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Pleiotropic effects of 5-aminolevulinic acid in mouse brain
Jimena Lavandera, Jorge Rodríguez, Silvina Ruspini, Roberto Meiss, Johanna Romina Zuccoli,
María del Carmen Martínez, Esther Gerez, Alcira Batlle, and Ana María Buzaleh

Abstract: 5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent
porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our
knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system,
the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single
(40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in
the encephala of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide
dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity
were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric
oxide synthase isoforms were induced by ALA, these changes being more significant for the inducible isoform in glial cells. In
conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was
developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.
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Résumé : L’acide aminolévulinique (ALA) semble responsable des manifestations neuropsychiatriques de la porphyrie aiguë
intermittente (PAI). Le but de ce travail était d’étudier l’effet de l’ALA sur différentes voies métaboliques dans le cerveau des
souris afin d’accroitre notre compréhension de l’action de ce précurseur d’hème dans le système nerveux central. Le métabo-
lisme de l’hème, le système cholinergique, le système de défense enzymatique et le métabolisme de l’oxyde nitrique ont été
évalués dans l’encéphale de souris ayant reçu une seule (40 mg/kg de masse corporelle) ou de multiples doses (40 mg/kg, 14 jours)
d’ALA. Les auteurs ont trouvé une accumulation d’ALA dans l’encéphale. L’ALA modifiait aussi le système cholinergique cérébral.
Après l’administration d’une dose d’ALA, une diminution de l’activité de la superoxyde dismutase et une réduction des niveaux
de glutathion étaient détectées, alors que les niveaux de malonaldéhyde et l’activité de la catalase étaient accrus. L’hème oxygénase,
considérée comme réponse antioxydante, était aussi accrue afin de protéger cet organe du dommage. Toutes les isoformes de synthase
d’oxyde nitrique étaient induites par l’ALA, ces changements étant plus significatifs dans les cellules gliales en ce qui concerne
l’isoforme inductible. En conclusion, l’ALA a affecté plusieurs voies métaboliques dans l’encéphale. Les données indiquent
qu’une réponse rapide au stress oxydant s’est développée; cependant, lors d’une intoxication à long terme, la balance redox était
probablement rétablie, minimisant le dommage oxydant. [Traduit par la Rédaction]

Mots-clés : acide 5-aminolévulinique, métabolisme de l’hème, système de défense antioxydante, système cholinergique, synthase
d’oxyde nitrique.

Introduction
Porphyrias are a group of inherited or acquired disorders of

heme metabolism. All acute hepatic porphyrias display neurolog-
ical symptoms, and the central nervous system (CNS) is involved
during the acute attacks (Batlle 1997; Parera et al. 2003; Pischik
and Kauppinen 2009; Besur et al. 2014). Heme biosynthesis is reg-
ulated by the first enzyme of the pathway, �-aminolevulinic acid
synthetase (ALA-S) (Huntera and Ferreira 2011). The product of this
enzyme, 5-aminolevulinic acid (ALA), seems to be responsible for
the neuropsychiatric manifestations of several porphyric disor-
ders (Demasi et al. 1996; Batlle 1997; Felitsyn et al. 2008). More-

over, the pathophysiology of acute attacks in porphyrias could be
related to low levels of heme as a cofactor for heme proteins such
as nitric oxide synthase (NOS) and catalase (Herrick and McColl
2005).

ALA-generated reactive species have been shown to elicit oxida-
tive lesions in synaptic membranes of the rat brain (Adhikari et al.
2006). The CNS is extremely sensitive to damage from free-radicals
because it has a relatively small total antioxidant capacity (Ghosh
et al. 2011; Schiavone et al. 2013).

We have previously reported that porphyrinogenic agents al-
tered heme metabolism, the cholinergic and glutamatergic sys-
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tems, and the phase I drug metabolizing system, and also induced
oxidative and nitrosative stress in mouse encephalon (Rodríguez
et al. 2002; Rodriguez et al. 2005; Lavandera et al. 2007, 2009, 2011,
2015). These results could be attributed to a direct effect of toxins
on the enzymes or to the disruption of heme biosynthesis, leading
to deregulation of ALA-S and consequently to ALA accumulation.

The aim of this work was to study the effect of ALA on different
metabolic pathways in mouse encephalon to enhance our knowl-
edge about the action of this heme precursor on the CNS. To this
end, heme metabolism (ALA-S and heme oxygenase (HO)), the
cholinergic system (acetylcholinesterase (AChE) and butirylcho-
linesterase (BuChE)), the defense enzyme system (superoxide dis-
mutase (SOD); catalase; glutathione peroxidase (GPx); glutathione
reductase (GRed); reduced glutathione (GSH); and malondialde-
hyde (MDA)), and nitric oxide metabolism (nitric oxide synthase
(NOS)) were evaluated in the encephalon of CF-1 mice treated with
a single or multiple doses of ALA (Bechara 1996).

Materials and methods

Animals
Groups of 6–8 male albino CF-1 mice (25–30 g) were used to

measuring the different parameters of each metabolic pathway
investigated, and were maintained under controlled conditions
and allowed free access to food (Purina 3; Asociación de Coopera-
tivas Argentinas, San Nicolás, Buenos Aires, Argentina) and water.
Animals received humane care and were treated in accordance
with the guidelines established by the Animal Care and Use Com-
mittee of the Argentinian Association of Specialists in Laboratory
Animals (AADEALC).

Treatments
Acute treatment: animals received a single dose of 40 mg

ALA/kg body mass (by intraperitoneal (i.p.) injection) and were
sacrificed 24 h after the injection. Chronic treatment: animals
received the same dose of ALA (40 mg/kg), every 48 h for 2 weeks,
and were sacrificed 24 h after the last injection. Controls: Animals
received the vehicle (NaCl, 0.9%) using the same protocols as de-
scribed above, and they were sacrificed at the indicated times. All
experiments were performed at the same time of the day.

Homogenate preparation
The encephalon (whole brain) of each mouse was scissored and

immediately processed. Tissues from 2 mice were pooled and ho-
mogenized using a manual glass homogenizer in different solu-
tions, depending on the parameter to be measured. For ALA-S
determination, the homogenate was performed in a solution con-
taining 0.9% NaCl, 0.1 mmol/L Tris–HCl (pH 7.4), 0.5 mmol/L EDTA
(1:3, w/v) and it was used as enzyme source. AChE and BuChE
activities were measured directly in the homogenate obtained
from mouse encephalon in 0.1 mol/L sodium phosphate buffer
(pH 8) (1:10 w/v). For the determination of MDA levels, encephala
were homogenized (1:5 w/v) in 0.05 mol/L sodium phosphate buf-
fer (pH 7.4) and analyzed immediately. An aliquot of this homog-
enate was used to measure catalase and GRed activities. For
determining the other parameters we assayed, the encephala
were homogenized in ice cold sucrose (0.25 mol/L; 1:3, w/v), and
one aliquot was used to measure ALA levels. Then, the homoge-
nate was centrifuged for 15 min at 1500g; the obtained superna-
tant was centrifuged again for a further 15 min at 10 000g, and the
resulting pellet was washed once with the same solution used for
homogenization and again centrifuged for 15 min at 10 000g (mi-
tochondrial fraction). The supernatants from the first and the
second centrifugations at 10 000g were pooled and centrifuged for
90 min at 105 000g; the pellet obtained was washed once with the
buffer used for homogenization (microsomal fraction). The other
parameters assayed were determined in the supernatants obtained
by centrifugation at 10 000g (HO and cytosolic NOS activities, GSH
levels) and 105 000g (SOD and GPx activities). Mitochondrial NOS

(mtNOS) was measured in the mitochondrial fraction. Cholin-
estarases and HO activities were also evaluated from different
areas of the encephalon, namely, the cortex, cerebellum, and hip-
pocampus. Tissues were processed in the same manner as the
whole brain was.

Assays

Biochemical assays
ALA levels were quantified following the technique of Mauzerall

and Granick (1956). One-half millilitre of deproteinized homoge-
nate was condensed with 0.05 mL of acethylacetone in Tris–HCl
buffer (1 mol/L; pH 4.6), and the solution was heated to 100 °C for
10 min. After cooling to room temperature, an equal volume of
modified Ehrlich’s reagent (1 g of p-dimethylaminobenzaldehyde
in 50 mL of glacial acetic acid : 70% perchloric acid; 21:4 v/v) was
added, and the light absorption at 553 nm was determined after
8 min.

ALA-S activity was determined using the method of Marver et al.
(1966). The reaction system contained, in a final volume of 1 mL,
75 mmol/L Tris–HCl buffer (pH 7.4), 0.1 mol/L glycine, 10 mmol/L
EDTA, and 0.25 mL of crude homogenate. After 1 h at 37 °C, the
reaction was stopped by adding 0.25 mL of 25% TCA. After centrif-
ugation at 3000 rpm for 15 min, ALA was determined as was de-
scribed above. One unit of ALA-S activity was defined as the
quantity of enzyme that catalyzes the synthesis of 1 nmol of ALA
per hour under standard conditions.

HO activity was measured as described by Tenhunen et al.
(1970). The reaction mixture (1 mL) contained 0.1 mL of superna-
tant obtained by centrifugation at 18 000g, 34 �mol/L hemin,
90 �mol/L NADPH, and 90 mmol/L potassium phosphate buffer
(pH 7.4). The formation of bilirubin was determined at 468 nm
(molar extinction coefficient; 27.7 to 31.7) after 30 min at 37 °C.

SOD activity was assayed using the method of Paoletti et al. (1986),
which is based in the inhibition of superoxide-driven NADH oxida-
tion. The assayed aliquot (1 mL) consisted of 35 mmol/L sodium phos-
phate buffer (pH 7.4), 4 �mol/L NADH, a mixture of EDTA and
MnCl2 (0.03 mol/L – 0.015 mol/L, respectively), and 0.1 mL of differ-
ent dilutions of enzyme extract. The decrease in the rate of NADH
oxidation was measured at 340 nm for 5 min after adding 0.1 mL of
10 mmol/L �-mercaptoethanol. One unit of SOD was defined as the
amount of SOD capable of inhibiting the rate of NADH oxidation,
as measured in the control, by 50%.

Catalase activity was determined according to the methods of
Chance and Maehly (1954) using 1 mL of a solution containing
0.05 mol/L potassium phosphate buffer (pH 7.0), 0.059 mol/L hy-
drogen peroxide (30%), and 0.1 mL enzymatic solution. The disap-
pearance of peroxide was confirmed for 1 min at 240 nm with a
spectrophotometer. One unit (enzyme activity) decomposed one
nanomole of H2O2 per minute at 25 °C.

GPx activity was measured as described by Paglia and Valentine
(1967). The reaction system (1 mL) contained 50 mmol/L sodium
phosphate buffer (pH 7.4), 1 mmol/L EDTA, 1 mmol/L azide,
0.2 mmol/L NADPH, 1 mmol/L GSH, 0.01 U of GRed, and 0.1 mL of
the enzymatic fraction. The conversion of NADPH to NADP was
recorded at 340 nm for 5 min after initiating the reaction by
adding 0.1 mL of 0.25 mmol/L H2O2. One unit of GPx was defined as
the amount of the enzyme that catalyzes the oxidation of 1 nmol
of NADPH per minute under standard conditions.

GRed activity was quantified using the method of Pinto and
Bartley (1969) following the reduction of glutathione disulfide
(GSSG) to reduced glutathione by monitoring the oxidation of
NADPH at 340 nm for 2 min. The incubation system contained, in
a final volume of 1 mL, 83.5 mmol/L of sodium phosphate buffer
(pH 7.4), 1.25 mmol/L EDTA, 3.125 mmol/L GSSG, 7.5 mmol/L
NADPH, and 40 �L of enzymatic fraction. One unit of GPx was
defined as the amount of the enzyme that catalyzes the oxidation
of 1 nmol of NADPH per minute under standard conditions.
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The peroxidation index was evaluated by the formation of MDA
and determined as thiobarbituric reactive species (TBARS) by the
method of Niehaus and Samuelson (1968). To 0.5 mL of tissue
homogenate, 1 mL of 2-thiobarbituric acid (0.375% w/v in 0.25 mol/L
HCl and 15% TCA) was added, mixed thoroughly, and kept in a
boiling water bath for 15 min. The precipitate was removed by
centrifugation and the absorbance was measured at 535 nm.

GSH levels were evaluated according to the methods of Rossi
et al. (1995). To 1 mL of acid deproteinized fractions were added
1.5 mL of EDTA (0.5 mg/mL in 0.08 mol/L sodium phosphate buffer
(pH 8), and 0.1 mL of 5,5=dithio(bis)nitrobenzoic acid (4 mg/mL);
after 15 min, we measured the absorbance at 410 nm.

NOS activity was measured in brain submitochondrial mem-
branes and in the cytosolic fractions using a spectrophotometer to
measure the oxidation of oxyhemoglobin to methemoglobin at
37 °C, as was previously described by Lavandera et al. (2011). The
reaction system contained, in a final volume of 1 mL, 50 mmol/L
potassium phosphate buffer (pH 7.4), 1 mmol/L CaCl2, 100 �mol/L
NADPH, 10 �mol/L dithiothreitol, 2 �mol/L Cu–Zn superoxide dis-
mutase, 0.1 �mol/L catalase, 0.5–1.0 mg protein/mL, 25 �mol/L
oxyhemoglobin, and 1 mmol/L L-arginine. Kinetics were followed
at 577–591 nm (� = (11.2 mmol·L−1)−1·cm−1) for 2 min. One unit of
enzyme activity was defined as the quantity (in nanomoles) of
enzyme that catalyzed the oxidation of oxyhemoglobin for 1 min
under standard conditions. The specificity of methehemoglobin
formation to NOS was confirmed by incubation with N�-nitro-L-
arginine as the NOS inhibitor.

Cholinesterases
AChE and BuChE activities and muscarinic acethylcholinesterase

receptor (mAChR) were quantified as was described by Rodríguez
et al. (2002). The activities were determined using acethylthiocholine
as substrate for both enzymes, and AChE was determined using
ethiopropazine as the specific inhibitor of BuChE. The activity of
BuChE was calculated by subtracting the AChE activity from the
total enzyme activity measured in absence of inhibitor. The incu-
bation system for total cholinesterase activity (AChE + BuChE)
determination contained, in a final volume of 3.55 mL, 85 mmol/L
sodium phosphate buffer (pH 8.0), 0.28 mmol/L DTNB, 0.54 mmol/L
acetylthiocholine, and 0.05 mL of the enzymatic fraction. Absor-
bance at 412 nm was recorded for 5 min.

Protein concentration was estimated by either the procedure of
Lowry et al. (1951) or Bradford (1976).

RNA extraction and Northern blot analysis
Total RNA was obtained with phenol–chloroform using the

method of Chomczynski and Sacchi (1987) from the whole brain,
and the mRNA expression was determined by Northern blot using
specific probes. Total RNA (20 �g) was size fractioned by denatur-
ing agarose gel electrophoresis and then transferred to a nylon
membrane and left overnight. The crosslinking was done using an
UV Stratalinker 1800 (120 mJ UV light). The membrane was prehy-
bridized with 1 mL ULTRAhyb (Ambion) for each 10 cm2 of mem-
brane over a 4 h period. The cDNA probes were labeled with
(32P)dCTP by the Random Priming method using an oligolabelling
kit (Bio-Labs). A 849 bp fragment of cDNA corresponding to 109 to
958 bases of the previously characterized rat HO-I mRNA (GeneBank
accession number 14789657) was synthesized by PCR from mouse
liver RNA using specific primers (forward primer, 5=-TCCACAGC-
CCGACAGCAT-3=; reverse primer, 5=-ATTCCCACTGCCACTGTTGC-3=).
The cDNA probe used for ALA-S was a gift from Massayuki Yamamoto
(Department of Biochemistry, Toyama Medical and Pharmaceutical
University, School of Medicine, Toyama, Japan). The expression of
the inducible form of HO (HO-I) and ALA-S mRNAs was normalized
by comparison with the expression of 18S mRNA. The hybridized
membrane was exposed to AGF radiographic film to visualize the
bands. Quantitative analysis was performed with an image ana-

lyzer (LabScan version 3.00) and an image scanner (Amersham
Pharmacia Biotech).

Western blot analysis
Analysis of the expression of the different isoforms of NOS was

described in detail by Lavandera et al. (2011): anti-nNOS/NOS I
(1:500 v/v; Santa Cruz Biotechnology) was used on the cytosolic and
mitochondrial fractions, and anti-iNOS/NOS II (1:5 �g/mL; Upstate)
on the cytosolic fraction. We detected a protein of 157 kDa that
reacted with the anti-nNOS antibodies (amino terminus) in the
cytosolic fraction, and a 144 kDa protein that reacted with the
anti-nNOS antibodies in mitochondrial fraction (mtNOS). Gel
loadings were normalized according to total protein content, and
after immunoblotting, equal sample loading was confirmed by Coo-
masie blue staining, as described by Welinder and Ekblad (2011).

Immunohistochemical studies
Encephala were removed and fixed in 10% neutral-buffered for-

malin. At least 6 microtome sections of 3–5 �m were stained with
haematoxylin–eosin. Immunohistochemistry was performed us-
ing the streptavidin–biotin–peroxidase complex system LSAB
(DAKO). In brief, endogenous peroxidase activity was inhibited
using 3% H2O2 in distilled water. Microwave antigen retrieval was
used (4 cycles of 5 min each in 0.1 mol/L citrate buffer using a
750 W microwave oven). Blocking solution (2% normal goat se-
rum) was used before the specific antibody. The sections were
incubated overnight at room temperature with anti-HO1 (1:400,
Santa Cruz Biotechnology), anti-nNOS/NOS I (1:200; Santa Cruz
Biotechnology), anti-iNOS/NOS II (1:200; Upstate), or anti-eNOS/
NOS III (1:200; Santa Cruz Biotechnology). Control sections with-
out primary antibody served as the control. The reaction was
developed with 3,3=-diaminobenzidine (DAB), under microscopic
control. Specimens were counterstained with 10% hematoxylin,
dehydrated, and mounted. All photographs show the original
magnification (250×). The different cell types (neurons and glia)
were identified based on their morphology.

Statistical analysis
Data are the mean ± SD. Differences in mean values between the

treatment and the control groups were evaluated using analysis of
variance (ANOVA), and values for p < 0.05 were considered statis-
tically significant.

Results

ALA accumulated in the encephalon affects heme
metabolism

ALA levels were measured to determine whether there was an
accumulation of this compound in the encephalon after ALA
treatment (Fig. 1). The concentration of ALA increased by around
70% (p < 0.05) in comparison with the controls, in animals receiv-
ing ALA (both acute and chronic administration), without any
difference related to the duration of the treatment.

To determine whether ALA affected heme synthesis regulation,
the activity and expression of the regulatory enzyme ALA-S was
measured (Fig. 2). No significant variations in ALA-S activity were
produced (Fig. 2A), although mRNA levels of this enzyme were
diminished by 80% and 60% in animals administered the acute or
chronic ALA treatments, respectively (Fig. 2B).

Moreover, the effects on heme catabolism were evaluated mea-
suring the activity and expression of HO, which is the first enzyme
involved in the degradation of heme and is frequently induced
under conditions of stress. HO activity was dramatically induced
by ALA, being more pronounced after acute administration (445%;
p < 0.01) and significantly different (p < 0.05) from that observed
after chronic administration (50%; p < 0.05) (Fig. 3A).

To evaluate whether this induction was observed in all areas of
the encephalon, HO activity was measured in the cortex, cerebel-
lum, and hippocampus (Fig. 3B). No significant changes were ob-
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served in the brain cortex. The activity of HO in the cerebellum
showed significant induction in animals administered the acute
(44%; p < 0.05) or chronic (98%; p < 0.01) treatments of ALA. In the
hippocampus, a 115% (p < 0.05) increase in this enzyme activity
was only found when ALA was chronically administered.

When encephalon mRNA levels of HO were quantified (Fig. 3C),
no induction was observed after ALA treatment administered ei-
ther acutely or chronically.

Immunohistochemical studies performed on the encephala of
the controls and the treatment group receiving only one dose of
ALA are shown in Fig. 4. A positive stain for HO-I in neurons and
the glia were observed in the control animals (Fig. 4A). After acute
ALA administration, the positive stain in the glia was slightly
diminished (Fig. 4B). No alterations were observed after chronic
administration of ALA (data not shown).

ALA altered the cholinergic system
The effects of ALA on the cholinergic system were evaluated by

measuring AChE and BuChe enzymes (Fig. 5).
AChE activity was unchanged in the encephala of animals re-

ceiving the acute treatment of ALA (Fig. 5A), although it was in-
creased by 40% (p < 0.05) after chronic administration of ALA.
BuChE activity was reduced by 50% (p < 0.05) only in animals
chronically treated with ALA (Fig. 5B).

Cholinesterases were also measured in different areas of the
encephalon (Fig. 6). In the cortex, AChE activity (Fig. 5A) increased
41% (p < 0.05) after chronic administration of ALA, but there was
no change in the treatment group that received one dose of ALA.
Rather, acute ALA administration caused a 35% (p < 0.05) reduc-
tion in the activity of BuCHE in the cortex. In the cerebellum,
enzyme activities were unchanged (Fig. 5B). In the hippocampus,
the activity of AChE was also unaltered, but BuChE activity was
increased by 58% (p < 0.05) in the group administered the acute
treatment of ALA.

To complete our studies of the effects of ALA on the cholinergic
system, mAChR levels were measured in the cortex, cerebellum,
and hippocampus. No changes were observed in either the levels
or affinity of mAChR (data not shown).

ALA-induced oxidative stress
To evaluate the oxidative stress status in mouse encephalon

after the administration of ALA, we measured the activities of
SOD, catalase, GPx, and GRed. GSH and MDA levels were also
determined. Results are shown in Fig. 6.

SOD activity was reduced by 33% (p < 0.05) after both acute and
chronic administration of ALA. Catalase activity was increased by

46% (p < 0.05) in the animals receiving the acute treatment with
ALA, whereas there were no changes in the group administered
the chronic treatment with ALA. GPx activity was unchanged after
a single dose of ALA, but it was increased by 20% (p < 0.05) in the
group chronically treated with ALA. No significant changes were
detected in GRed activity in any of the test groups. GSH levels were
diminished after acute (27%; p < 0.01) and chronic (23%; p < 0.05)
treatment with ALA. MDA levels were increased by 30% (p < 0.05)
after acute administration, but they were unchanged when ALA
was chronically administered.

ALA altered the activity and expression of NOS
The effects of ALA administration on NOS activity in the cyto-

solic (nNOS and iNOS) and mitochondrial (mtNOS) subcellular
fractions of encephalon are shown in Fig. 7.

Fig. 1. Levels of 5-aminolevulinic acid (ALA) after acute and chronic
administration. Data are the mean ± SD for 6–8 male albino CF-1
mice; *, p < 0.05 indicates a statistically significant difference
compared with the control group. The values from only one of the
control groups were used because there were no significant differences
among any of the controls after acute or chronic administration of the
vehicle. Experimental details are described in the text.

Fig. 2. (A) Activity and (B) mRNA expression of �-aminolevulinic
acid synthetase (ALA-S) after acute and chronic administration of
ALA. (A) Data are the mean ± SD for 6–8 male albino CF-1 mice, and
are expressed as a percentage of the control group (100%; broken
line). Control value = 0.125 ± 0.084 nmol/mg (n = 17 mice); *, p < 0.05
compared with the acute and chronic treatment control groups,
respectively. (B) Autoradiogram shows Northern blot analysis of
ALA-S mRNA and 18S mRNA. Columns represent normalized signals
in the control and treatment groups, which were quantified using
an image analyzer. Values are expressed as a percentage of the
control group (100%; broken line). Experimental details are
described in the text.
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Acute administration of ALA provoked a 35% reduction (p < 0.05)
in cytosolic NOS activity, whereas mitochondrial activity was un-
altered. After chronic administration of ALA, cytosolic activity re-
mained diminished, whereas mitochondrial activity was enhanced
(43%, p < 0.05) (Fig. 7A).

Taking into account the results obtained for NOS activity after
acute and chronic administration of ALA, it was of interest to
evaluate any differences in NOS expression and to study which
isoform could be involved. Results are shown in Fig. 7B. nNOS
expression was unchanged after acute or chronic administration
of ALA, whereas mtNOS expression was reduced by ca. 60%
(p < 0.05) in both cases. iNOS was undetectable by Western blot
analysis.

Immunohistochemical studies showed nNOS-positive immuno-
staining in the Purkinje cells of the control animals (Fig. 8A), and
increased levels in the animals receiving the acute treatment with
ALA (Fig. 8B). When the iNOS staining was analyzed, control ani-
mals showed mild iNOS-positive staining, mainly in the neurons,
and no staining in the glia (Fig. 8C), whereas in the acute ALA
treatment group, iNOS staining appeared in the glia (Fig. 8D).
eNOS was only detected in vessels, and it was unchanged after
acute administration of ALA (data not shown). No differences in
immunostaining among all of the NOS isoforms were detected
after chronic administration of ALA (data not shown).

Discussion
ALA accumulation is a common feature observed in acute por-

phyrias (Batlle 1997). Several mechanisms have been postulated to
explain the neuropsychiatric manifestations of these porphyrias,
although the pathogenesis of acute attacks is yet unknown. In this
work we have studied the effect of ALA administration on several
metabolic pathways with the aim of demonstrating that it is not
only one factor that triggers the neurological symptoms. This
point is of great relevance for improving the effectiveness of treat-
ments currently used to minimize the acute attacks of porphyria.

As we mentioned in the Introduction, ALA can cross the blood–
brain barrier; although there are enough discrepancies to caution
against making the assumption that increased levels of ALA in
plasma would indicate that these levels should also be enhanced
in the brain. Ennis et al. (2003) demonstrated that the brain is
well-protected from changes in plasma levels of ALA by the very
low blood–brain barrier permeability of ALA and by a saturable
efflux mechanism present at the choroid plexus. Princ et al. (1994)
demonstrated that ALA can be taken up by the cerebellum and
cerebral cortex, and it can also be accumulated in cells. Our re-
sults showed a similar level of ALA after acute or chronic admin-
istration and, moreover, no differences in plasma levels were
observed (data not shown). As was expected, ALA-S mRNA expres-
sion was diminished after acute and chronic ALA administration
as a result of the feedback regulation of the heme pathway.

ALA is a source of ROS as a result of ALA enolization and the
subsequent oxidation catalyzed by iron (Bechara 1996, Demasi
et al. 1996). Brain is especially sensitive to ROS (Campese et al.
2004; Schiavone et al. 2013), and the oxidative stress produced by
ALA could be one of the reasons for the neuropsychiatric syn-
drome of acute porphyrias (Halliwell 2001; Emanuelli et al. 2003;
Adhikari et al. 2006). ALA induces lipid peroxidation in both the
cerebellum and hippocampus, which are regions that exhibit neu-
ropathological manifestations in AIP patients (Carneiro and
Reiter 1998). Demasi et al. (1996) reported increased SOD activity
after chronic ALA administration, whereas MDA levels were al-
tered in sinaptosomal membranes but not in whole brain. Our
findings demonstrated that when ALA was administered in an
acute form, a decrease in SOD activity and GSH levels was detected
whereas MDA levels and catalase activity were augmented. The
fact that catalase activity was increased is probably due to a fast
response to peroxide formation. These compounds would also act

Fig. 3. (A and B) Activity and (C) mRNA expression of heme
oxygenase (HO) after acute and chronic administration of
5-aminolevulinic acid (ALA). Data in A and B are the mean ± SD for
6–8 male albino CF-1 mice treated with ALA; *, p < 0.05 and
**, p < 0.01 compared with the control groups; �, p < 0.05 for the
chronic administration group compared with the acute treatment
group. The values from only one of the control groups were used
because there were no significant differences among the controls
after the acute or chronic administration of the vehicle.
Experimental details are described in the text. (C) Autoradiogram
showing Northern blot analysis of HO-I mRNA and 18S mRNA.
Columns represent normalized signals in the control and treated
animals and were quantified using an image analyzer. Values are
expressed as a percentage of the control group (100%; broken line).
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by inhibiting SOD activity. The presence of hydrogen peroxide
would induce lipid peroxidation of membranes, as indicated by
the high MDA levels observed. The low levels of GSH detected
confirm that ROS are being generated. Some authors have sug-
gested that stress may also cause GSH reduction, and that GSH-
deficient animals are more vulnerable to stress-induced injury
(Agarwal and Shukla 1999; Schulz et al. 2000; Dringen and
Hirrlinger 2003). GSH is of vital importance for protecting tissues
from oxidative damage; however, the mechanism of GSH deple-
tion in stress is still unclear. A change in GPx activity in response
to hydrogen peroxide, and GRed activity in response to GSH de-

pletion shortly after ALA administration have not yet been re-
ported. After chronic administration of ALA, GSH was maintained
at low levels, but MDA content was normalized, and SOD activity
stayed low. Catalase activity was restored, but it is worth noting
that GPx activity was induced to protect cells from peroxide damage.

HO is a known oxidative-stress-inducible protein that plays a
key role in heme catabolism, where heme, a potential prooxidant,

Fig. 4. Expression of the inducible form of HO (HO-I) in CF-1 mice receiving acute administration of 5-aminolevulinic acid (ALA).
Immunohistochemical studies: neuronal (yellow arrow) and glial cells (blue arrow) staining positive for HO-I. Magnification ×250 (original).
Experimental details are described in the text. [Colour online.]

Fig. 5. (A) Acetylcholinesterase (AChE) and (B) butirylcholinesterase
activities in the encephalon and other areas of the mouse brain
after acute and chronic administration of 5-aminolevulinic acid
(ALA). Data are the mean ± SD for 6–8 male albino CF-1 mice;
*, p < 0.05 compared with the control groups. The values from only
one of the control groups were used because there were no
significant differences among the controls after the acute or chronic
administration of the vehicle. Experimental details are described in
the text.

Fig. 6. Oxidative stress parameters in encephalon after acute and
chronic administration of 5-aminolevulinic acid (ALA). (A) Activity of
SOD, catalase, GPx, and GRed. (B) Levels of GSH and MDA. □, Control;
o, acute ALA; p, chronic ALA. Data are the mean ± SD for 6–8 male
albino CF-1 mice; *, p < 0.05 and **, p < 0.01 compared with the control
groups. The values from only one of the control groups were used
because there were no significant differences among the controls after
the acute or chronic administration of the vehicle. SOD, superoxide
dismutase; GPx, glutathione peroxidase; GRed, glutathione reductase;
GSH, reduced glutathione; MDA, malondialdehyde. Experimental
details are described in the text.
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is converted to bilirubin, an antioxidant (Maines 2000; Abraham
and Kappas 2008). However, HO also produces other products,
such as carbon monoxide, a signal transmitter, and free iron,
another prooxidant. In the brain, HO markedly increases after
heat shock, ischemia, or glutathione depletion (Maines 2000; Takeda
et al. 2002). The existence in the SNC of a post-transcriptional control
for other inducible genes was suggested (Quattrone et al. 2001)
and this mechanism seems to be critical for brain functions. In
addition to regulating the translation efficacy of HO-I mRNA,
other types of post-transcriptional modifications have been pro-
posed for this molecule (Bouton and Demple 2000) the might help
with finely regulating HO-I mRNA expression.

The results presented here show a rapid induction of HO activ-
ity without any effect on mRNA expression in the encephalon. The

activity induction varied depending on the area analyzed, being
increased in the cerebellum and hippocampus after chronic admin-
istration of ALA. Immunohistochemical HO-I staining was reduced in
the glia after acute administration of ALA, but HO-I-positive staining
appeared in choroid (data not shown). Some reports have demon-
strated that the choroid plexus, which is the site of the blood–
cerebrospinal fluid barrier, selectively takes up ALA (Terr and
Weiner 1983; Stummer et al. 1998; Novotny et al. 2000).

The changes that ALA administration causes both to the antiox-
idant system and the induction of HO reveal the triggering of a
defense mechanism, as a consequence of the stress status pro-
voked by this heme precursor, resulting from GSH depletion. An
imbalance between cellular prooxidants and antioxidants is induced
by high levels of ROS and reactive nitrogen species (Halliwell 2001;
Mariani et al. 2005).

Nitric oxide is synthesized by nitric oxide synthase (NOS), a
family with 4 major types: endothelial (eNOS), neuronal (nNOS),
inducible (iNOS), and mitochondrial (mtNOS) (Gorren and Mayer
2007). They can be found in nearly all tissues and they can even
co-exist in the same tissue. The relevance of NO in brain is deter-
mined by its physiological effects on neurons, glia, and the vascu-
lar system, and its involvement in neurodegenerative diseases
(Guix et al. 2005; Pannu and Singh 2006). We have previously
reported that NOS isoforms are induced by porphyrinogenic
agents, being more significant in glial cells for iNOS (Lavandera
et al. 2011; Buzaleh et al. 2012). In the present work, we observed
that the acute and chronic administration of ALA diminished NOS
activity in the cytosolic fraction of the brain tissue, whereas mi-
tochondrial NOS activity was increased after chronic treatment
with ALA, but was not changed in the same fraction after the acute
treatment. Protein expression using Western blot technique dem-
onstrated that mtNOS diminished after ALA treatments whereas
nNOS was unchanged. Using immunostaining, iNOS expression
could be detected, thereby revealing an increase in the glia and, as
with HO-I, staining appeared in choroid (data not shown) after
acute administration of ALA. Moreover, levels of nNOS staining
also increased in Purkinje cells after acute administration of ALA.
Purkinje neurons are a class of GABAergic neurons located in the
cortex of brain cerebellum that play a fundamental role in con-
trolling motor movement. The effects of ALA on the CNS have
been explained by ALA binding to GABA(A) receptors, promoting
receptor damage that may contribute to the neurological mani-
festations of AIP (Adhikari et al. 2006).

Besides the previously mentioned effects of ALA on the GABAergic
system, ALA stimulates the release of glutamate and partially in-
hibits the re-uptake of glutamate (Emanuelli et al. 2003). We have
previously reported that ALA also affects the glutamatergic sys-
tem (Lavandera et al. 2009).

Altered activities and imbalance of dopaminergic, glutamater-
gic, GABAergic, and cholinergic systems are particularly involved
in the pathogenesis of several neurodegenerative diseases, and
several authors have remarked on the importance of the interac-
tion between these neurotransmitters (Alberch et al. 1990; Xu
et al. 2012; Deng and Dean 2013; Svob Strac et al. 2015). Moreover,
the symptoms of acute attacks characteristic of acute porphyrias
are similar to those observed during cholinergic crisis, which is
why we examined the effects of ALA on the activities of the cho-
linesterases AChE and BuChE.

The cholinergic system was more noticeably affected by chronic
ALA administration, and a differential response was observed in
brain regions similar to that previously observed by the action of
different porphyrinogenic drugs (Rodríguez et al. 2002). This differ-
ential response of the various areas of the brain had been reported.
In this sense, Xu et al. (2001) observed that the hippocampus pre-
sented a lower vulnerability to the oxidative stress than the cere-
bral cortex after ALA administration for 15 days, whereas Carneiro
and Reiter (1998) found, after 7 days of ALA treatment, signifi-
cantly increased products of lipid peroxidation in cerebellum and

Fig. 7. (A) Activity and (B) expression of NOS after acute and chronic
administration of 5-aminolevulinic acid (ALA). □, Control; o, acute
ALA; p, chronic ALA. (A) Data are the mean ± SD for 6–8 CF-1 mice;
*, p < 0.05 compared with the control groups. The values from only
one of the control groups were used because there were no
significant differences among the controls after the acute or chronic
administration of the vehicle. (B) Autoradiogram showing Western
blot analysis of NOS isoforms. NOS, nitric oxide synthase; C, control;
+, positive control. Columns represent normalized signals in the
control and treated animals, and were quantified using an image
analyzer. Values are expressed as a percentage of the control group
(100%; broken line). Gel loadings were normalized to the total
protein content, and after immunoblotting equal sample loading
was confirmed by Coomasie blue staining. Experimental details are
described in the text.
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hippocampus but not in the cortex, which are regions that exhibit
neuropathological manifestations in AIP patients. So far, no ex-
planation can be given for how the differences observed in the
response of BuChE in cortex and hippocampus influence the neu-
rological symptoms of acute porphyria, although results have in-
dicated that very important biochemical changes would be
occurring in the CNS because of ALA administration.

In conclusion, ALA produces a complex disorder involving de-
regulation of multiple metabolic pathways. Data indicate that a
rapid response to oxidative stress was developed against the ROS
induced by ALA treatment. However, with long-term intoxication
(chronic adminstration), the redox balance was probably restored,
thereby minimizing oxidative damage. We noted that the dereg-
ulation of the cholinergic system, together with the effects on
other neurotransmitter systems observed previously, would con-
tribute to the pathophysiology seen with acute porphyrias.
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