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a b s t r a c t 

Mel-frequency cepstral coefficients introduced biologically-inspired features into speech technology, be- 

coming the most commonly used representation for speech, speaker and emotion recognition, and even 

for applications in music. While this representation is quite popular, it is ambitious to assume that it 

would provide the best results for every application, as it is not designed for each specific objective. This 

work proposes a methodology to learn a speech representation from data by optimising a filter bank, in 

order to improve results in the classification of stressed speech. Since population-based metaheuristics 

have proved successful in related applications, an evolutionary algorithm is designed to search for a filter 

bank that maximises the classification accuracy. For the codification, spline functions are used to shape 

the filter banks, which allows reducing the number of parameters to optimise. The filter banks obtained 

with the proposed methodology improve the results in stressed and emotional speech classification. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The most widely used speech representation consists of the

el-frequency cepstral coefficients (MFCCs) [2,19] , based on the

inear voice production model, and uses a psycho-acoustic scale to

imic the frequency response in the human ear [9] . The MFCC fea-

ures have been extensively used for speech [24,44] , speaker [21] ,

motion [16,35,45] and language recognition [12] , and even also

or other applications not related to speech, such as music infor-

ation retrieval [18] . However, the entire auditory system is not

et fully understood and the shape of the truly optimal filter bank

s unknown. Moreover, the relevant part of the information con-

ained in the signal depends on the application. Thus, it is unlikely

hat the same filter bank would provide the best performance for

ny kind of task. In fact, many alternative representations have

een developed and some of them consist of modifications to

he mel-scaled filter bank [44] . For example, a scheme for deter-

ining filter bandwidth was presented in [32] , showing speech

ecognition improvements compared to traditional features. Also,

uditory features based on Gammatone filters were developed
� This paper has been recommended for acceptance by J. Yang. 
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or robust speech recognition [30] . Moreover, different approaches

onsidering the noise energy on each mel band have been pro-

osed in order to define MFCC weighting parameters [41,46] . The

ompression of filter bank energies according to the signal-to-noise

atio in each band was proposed in [15] . Similarly, other adjust-

ents to the classical representation have been introduced [40] .

articularly for stressed speech classification, new time-frequency

eatures have been presented [42] . Although these alternative fea-

ures improve recognition results in particular tasks, to our knowl-

dge, a methodology to automatically obtain an optimised filter

ank for speech emotion classification has not been proposed. 

Another common strategy that has been exploited for speech

ecognition is based on the optimisation of the feature extraction

rocess in order to maximise the discrimination capability for a

iven corpus [7] . In this sense, the use of deep neural networks

or learning filter banks was presented in [22] , while other works

ntroduced the use of linear discriminant analysis [6,43] . Genetic

lgorithms have also been applied for the design of wavelet-based

epresentations [36] . Similarly, evolutionary strategies have been

roposed for feature selection in other tasks [37] . Moreover, differ-

nt approaches for the optimisation of speech features were based

n evolutionary algorithms [38,39] . Also, an evolutionary approach

or the generation of novel features has been proposed [25] . For

tressed speech classification, genetic algorithms are also among

he most successful feature selection techniques [8] . Nevertheless,

here have not been attempts to optimise filter banks for the spe-
ific tasks of emotion or stress classification. 

http://dx.doi.org/10.1016/j.patrec.2016.07.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.07.017&domain=pdf
mailto:ldvignolo@sinc.unl.edu.ar
mailto:ldvignolo@fich.unl.edu.ar
http://dx.doi.org/10.1016/j.patrec.2016.07.017
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Fig. 1. Mean log spectrums (top) and first difference of mean log spectrums (bottom) for each of the five classes in a Hindi stressed speech corpus. 
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Evolutionary algorithms have proved to be effective in many

complex optimisation problems [14] . Then, in order to tackle this

challenging optimisation problem, we propose the use of an evolu-

tionary algorithm for learning a filter bank from speech data. This

work, based on the approach for the optimisation of filter banks,

addresses the classification of different emotions and stress types

in speech. The approach makes use of an evolutionary algorithm

in order to optimise the filter bank involved in the extraction of

cepstral features, with spline interpolation for parameter encoding.

Our method attempts to provide an alternative speech represen-

tation to improve the classical MFCC on stress and emotion clas-

sification. A classifier is used to evaluate the evolved individuals,

so that the accuracy is assigned as fitness. In contrast to previous

work [39] , in which the temporal dynamics of each class was mod-

elled, for this task we introduced a static classification approach

based on a single feature vector per utterance. 

The remainder of this paper is organised as follows. In

Section 2 , a short overview of evolutionary algorithms is given, and

also the feature extraction process for the MFCC is explained. Then,

the proposal of this work is presented in Section 3 and the results

obtained are discussed in Section 4 . Finally, conclusions and pro-

posals for future work are given in Section 5 . 

2. Background 

2.1. Evolutionary algorithms 

Evolutionary algorithms (EAs) are heuristic methods inspired by

the process of biological evolution, which are useful for a wide

range of optimisation problems [3,17,23] . The evolution is typically

performed by means of natural operations like selection, mutation,

crossover and replacement [4] . The selection operator assigns a re-

production probability to each individual in the population, favour-

ing those with high fitness, in order to simulate natural selection.

Mutation introduces random changes into chromosomes to main-

tain diversity within the population, while crossover combines in-

formation from parent individuals to create the offspring. Finally,

the replacement strategy determines how many individuals in the

current population are replaced by the offspring. This means that

every population is replaced to improve fitness average and the

loop is repeated to meet a stop criterion, after which the best indi-

vidual provides an appropriate solution to the problem [10] . Solu-

tions are represented by individuals and their information is coded

by means of chromosomes, while their fitness is determined by a

problem-specific objective function. 

2.2. Mel-frequency cepstral coefficients 

MFCCs are based on the linear speech production model, which

assumes that the magnitude spectrum of a speech signal S ( f ) can

be formulated as the product of the excitation spectrum X ( f ) and
he frequency response of the vocal tract H ( f ). That is S( f ) =
( f ) H( f ) . Inspired on the human auditory system, the power

pectrum is integrated into bands, according to the mel perceptual

cale [9] . Given M filters, G m 

( f ), the energy outputs are computed

y: 

(m ) = 

∑ 

f 

| S( f ) | 2 G m 

( f ) . (1)

he logarithm is taken on the filter outputs, C ( m ), and the MFCCs

re computed by applying the discrete cosine transform (DCT) [9] . 

Even though these features are biologically inspired, their clas-

ification performance has been improved by other representa-

ions in different tasks. For example, a modification of MFCC that

ses the known relationship between centre frequency and criti-

al bandwidth was shown to increase noise robustness over tra-

itional features in [32] . Also, [41] proposed performing Wiener

ltering to mel sub-bands and estimating weights based on sub-

and SNR-to-entropy ratio. Results showed that the method allows

mproving speech recognition performance in noisy environments.

urthermore, several experiments that compare the performance

sing different number of filters, filter shapes, filter spacing and

pectrum warping were carried out [44] . In addition, the compres-

ion of filter bank energies according to the presence of noise in

ach mel sub-band was proposed so as to provide increased ro-

ustness in speech recognition and speaker identification [46] . 

In order to analyse the appropriateness of the mel filter bank

or classification of stressed speech, we computed the mean of the

og spectrum (MLS) along the frames (30 ms long) of the training

tterances in each class. As it can be observed on top of Fig. 1 ,

or a five-class corpus in Hindi language, the most discriminative

nformation is found below 1 kHz, as the plots corresponding to

ifferent classes show different peaks within this band. Also, the

rst difference of each of the mean log spectrums was computed

nd is shown at the bottom of Fig. 1 . These plots present peaks

t high-frequency bands (from 3 to 4 kHz), showing different rela-

ive energy and shape, which could be useful for classification. This

uggests that the mel filter bank is not entirely appropriate for this

ask. Fig. 2 shows the result of the same analysis performed on

he FAU Aibo Emotion Corpus, which comprises recordings of Ger-

an spontaneous speech [5,33] . As in the previous case, the most

iscriminative information seems to be found on lower frequency

ands. However, for this corpus, the peaks are more prominent and

he five emotions present noticeable different behaviour up to 2

Hz. Then, we can expect the optimum filter bank to be different

or each corpus. 

. Evolutionary filter bank optimisation 

Several parameters could be taken into account in the search

or an optimal filter bank, such as the number of filters, filter shape



L.D. Vignolo et al. / Pattern Recognition Letters 84 (2016) 1–7 3 

−100

−50

0
neutral

E
ne

rg
y 

[d
B

]

0 1 2 3 4
0

5

10
neutral

emphatic

0 1 2 3 4

emphatic

Frequency [kHz]

anger

0 1 2 3 4

anger

joyful

0 1 2 3 4

joyful

rest

0 1 2 3 4

rest

Fig. 2. Mean log spectrums (top) and first difference of mean log spectrums (bottom) for each of the five classes in the FAU Aibo emotion corpus. 
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Fig. 3. General scheme explaining the optimisation strategy and the feature extrac- 

tion process. The output vectors of each block, s i , f i , l i and d i , indicate that each 

window v i is processed isolated and, finally, the mean and variance for each coeffi- 

cient is computed from the d i vectors. 
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nd filter gain. However, as the number of parameters is increased,

he problem becomes extremely complex, so there is a tradeoff be-

ween optimisation complexity and flexibility. In previous works,

hree parameters were considered for each triangular filter in the

lter bank; these correspond to the frequency values where: the

riangle begins, reaches its maximum and ends. The results sug-

ested that this formulation produced an ill-conditioned problem

38] . This approach, referred to as Evolutionary Spline Cepstral Coef-

cients (ESCCs), uses splines to shape the filter banks. In this way,

he chromosomes hold the spline parameters instead of the fil-

er bank parameters, so that the chromosome size and the search

pace are reduced. Splines are chosen because they allow limiting

he start and end points of the functions’ domain easily, which is

seful to generate filter banks that cover the frequency range of

nterest. 

We defined a spline mapping y = c(x ) , with y ∈ [0 , 1] , and x

aking n f equidistant values in (0, 1). Then, for a filter bank with

 f filters, x i was assigned to filter i , with i = 1 , ..., n f . For a given

hromosome, all y i values corresponding to x i were obtained by

ubic spline interpolation. We used two different splines. The first

ne was used to determine the frequency values corresponding to

he maximum of each triangular filter, from 0 Hz to half the sam-

ling frequency ( f s ). The edge points of each filter were fixed to

he frequencies where its adjacent filters were maximum, thereby

etermining filter overlapping as well. The second spline was used

o set the amplitude of each filter. 

.1. Optimisation of filter frequency locations 

Here we used a monotonically increasing spline, constrained

o c(0) = 0 and c(1) = 1 . We set four parameters to define the

pline I: y I 
1 

and y I 
2 

corresponding to fixed values x I 
1 

and x I 
2 
, and

he derivatives, σ and ρ , at the fixed points (x = 0 , y = 0) and

(x = 1 , y = 1) . It is important to point out that parameter y I 2 was

estricted to be equal to or greater than y I 1 , in order to obtain

onotonically increasing splines. Then, parameter y I 
2 

was obtained

s y I 
2 

= y I 
1 

+ δy 2 , and the parameters actually coded in the chro-

osomes were y I 1 , δy 2 , σ and ρ . Given a particular chromosome,

hich set the values for these parameters, the y [ i ] correspond-

ng to the x [ i ] ∀ i = 1 , ..., n f were obtained by spline interpolation.

his is schematised in Fig. 3 . 

The y [ i ] values obtained by spline interpolation were linearly

apped to the frequency range of interest (from 0 Hz to f s /2), so

he frequency values for the maximum of each of the n f filters, f c 
i 
,

ere obtained as 

f c i = 

(y [ i ] − y m 

) f s 
y M 

− y m 

, (2) 

here y m 

and y M 

are the spline minimum and maximum values,

espectively. In this way, in the segments where the slope of the
pline was low, the filters were far from each other; and where the

lope was high, the filters were closer. There was also a parameter

 < a < 1 to limit the range of y I 1 and y I 2 to [ a, 1 − a ] , with the

urpose of keeping the splines within [0, 1]. The splines that went

eyond these boundaries were modified, fixing them to 0 or 1. 

.2. Optimisation of filter amplitudes 

The amplitude spline had the only restriction of lying in the

ange [0, 1], but y was free at x = 0 and x = 1 . Therefore, the pa-

ameters to be optimised here were the y values y II 
1 
, y II 

2 
, y II 

3 
and y II 

4 
,

orresponding to the fixed x values x II 1 , x 
II 
2 , x 

II 
3 and x II 4 . These four y II 

j 

ere limited to [0, 1]. In this way, we obtained n f interpolated val-

es that were used to set the gain of the filters. This is shown in

ig. 3 , where the gain of each filter was set according to spline II.

ence, the assumption is that evolutionary optimisation will en-

ance the frequency bands that are relevant for the classification

f stressed and emotional speech. 
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Table 1 

Results obtained on the final classification tests [%]. 

Hindi corpus MFCC ESCC-Eh FAU Aibo MFCC ESCC-Ef 

neutral 78.79 95.96 neutral 31.82 39.22 

anger 82.83 89.90 anger 46.81 52.86 

happiness 87.88 84.85 emphatic 39.32 39.19 

lombard 74.75 89.90 positive 57.67 65.12 

sadness 83.84 95.96 rest 24.54 16.12 

UAR 81.62 91.31 UAR 40.03 42.50 
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3.3. Overview of the optimisation process 

Every individual contains a set of spline parameters, encoding

a particular filter bank. The selection process takes into account

the classification performance. Prior to the classification, the filter

bank proposed by a chromosome was used for processing the sig-

nals in the data set, in order to obtain the speech features ( Fig. 3 ).

Then, the fitness assigned to an individual was the accuracy rate

obtained. To avoid overfitting of the filter banks, the training and

validation partitions used during the optimisation were randomly

reassembled on every generation. As this strategy can slow down

convergence, we introduced an alternative for the fitness computa-

tion that counterbalances this side effect. This consists in comput-

ing the fitness of an individual surviving for more than one gen-

eration as an average of the performances on the generations it

remained unchanged. If the chromosome was altered, the perfor-

mance obtained in the current generation is assigned. 

For the joint optimisation of filter amplitudes and positions, the

proposed codification makes possible to reduce the chromosome

size from 2 n f to the number of spline parameters. Here we used

26 filters, so the size of the chromosome was reduced from 46 to

8. It is important to note that, using the spline codification, the

length of the chromosome does not depend on the size of the filter

bank. Chromosomes were then coded as strings of 8 real numbers

(4 parameters for each of the two splines), which were randomly

initialized using uniform distribution. 

In this EA, tournament selection and standard one-point

crossover methods were used, while the mutation operator was

designed to modify splines parameters. The parameters were ran-

domly chosen by the operator and the modifications were per-

formed using a uniform random distribution. In order to favour

convergence, the elitist strategy was incorporated into the search,

which means that the best individual from one generation was

maintained into the next one [10] . To determine the proper val-

ues for the parameters of the evolutionary algorithm, preliminary

optimisation experiments were performed using a separate subset

of the Hindi corpus. Based on the analysis of the evolution of the

population in these experiments, a proper set of parameters was

set as follows. The size of the population was set to 30 individu-

als, while crossover and mutation probabilities were set to 0.9 and

0.12, respectively. A maximum of 300 generations was set as stop-

ping criteria; however, the evolution was early stopped when there

was no improvement during a lapse of 10% of the maximum num-

ber of generations. 

4. Results and discussion 

4.1. Materials 

In the experiments, the FAU Aibo Emotion Corpus [5,33] and

a simulated stressed speech corpus in Hindi language [31] were

used. The Hindi language database consists of stressed speech sig-

nals recorded from fifteen speakers, ten male and five female.

The speech utterances were sampled at 8 kHz and include neutral

speech and four acted stress conditions: anger , happiness , lombard

and sadness . Each recorded signal consisted of a keyword, which

was uttered within a sentence and then isolated. For each of these

five classes, 395 instances were used during the optimisation (80%

for training and the remainder for validation), and other 99 exam-

ples were left for the final test (i.e. a total of 495 utterances for

testing). 

The FAU Aibo corpus includes speech in neutral state and four

classes of spontaneous emotions: anger (angry, touchy and repri-

manding), emphatic , positive (motherese and joyful) and rest . It pro-

vides clearly-defined test and training partitions with speaker in-

dependence and different room acoustics. The speech utterances
n this corpus, which consist of sentences of varying lengths, were

ecorded at 16 kHz sampling rate. In order to compare filter banks

ptimised for both corpora, we decided to sub-sample the record-

ngs to 8 kHz. The speaker-independent training and test partition

uggested for the InterSpeech 2009 Emotion Challenge [26] was

sed. Therefore, a set consisting of 9959 instances was used for the

ptimisation (80% for training and 20% for validation) and 8257 in-

tances were used for the final test. 

.2. Feature extraction and experimental setup 

For each candidate filter bank, speech signals were processed

n a frame basis, using a 30-ms Hamming window with 7.5-ms

tep. This is a common setup for speech processing [9] and pro-

ided good results in preliminary tests with stressed speech. All

rames without speech activity were discarded and the different

lter banks were applied to voiced frames, in order to compute

3 cepstral coefficients from the filter output energies. As opposed

o our previous work [39] , in which we used a temporal mod-

lling approach for phoneme classification, here the feature vec-

ors extracted from the frames of an utterance were averaged. This

eans that for each sentence we obtained a single feature vec-

or, which allowed using a static classifier as shown in Fig. 3 . In

ddition, the mean, minimum and maximum frame energy were

ppended, obtaining a vector of 16 features. Besides, for the ex-

eriments with the FAU Aibo corpus, the variances of the cepstral

oefficients were also appended, which allowed to obtain satisfac-

ory baseline results in this case. No tuning was performed on the

yper-parameters for this corpus, that is, the same values used for

indi stressed speech were set. 

The classifier was trained using 80% of the instances in the

raining set, and it was then evaluated on the remaining 20%. This

rovided a good tradeoff between the number of training instances

nd the number of test instances required to evaluate the statisti-

al significance of results. This test set was separated and it was

nly used to evaluate the best solution after the optimisation. As

entioned in Section 3.3 , the data partition used during the op-

imisation was reassembled randomly on every generation so as

o avoid overfitting. The performance of the best filter bank pro-

ided by the EA was evaluated using this separate test set and a

lassifier based on Support Vector Machines (SVMs) with polyno-

ial kernel [34] . As the FAU Aibo corpus has unbalanced classes,

e used the Unweighted Average Recall (UAR) [20] in order to mea-

ure and compare the classification performance with the test set.

lso, the training set was resampled with replacement in order to

btain the same number of instances for each class. 

.3. Filter bank optimisation 

Table 1 presents the classification results obtained on the test

ets using SVMs, comparing the performance of optimised features

nd MFCCs. ESCC-Eh and ESCC-Ef correspond to the filter banks

ptimised for Hindi stressed speech and FAU Aibo Emotion Corpus,

espectively. Although the performances obtained with MFCC are

cceptable for both corpora, ESCC-Eh and ESCC-Ef provide signifi-

ant improvements in UAR for their corresponding tasks. Moreover,

SCC-Eh and ESCC-Ef outperformed the standard features in the
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Table 2 

Results obtained on the final classification tests [UAR%]. 

MFCC ESCC-Ph ESCC-Eh ESCC-Ef 

Hindi corpus 81.62 42.22 91.31 78.59 

FAU Aibo 40.03 31.51 38.47 42.50 
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(  
ecognition of most of the stress and emotion classes. The statisti-

al significance of the results obtained was evaluated by estimating

he probability for the optimised features to perform better than

he MFCC. To estimate this probability, the error distributions for

he optimised features ( p 1 ) and MFCC ( p 2 ) were approximated. Al-

hough these follow a binomial distribution, for a large number of

rials they can be approximated with Gaussian distributions. Then,

he probability for the optimised features to perform better than

FCC, Pr ( p 1 < p 2 ), was estimated by integrating the distribution

 ( p 1 , p 2 ) in the region p 1 < p 2 . The probabilities that ESCC-Eh and

SCC-Ef perform better than MFCC on their corresponding tasks

ere 0.9999 and 0.9996, respectively. 

Another point to remark is that only 183 and 90 generations

ere needed in order to obtain ESCC-Eh and ESCC-Ef, respectively.

he time required for the algorithm to converge was 22 hs to ob-

ain ESCC-Ef, and 44 hs and 30 min for ESCC-Eh, using a personal

omputer with an Intel Core I7 processor and 8 GB RAM. 

We performed the same tests, in stress and emotion classifi-

ation, using a filter bank optimised for phoneme recognition in

39] (ESCC-Ph in Fig. 5 ). Moreover, we evaluated the performance

f ESCC-Eh with the German emotion corpus and, conversely, the

erformance of ESCC-Ef on the Hindi stressed speech corpus. These

esults are shown in Table 2 . As expected, ESCC-Ph is not useful

or stressed speech classification. Furthermore, the results obtained

ith ESCC-Eh and ESCC-Ef on both corpora suggest that, even with

ifferent languages and classes, both tasks are closely related. 

Table 3 shows more detailed information about the classifica-

ion performance comparing MFCC and the optimised filter banks.

n these confusion matrices, rows correspond to the actual class

nd columns correspond to the predicted class, while the percent-

ges of correct classification lay on the diagonal. These matrices

how coincidence between the classes that are more confused us-

ng MFCCs, and the ones that are more confused using ESCC-Eh

nd ESCC-Ef, respectively. However, it can be noticed that the op-

imised features allowed reducing most of the percentages out-

ide the diagonal. For example, for the FAU Aibo corpus, all the

ff-diagonal values in columns e and r were significantly reduced

ith ESCC-Ef. It can be also noticed that the performance for hap-

iness was not improved, and an explanation could be obtained

rom Fig. 1 as follows. The first difference of the MLS for this class
Table 3 

Results obtained on the final classification tests [UAR%]. 

MFCC 

Hindi corpus a h l n 

a = anger 82.83 10.10 07.07 0 0

h = happiness 01.01 87.88 03.03 07.

l = lombard 09.09 09.09 74.75 07.

n = neutral 0 0.0 0 13.13 05.05 78.

s = sadness 0 0.0 0 11.11 0 0.0 0 05.

MFCC 

FAU Aibo a e n p 

a = anger 46.81 19.15 10.47 02.

e = emphatic 14.26 39.32 21.35 05.

n = neutral 10.32 14.90 31.82 19.

p = positive 03.26 05.58 11.16 57.

r = rest 10.07 06.41 23.44 35.
resents lower and fewer peaks at low frequencies (0–500 Hz),

hich seems to be the band enhanced by ESCC-Eh ( Fig. 5 ). This

uggests that the evolution of the filter bank could have faced a

rade-off, in which a better average result was obtained by enhanc-

ng this band, despite of a lower accuracy for happiness . A similar

ase arises for class rest in the FAU Aibo corpus. This class includes

ifferent types of emotions and contains few examples, making it

ifficult to model. Thus, it could be expected that a fine tuning for

mproving the overall UAR could deteriorate the performance for

his class. 

We performed another experiment in order to evaluate speaker

ndependence with the Hindi corpus, which contains speech from

5 speakers. Then we assessed the performance of the SVM classi-

er through cross validation with 15 different data partitions. That

s, on each partition we separated all the sentences correspond-

ng to one speaker for testing and the rest for training. However,

ince ESCC-Eh was optimised using training utterances from all

peakers, this step in the validation methodology would not be

peaker-independent. Therefore, in this test we used the ESCC-Ef,

hich was optimised using another corpus. The unweighted accu-

acy obtained with the optimised representation was higher than

he result obtained with MFCC (42.38% and 38.05%, respectively).

oreover, since ESCC-Ef was optimised for a different corpus, the

valuation in the speaker-independent condition revealed that the

roposed methodology is able to provide more general features,

hich are also useful in other corpora for similar tasks on emotion

ecognition. Although the performances obtained in the speaker-

ependent condition ( Table 2 ) suggest that MFCC could provide a

ore general solution for different corpora, the results discussed

bove show that it is also possible to obtain generalisation through

ifferent corpora with this methodology. Nevertheless, the motiva-

ion of this work is to provide a methodology to fit a filter bank

or a particular task, which allows improving classification results

n the application of interest. 

In order to provide a tool for a qualitative analysis of these re-

ults, a Self-Organising Map (SOM) [13] was trained to show the

opological distribution of the stress classes from the Hindi speech

orpus in two dimensions. SOMs are trained in an unsupervised

anner and preserve the neighbourhood relations of the input

pace. For each training case, the ESCC-Eh feature vectors were

sed as input of a 25-neuron network, and the same process was

epeated for MFCC. Fig. 4 presents the SOM obtained, showing that

he ESCC-Eh allows grouping stress classes happiness (H) and lom-

ard (L) into one cluster each. Conversely, the map corresponding

o MFCC presents a more complex topology, in which more classes

re split into separate clusters. The exceptions are classes neutral

N) and sadness (S), which are grouped in fewer clusters in the
ESCC-Eh 

s a h l n s 

.0 0 0 0.0 0 89.90 05.05 04.04 01.01 0 0.0 0 

07 01.01 02.02 84.85 02.02 06.06 05.05 

07 0 0.0 0 06.06 01.01 89.90 03.03 0 0.0 0 

79 03.03 0 0.0 0 02.02 01.01 95.96 01.01 

05 83.84 0 0.0 0 03.03 0 0.0 0 01.01 95.96 

ESCC-Ef 

r a e n p r 

62 20.95 52.86 13.09 14.57 05.73 13.75 

77 19.30 16.45 39.19 30.77 04.91 08.69 

90 23.06 12.29 12.68 39.22 22.82 12.98 

67 22.33 03.26 03.72 10.23 65.12 17.67 

53 24.54 13.37 06.78 29.85 33.88 16.12 
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Fig. 4. SOM clustering obtained on Hindi corpus for MFCC and ESCC-Eh, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Performance comparison with state-of-the-art features [UAR%]. 

Hindi FAU Aibo 

IS09 Emotion 70.71 IS09 Emotion 37.29 

IS10 Emobase 79.80 IS10 Emobase 35.43 

IS11 Speaker State 82.83 IS11 Speaker State 32.64 

IS13 ComParE 84.04 IS13 ComParE 32.48 

MLS30 48.69 MLS30 33.59 

MLS30+30 61.21 MLS30+30 36.48 

MFCC 81.62 MFCC 40.03 

ESCC-Eh 91.31 ESCC-Ef 42.50 
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map corresponding to MFCC. However, Table 3 shows that these

two classes are better discriminated in the new feature space, and

they exhibit the highest improvements of ESCC-Eh with respect to

MFCC. This suggests that the features provided by the optimised

filter bank make up a representation in which the stress classes

can be more easily discriminated. 

The performance of the optimised representations was also

compared with other state-of-the-art features, including: the In-

terSpeech 2009 Emotion Challenge feature set consisting of 384

attributes (IS09 Emotion) [26] , the emobase2010 feature sub-

set based on the Interspeech 2010 Paralinguistic Challenge (IS10

Emobase, 1582 attributes) [27] , the feature set proposed for the In-

terSpeech 2011 Speaker State Challenge (IS11 Speaker State, 4369

attributes) [28] and the feature of the InterSpeech 2013 Compu-

tational Paralinguistics Challenge (IS13 ComParE, 6374 attributes)

[29] . All of these feature sets have been extracted with the openS-

MILE library [11] . Also, features based on the MLS proposed by

[2] were included in the comparison, using the first 30 (MLS30)

coefficients (covering from 0 to 1200 Hz) and these MLSs with the

30 standard deviation coefficients (MLS30+30) [1] . Results are pre-

sented in Table 4 . It is interesting to note that the performance

ranking of the feature sets from InterSpeech challenges differs be-

tween Hindi and FAU Aibo databases. The MLS performed well in

both databases when the variances were included. For the Hindi

corpus, the IS13 ComParE features performed better than MFCCs.

However, the ESCC-Eh and ESCC-Ef provided the best performances

for the Hindi and FAU Aibo databases, respectively. The statistical

significance was evaluated as previously described; for the Hindi

corpus the probability that ESCC-Eh performs better than the fea-

tures of IS13 ComParE was 0.9996, and for the FAU Aibo corpus

the probability that ESCC-Ef performs better than MFCC was also

0.9996. 
0
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G
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Fig. 5. Mel filter bank and optimised filter banks for phoneme recognition, H
Fig. 5 shows the standard mel filter bank (MFCC), together

ith the filter banks optimised for phoneme classification, Hindi

tressed speech and emotional German speech, respectively. It can

e noticed that the optimised filter banks differ widely from mel

lter bank. On the one hand, ESCC-Ph provides higher resolution in

he appropriate frequency band, assigning almost equal weight to

ll filters. On the other hand, ESCC-Eh and ESCC-Ef provide higher

esolution and gain on narrow bands. Moreover, the ESCC-Eh en-

ances both the lowest and the highest frequency bands, which

gree with the observations made based on Fig. 1 . ESCC-Ef also

mphasises low frequency bands, although the amplitude of its fil-

ers decreases beyond 20 0 0 Hz and it does not suppress mid-band

requencies as much as ESCC-Eh. This is consistent with our pre-

ious analysis based on Figs. 1 and 2 . Furthermore, these results

uggest that our methodology is able to provide filter banks that

apture relevant information from particular frequency bands. 

. Conclusion and future work 

In this work, an evolutionary optimisation method has been

roposed in order to improve stressed and emotional speech clas-

ification results. The chromosome codification based on splines

llowed reducing the number of optimisation parameters, while

aintaining the quality and diversity of possible solutions. This en-

oding also helped to simplify the filter bank optimisation prob-

em, making possible to speed up the convergence of the EA to

ecent solutions. Also, we proposed a static classification scheme

ased on mean and variance features to describe utterances with a

ingle vector, which allowed simplifying the optimisation problem

hile providing satisfactory performances. 

The performances obtained in two different speech corpora

how that the approach is useful to find an improved speech rep-

esentation for the classification of stressed speech. These results
CC

-Ph

C-Eh

0 2500 3000 3500 4000

ency [Hz]

C-Ef

indi stressed speech corpus and FAU Aibo emotion corpus, respectively. 
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lso suggest that there is further room for improvement over the

lassical filter bank on specific tasks. 

It is important to note that our study was limited to clean

peech signals; however, the impact of noise on the shape of the

lter banks should be evaluated. Thus, further experiments will in-

lude noisy signals, as well as other types of stressed speech and

ifferent languages. In addition, there are other filter bank param-

ters, such as the filter bandwidth, that were not optimised in this

ork and will be taken into account in the future. In order to ob-

ain improvements on the individual accuracies for all classes, a

ulti-objective evolutionary algorithm could be used to consider

he accuracy for each class as a separate objective. 
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