
primary double-membrane vacuoles that engraft cytoplasmic
proteins and organelles in autophagy (Fig. 1). In LEs, cargo un-
dergoes further sorting and is transported to other organelles such
as trans-Golgi network (TGN) or can fuse with the plasma mem-
brane to release extracellular vesicles termed exosomes that have
the potential of intercellular communication and have recently
been implicated in a number of neurodegenerative diseases
(Huotari and Helenius, 2011; Schneider and Simons, 2013;
Appelqvist et al., 2013). Macromolecules such as complex lipids
and oligosaccharides that are constitutively degraded into their
building blocks are delivered from LEs to lysosomes, together with
new lysosomal hydrolases and membrane proteins from the TGN.
The resulting catabolites are exported to the cytosol and reused in
cellular metabolism. In view of the foregoing, it is clear that the
specific transport, distribution and processing of cargo is an
inherent function of the endolysosomal system and its malfunction
iver their contents and their membrane to early endosomes (EEs) in the peripheral
ized by the presence of intravesicular bodies (ILVs, white circles). The traffic between
for the delivery of lysosomal and removal of endosomal components during endosome
or can fuse with the plasma membrane to release exosomes. However, macromolecules
hydrolases and membrane proteins from the TGN. The autophagy process initiates with
er directly to lysosomes to form autophagosomes, or to LEs to give amphisomes that
ure legend, the reader is referred to the web version of this article.)
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promotes the accumulation of undegraded material.
Although the lipofuscin-like compounds found in NCL and Par-

kinson's Lewy Bodies have a distinct composition, both are
diminished by endolysosomal-mediated clearance where ATP13A2
meets its function. In this line, it was recently shown that ATP13A2
regulates crucial steps of cargo trafficking and sorting processes in
the endocytic system independently of its ATPase catalytic activity
by a scaffolding role of its cytosolic N-terminal domain. The N-
terminal domain of the protein requires the interaction with the
signaling lipid PI(3,5)P2 to potentiate the release of cytoplasmic
cargo through nanovesicles export to the extracellular space
(Demirsoy et al., 2017). This discovery suggests that ATP13A2 may
develop a key function in the endolysosomal clearance of toxic
compounds through vesicle secretion.

3. Iron in toxic waste formation

Alterations in iron metabolism has been associated with several
neurodegenerative diseases (Berg and Youdim, 2006). Lysosome
function plays a key role in iron handling in normal and patho-
logical conditions (Kurz et al., 2011). Even under normal conditions,
iron-catalyzed peroxidation takes place intralysosomally, resulting
in the oxidative modification of the autophagocytosedmaterial that
becomes resistant to the hydrolytic activity of lysosomal enzymes.
If cells do not divide, this material progressively accumulates
within the lysosomal compartment in the form of lipofuscin in-
clusions (Kurz et al., 2011; Brunk and Terman, 2002). Although
progressive lipofuscin accumulation is a normal aging event,
exacerbation of this process has been implicated in numerous age
related diseases such as Alzheimer disease, PD and macular
degeneration pathologies (Kurz et al., 2011). There is a wide variety
of lipofuscin-like materials and their composition differ according
to the pathology. Most frequently, the term “ceroid-lipofuscin” re-
fers to the lipofuscin-like lipopigment that accumulates in the
lysosome as a result of a pathological condition like NCL, and its
composition differs from the age-related lipofuscin (Seehafer and
Pearce, 2006). However, regardless of the chemical composition
of the accumulated material, it is clear that iron-induced lipid
peroxidation is a common prime event in its formation and the
exacerbation of this phenomenon drives to an endo-lysosomal flux
malfunction (Kurz et al., 2011).

Intralysosomal iron-chelating agents like the polyamines sper-
midine and spermine are able to reduce lipofuscin formation
(Løvaas, 1996; Marzabadi and Løvaas, 1996). Cells containing larger
LEs and lysosomes, equipped with more iron-chelating agents may
be more resistant to the iron-catalyzed lysosome membrane per-
meabilization (LMP) (Kurz et al., 2011). Noteworthy, chinese ham-
ster ovarian (CHO) cells stably expressing the human ATP13A2
protein exhibit a higher accumulation of spermidine (de La Hera
et al., 2013; de Tezanos Pinto et al., 2012). Likewise, the iron con-
tent and the cytotoxicity induced by iron exposure is reduced in
ATP13A2-expressing CHO cells (Rinaldi et al., 2015). Moreover,
ATP13A2 expression causes an enlargement of acidic vesicles and a
reduction of the iron-induced LMP (Rinaldi et al., 2015). These re-
sults suggest that ATP13A2 overexpression improves the lysosome
and LE function by protecting the membrane integrity against the
iron-induced damage.

4. ATP13A2-gene regulation

It was recently reported that the promoter region of the human
ATP13A2 gene contains hypoxia response elements that can bind to
the hypoxia-inducible factor 1a (HIF-1a) (Xu et al., 2016), a tran-
scription factor associated with tumor growth, angiogenesis and
metastasis in various carcinomas (Jokilehto et al., 2006). HIF1a
induces the transcription of cellular stress genes, including several
involved in iron metabolism like transferrin and transferrin re-
ceptor 1. Hydroxylation of HIF1a by prolyl hydroxylase domain
protein 2 (PHD2) results in its proteasomal degradation. Hence, the
pharmacological inhibition of PHD2 increases the expression of
ATP13A2 by diminishing HIF1a degradation (Rajagopalan et al.,
2016). Knockdown of ATP13A2 expression within human dopami-
nergic cells results in elevations in cytosolic ferrous iron levels and
eliminates the restoration of cellular iron homeostasis induced by
PHD2 inhibition (Rajagopalan et al., 2016). These findings support
the idea that the regulation of ATP13A2 by the PHD2-HIF1a
signaling pathway not only affects the cellular iron homeostasis but
also is involved in the hypoxic stress response.

Interestingly, the polyamine transport system is also up-
regulated through the HIF1a pathway and is associated with can-
cer cell survival during hypoxic stress (Svensson et al., 2008). In this
line, is noteworthy that a recent publication suggests the involve-
ment of another P5B-ATPase isoform -ATP13A3-in polyamine
transport in human pancreatic cancer. In the mentioned study, high
levels of ATP13A3 expression were detected in tumors where the
endogenous polyamine biosynthesis was inhibited (Madan et al.,
2016), suggesting a compensatory mechanism for increasing the
uptake of polyamines from the media. As the native polyamines,
putrescine, spermidine and spermine are key resources required by
mammalian cells for growth and proliferation, polyamine homeo-
stasis have been shown to be clinically useful for both the che-
moprevention and treatment of human cancers (Meyskens and
Gerner, 1999; Samal et al., 2013). Although is only speculative at
this time, because ATP13A2 increases polyamine uptake -possibly
in an indirect way at the level of the plasma membrane- and its
expression is regulated through the HIF1a pathway -both facts
clearly related to cancer progression-opens the possibility that P5B-
ATPases could play a role in this pathology.

5. ATP13A2 in endolysosome homeostasis

ATP13A2 contributes to the integrity of the endo/lysosome
vesicles by promoting the accumulation of chelating agents like
spermidine inside acidic vesicles. However, there is no data
showing that ATP13A2 protein is directly responsible of the active
accumulation of polyamines into the vesicles of the late endocytic
compartment. Moreover, this possibility seems unlikely since the
expression of ATP13A2 did not produce a significant change in the
apparent affinity of the cells for spermidine (de La Hera et al., 2013).
Several alternative mechanisms explaining the observed effects of
ATP13A2 overexpression may be considered. The pH gradient that
exists between the lysosomal lumen and the cell cytosol is
responsible for driving the accumulation of many small-molecular-
weight amine-containing molecules through a process referred to
as ion trapping (Goldman et al., 2009). Thus, if ATP13A2 would act
as an active Hþ transporter, it would improve the existing pH
gradient across the vesicle membrane favoring the uptake of pol-
ycations. Although some publications support this possibility,
ATP13A2 expressionwas unable to revert the increase of lysosomal/
endosomal pH induced by chloroquine (CQ) treatment, suggesting
that it cannot replace the function of the lysosomal proton pumps
(de La Hera et al., 2013). Nevertheless, the possibility of ATP13A2
may somehow collaborate to maintain the acidic environment in
the endolysosomal systems cannot be discarded. Moreover, it must
be take into account that CQ is also a polycationic diamine and
probably is being accumulated at a greater extent inside the acidic
vesicles of ATP13A2-expressing cells, a fact that may explain the
lack of differences observed in the lysosomal pH of CQ treated
ATP13A2-expressing cells.

Several studies using cellular and mice models have shown that
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ATP13A2 also plays a crucial role in the control of Mn2þ and Zn2þ

homeostasis. In the absence of ATP13A2, the cells contain lower
amounts of these ions and are more sensitive to the toxicity of
external Mn2þ and Zn2þ, presumably because they have a reduced
capacity to sequester these ions into acidic vesicles (Kong et al.,
2014; Gitler et al., 2009; Schmidt et al., 2009; Tan et al., 2011;
Park et al., 2014; Tsunemi and Krainc, 2013). Is worth mention
that as suggested above for iron, the effect of ATP13A2 onMn2þ and
Zn2þ homeostasis may be mediated by increasing the metal
chelating capacity of lysosomes and/or contributing to metal
clearance by exosome releasing. Finally, the steady-state phos-
phorylation levels of ATP13A2 pump were unaffected by MnCl2 or
ZnCl2, indicating that ATP13A2 is unlikely to directly transport
Mn2þ or Zn2þ (Holemans et al., 2015).

Because phylogenetically P5-ATPases are closest to the P4-
ATPases phospholipid transporters, it has been suggested that
they also function as flippases (Graham, 2004; VanVeen et al.,
2014). In this case, the observed protection of lysosome-
membrane integrity by ATP13A2 could result from modifications
in the composition or distribution of lipids in the lysosomal
membrane. Unfortunately, data supporting this hypothesis are still
lacking. On the other hand, the constitutive degradation of mem-
brane components that takes place in intraendosomal membranes
formed in LEs requires a lipid-sorting process during which
cholesterol is sorted out of the inner membranes and their content
in the anionic phospholipid bis(monoacylglycero)phosphate (BMP)
increase. This process allows the binding of hydrolases like acid
sphingomyelinase and acid ceramidase -which are water-soluble
polycations at a lysosomal pH of less than 5.0- to the negatively
charged inner membranes. In those inner bodies, these hydrolases
become protected against proteolysis and are able to degrade their
membrane-bound substrates. Amine-containing amphiphilic
compounds disturb the binding of these hydrolases to the inner
membranes causing their rapidly detachment and proteolysis
(Kolter and Sandhoff, 2010). This phenomenon characterized by an
intracellular accumulation of undigested material and the concur-
rent development of concentric lamellar bodies is known as drug-
induced phospholipidosis, and was considered as a “molecular
mimicry” of lysosomal storage disorders like NCL (Kolter and
Sandhoff, 2010; Anderson and Borlak, 2006; Schulze and
Sandhoff, 2011; Shayman and Abe, 2013). However, this idea is
based principally on the fact that multilamellar bodies are observed
Fig. 2. Electron microscopic photographs of CHO cells stably expressing the human ATP13A
ATP13A2-expressing cells the lysosome-like structures containing electrodense granular de
under microscopic examination in both circumstances and doesn't
imply the same molecular origin. Interestingly, it was recently
shown that the degradative capacity of ATP13A2-expressing cells
was significantly reduced after proteasomal inhibition (Demirsoy
et al., 2017). Importantly, this effect did not require the catalytic
activity of the pump and suggests that ATP13A2 overexpression
affects the cell digestion capacity by a scaffolding function.

6. Vesicle clearance as a defense mechanism

At first glance, the ATP13A2-induced lysosomal accumulation of
polycations like spermidine should hamper the lipid digestion
process. However, lamellar bodies induced by phospholipidosis
have been observed to reach the extracellular space by exocytosis
(Anderson and Borlak, 2006). It was shown that by releasing the
LEs/lysosome content via exocytosis, the cell bypasses excessive
production of reactive oxygen species, eliminates undigested ma-
terial and protein aggregation, thereby preventing undue stress
(Anderson and Borlak, 2006). Moreover, the induction of lysosomal
exocytosis by transcription factor EB (TFEB)-overexpression rescues
the pathologic storage and restores normal cellular morphology in
LSDs (Medina et al., 2011), suggesting that lysosomal exocytosis
may directly modulate cellular clearance. This idea is supported by
a recent publication showing that cells trigger a lysosome-
biogenesis activation after basic-amines or cationic-amphiphilic
drugs treatment, and this would be a lysosomal adaptation that
helps the cell to bypass the lysosome dysfunction induced by these
lysosomotropic compounds (Lu et al., 2017). Importantly, TFEB not
only regulates lysosomal biogenesis and function but also induces
the expression of HIF1a (Palmieri et al., 2011), which as indicated
above upregulates ATP13A2 transcription. These results suggest
that the alteration of the lipid digestion process by amine accu-
mulation may stimulate the LE/lysosome exocytosis with the
concomitant diminution of intracellular toxic compounds.

Interestingly, ATP13A2 has been shown to regulate exosome
biogenesis through functional interaction with the endosomal
sorting complex required for transport machinery (ESCRT)
(Tsunemi et al., 2014), promoting a-syn (Kong et al., 2014) and
ubiquitinated-proteins (Demirsoy et al., 2017) externalization. The
strategic localization of ATP13A2 in LEs and its involvement in
exosome externalization suggest that this protein could play a key
role in a clearance mechanism mediated by lysosome/exosome
2 or the unfunctional mutant ATP13A2-D508N stained with osmium tetroxide. Note in
posits suggesting phospholipidosis.



F. de Tezanos Pinto, H.P. Adamo / Neurochemistry International 112 (2018) 108e113112
exocytosis. In this line, it was observed that the loss-of-function of
ATP13A2 leads to decreased density of ILVs in LEs (Tsunemi et al.,
2014). Accordingly, the amine-accumulation induced by ATP13A2
would favor the formation of intravesicular bodies similar to those
observed during drug-induced phospholipidosis (Anderson and
Borlak, 2006). Favoring this idea, we have observed by electron
microscopic examination that CHO cells stably expressing
ATP13A2, contain enlarged multivesicular structures with internal
granular deposits similar to those produced by drug-induced
phospholipidosis (Fig. 2) (Rinaldi et al., 2015). This hypothesis is
also supported by a recently demonstration that ATP13A2 in-
creases cargo export through nanovesicles formation, although by
a catalytic-independent manner (Demirsoy et al., 2017). Usenovic
et al. reported an increase in the size puncta and number of
LAMP1 and LysoTracker positive vesicles in ATP13A2 mutant fi-
broblasts and by ATP13A2 knock down in primary cortical neu-
rons. On the other hand, Demirsoy et al. did not see changes in the
expression of LAMP1/LAMP2 after ATP13A2 overexpression or
knock down. At present, the reason of this discrepancy is not
obvious however, it is possible that ATP13A2 silencing increases
the LAMP1þ lysosomes and LEs, while overexpression also in-
creases or relocalizes LAMP1þ in order to promote the exocytosis
of toxic compounds.
7. Concluding remarks

Most of the studies have shown that loss-of-function of
ATP13A2 promotes lysosomal dysfunction with the concomitant
accumulation of undigested material (Dehay et al., 2012a, 2012b;
Usenovic et al., 2012). On the other hand, a reduced digestion
capacity was also observed in ATP13A2-overexpressing cells
(Demirsoy et al., 2017). One would expect that both scenarios
have opposing effects, however, both of them alter lysosome
homeostasis; a fact that may explain reports of similar pheno-
types associated with the loss- or gain-of-function of ATP13A2
(Ramonet et al., 2012). It was also shown that by increasing the
expression of ATP13A2, the cell is able to eliminate -by exosome-
release- toxic compounds whose production is increased under
conditions of cellular stress (Kong et al., 2014; Tsunemi et al.,
2014). Accordingly, ATP13A2-function seems to be essential for
cells under stress conditions (Gusdon et al., 2012; Ramonet et al.,
2012; Demirsoy et al., 2017). We believe that the amine accu-
mulation produced by ATP13A2 expression could reduce the lipid
digestion capacity while increasing the endolysosome/exosome
exocytosis, in a way similar to that observed during drug-induced
phospholipidosis (Anderson and Borlak, 2006; Lu et al., 2017). In
this line, overexpression of this protein under basal conditions
would result in an excessive zinc and/or iron chelation that
would be also harmful for endolysosome homeostasis. This
possibility would explain why ATP13A2-overexpression was
slightly toxic to cells under basal conditions (Park et al., 2014).
Consistent with the phenotype found in NCL and KRS, these
observations highlight the proposed function of ATP13A2 as a
remodeler of the endocytic pathway toward export, mainly un-
der cellular stress conditions.
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