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aInstituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL,
CONICET, FICH, Ruta Nac. 168, km 472.4, 3000, Santa Fe, Argentina.
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Abstract

A brain computer interface (BCI) is a system which provides direct commu-

nication between the mind of a person and the outside world by using only

brain activity (EEG). The event-related potential (ERP)-based BCI problem

consists of a binary pattern recognition. Linear discriminant analysis (LDA)

is widely used to solve this type of classification problems, but it fails when

the number of features is large relative to the number of observations. In

this work we propose a penalized version of the sparse discriminant analysis

(SDA), called generalized sparse discriminant analysis (GSDA), for binary

classification. This method inherits both the discriminative feature selection

and classification properties of SDA and it also improves SDA performance

through the addition of Kullback-Leibler class discrepancy information. The
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GSDA method is designed to automatically select the optimal regularization

parameters. Numerical experiments with two real ERP-EEG datasets show

that, on one hand, GSDA outperforms standard SDA in the sense of classifi-

cation performance, sparsity and required computing time, and, on the other

hand, it also yields better overall performances, compared to well-known

ERP classification algorithms, for single-trial ERP classification when insuf-

ficient training samples are available. Hence, GSDA constitute a potential

useful method for reducing the calibration times in ERP-based BCI systems.

Keywords: Brain-Computer Interface, Event-Related Potential,

Kullback-Leibler Divergence, Penalization, Sparse Discriminant Analysis

1. Introduction

A brain computer interface (BCI) is a system that measures brain activ-

ity and converts it into an artificial output which is able to replace, restore

or improve any normal output (neuromuscular or hormonal) used by a per-

son to communicate and control his/her external or internal environment.

Thus, BCI can significantly improve the quality of life of people with severe

neuromuscular disabilities [1].

Communication between the brain of a person and the outside world

can be appropriately established by means of a BCI system based on event-

related potentials (ERPs), which are manifestations of neural activity as

a consequence of certain infrequent or relevant stimuli. The main reason

for using ERP-based BCI are: it is non-invasive, it requires minimal user

training and it is quite robust (in the sense that it can be used by more

than 90% of people) [2]. One of the main components of such ERPs is the
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P300 wave, which is a positive deflection occurring in the scalp-recorded EEG

approximately 300 ms after the stimulus has been applied. The P300 wave is

unconsciously generated and its latency and amplitude vary between different

EEG records of the same person, and even more, between EEG records of

different persons [3]. By using the “oddball” paradigm [4] the ERP-based

BCI can decode desired commands from the subject by detecting those ERPs

in the background EEG. From a pattern recognition point of view, the ERP-

based BCI classification problem, in which two classes are involved (EEG

with ERP or target class and EEG without ERP or non-target class), is

highly complex. This is so mainly for two reasons: the presence of the high

inter-trial variability and the unfavourable signal-to-noise ratio.

It is well-know that in any BCI classification scheme two main difficulties

must be dealt with: the curse-of-dimensionality and the bias-variance trade-

off [5]. While the former is a consequence of working with a concatenation

of multiple time points from multiple channels, the latter refers to the gen-

eralization capability of the classifier. Several works have proposed different

feature extraction methods for reducing the dimension of the feature space

and capturing the most discriminative information in a single-trial ERP [6–

8]. For instance, the common spatial patterns (CSP) method introduced in

[9] is a supervised feature extraction technique which is widely used in motor

imagery BCI ([10–12]). A Fisher’s criterion (FC)-based on spatial filtering

for ERP classification, which has shown stronger denoising capability than

CSP for ERP-based BCI, was presented in [13].

The feature extraction step is usually follow by the design of an appro-

priate classification technique. In this regard, although many classification
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strategies have been proposed, it is widely accepted that linear discriminant

analysis (LDA) is a very good classification scheme, resulting most of the

times in optimal performances while keeping the solution simple [14]. As a

drawback, effective training of a LDA classifier usually requires a number of

samples between five and ten times the dimensionality of the patterns [15],

resulting in very long system calibration times. Several regularized LDA

schemes within the BCI context have been proposed [4, 14, 16, 17]. It has

been shown that a regularized version of LDA can significantly increase the

classification performance obtained by standard LDA. This improvement is

due to the fact that regularization helps avoiding: i) the influence of outliers

and strong noise, ii) the complexity of the classifier and iii) the raggedness

of the decision surface [16].

One of the main disadvantages of current BCI systems is the fact that

they require long calibration times to achieve a reliable and stable communi-

cation. Hence, the design of a scheme capable of providing good classification

performance in small sample scenarios is highly desirable in order to enhance

the practicability of an ERP-based BCI system. As an effort in this di-

rection, for the case of high dimensional data with small training samples,

the shrinkage LDA (SKLDA) method presented in [14] seeks to improve the

usual estimation of the ill-conditioned covariance matrix used in LDA by a

shrinkage covariance estimator.

Also, it has been claimed in [18] that data preprocessing, feature extrac-

tion and classification should not be regarded as isolated processes, since

attacking each of these tasks separately and ignoring the inter-relationship

between them might result in sub-optimum performances. Other works
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([19, 20]) also suggest that an unified discriminative approach might pro-

vide a better overall performance. In line with the above philosophy, in this

article we propose a method in which feature selection and classification are

made in an interleaved and integrated process. A well-known and widely

used method in which classification and feature selection are jointly made

is the so-called stepwise LDA (SWLDA), originally introduced in ERP clas-

sification problems by Farwell and Donchin in [4]. The SWLDA method is

a combination of forward and backward stepwise regression with statistical

testing in which features are automatically selected by adding the most sig-

nificant variables and removing the least significant ones. This process is

iterated until a predetermined number of coefficients are included, or until

no additional coefficients satisfy the given entry nor the removal criteria.

More recent classification schemes ([17, 21–24]) make use of `1-regularized

least squares regression techniques which induce sparse solutions and there-

fore result in very robust classifiers.

Following the above research direction, in this work we propose a model

which combines and makes simultaneous use of regularization, sparse fea-

ture selection and a-priori discriminative information. More precisely, we

develop a new penalized version of the sparse discriminant analysis (SDA)

[25], which we call generalized sparse discriminant analysis (GSDA), with the

main objective of solving the binary ERP classification problem. As far as

we know SDA has never been used before in ERP-based BCI classification

problems. The performance of the GSDA method will first be compared with

that of SDA and then, in small training sample scenarios, with those of LDA,

SWLDA, SKLDA and FC+LDA. These comparison results will clearly show

5



that our GSDA method has a high potential for reducing calibration times

in BCI systems.

The organization of this article is as follows. In Section 2 we make a brief

review on discriminant analysis from the statistical literature. Our proposed

new approach is presented in Section 3. In Section 4 the two ERP-EEG

databases used in the experiments are described. Section 5 contains details

on all the experiments and results. Discussions are given in Section 6. Finally,

concluding remarks and future works are presented in Section 7.

2. Discriminant Analysis: a brief review

The LDA criterion is a well-known dimensionality reduction tool in the

context of supervised classification. Its popularity is mainly due to its sim-

plicity and robustness which lead to very high classification performances in

many applications [26].

Let W1, . . . ,WK be p-dimensional random vectors whose distributions

uniquely characterize each one of the K classes of a given classification prob-

lem. In addition, let X be an n× p data matrix such that each one of its

rows, xi, is a realization of one and only one of the aforementioned random

vectors, and let z ∈ {1, 2, . . . , K}n be a categorical variable accounting for

class membership, i.e. such that if pattern xi is a realization of Wk, then

zi = k.

The LDA method consists of finding q < K discriminant vectors (di-

rections), β1, . . . ,βq such that by projecting the data matrix X over those

directions, the “classes” will be well separated one from each other. It is

assumed that the random vectors W1, . . . ,WK are independently and nor-
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mally distributed with a common covariance matrix Σt. The procedure for

finding the vectors βj requires of estimates of the within-class, the between-

class and the total covariance matrices, Σw, Σb and Σt, respectively. These

estimates are given by:

Σ̂w =
1

n

K∑
k=1

∑
i∈Ik

(xi − µk)(xi − µk)T ,

Σ̂b =
1

n

K∑
k=1

nk(µk − µ)(µk − µ)T ,

Σ̂t =
1

n

n∑
i=1

(xi − µ)(xi − µ)T ,

where Ik and nk are the set of indices and the number of patterns belonging

to class k, respectively, µk=̇
1
nk

∑
i∈Ik xi is the k-class sample mean and

µ=̇ 1
n

∑K
k=1µk is the common sample mean. Note that Σ̂t = Σ̂w + Σ̂b.

The LDA method seeks to find the vectors βj in such a way that they

maximize separability between classes, which is achieved by simultaneously

maximizing Σ̂b and minimizing Σ̂w, or equivalently, by simultaneously max-

imizing Σ̂b and minimizing Σ̂t. Since the rank of Σ̂b is at most K − 1, there

are at most K − 1 non-trivial solutions β∗j . Usually q = K − 1.

In the particular case K = 2 (and therefore q = 1), the solution to the

LDA problem has the following explicit formulation:

β∗ = Σ̂
−1
t (µ1 − µ2). (1)

This special case is known as Fisher linear discriminant analysis (FLDA) [27].

The FLDA approach can be formulated as a linear regression model [26, 27].

Let X be as before and let y be a n-dimensional vector such that yi = n2

n
or
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yi = −n1

n
, depending on whether the ith observation belongs to class 1 or to

class 2, respectively, and let us consider the following ordinary least squares

problem (OLS):

α∗ = arg min
α∈Rp

‖y −Xα‖22, (2)

whose solutions are all the vectors in the set N (XTX) + (XTX)†XTy, where

“†” denotes the Moore-Penrose generalized inverse and N (XTX) denotes

the null space of XTX. If XTX is invertible, then (2) has a unique solution

given by α∗ = (XTX)−1XTy. For convenience it is assumed that µ = 0, and

therefore XTX = nΣt and XTy = n1n2

n
(µ1−µ2). Hence α∗ = n1n2

n2 β
∗, where

β∗ is given by (1). Since the direction of the solution is independent of the

proportionality constant n1n2

n2 , this proves that OLS (2) is equivalent to the

FLDA method (1).

Several works ([28–30], to cite a few) have extended the above OLS-LDA

formulation to multi-class problems. It has been shown that the LDA solution

can be obtained from a multivariate regression fit. In particular, Hastie et

al. in [28], introduced a richer and more flexible classification scheme into

LDA, called optimal scoring, which we briefly describe below.

Let X be as before and Y be a n × K matrix of binary variables such

that yij is an indicator variable of whether the ith observation belongs to

the jth class. Let us define Θ = [θ1, . . . ,θq] ∈ RK×q, where the vectors θj

are recursively obtained, for j = 1, 2, . . . , q, as the solution of the following

constrained least squares problem which resumes the optimal scoring method:

(
βj,θj

)
= arg min

β∈Rp,θ∈RK

‖Yθ −Xβ‖22,

s.t.
1

n
θTYTYθ = 1, θTYTYθl = 0 ∀l = 1, 2, . . . , j − 1. (3)
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Note that when j = 1 the orthogonality condition in (3), which is imposed

to avoid trivial solutions, is vacuous and hence it is not enforced. Details

about the computational implementation to solve (3) can be found in [28].

In the sequel we shall refer to θj as the “score vector”. Observe that

θj is the vector in RK for which the mapping from Rn×K to Rn defined by

Y → Yθj, results optimal for the constrained least squares problem defined

by (3). This mapping is precisely what introduces more flexibility into the

LDA framework since it transforms binary variables into real ones.

Clemmensen et al. [25] introduced a regularized version of the optimal

scoring problem by adding two penalization terms to the functional in (3).

These penalization terms on one hand induce sparsity and on the other hand

they allow correlated variables to be included in the solution. This reg-

ularized LDA formulation, named SDA, consists on recursively solving for

j = 1, 2, . . . , q, the following problem:

(
βj,θj

)
= arg min

β∈Rp,θ∈RK

{‖Yθ −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22},

s.t.
1

n
θTYTYθ = 1, θTYTYθl = 0 ∀l = 1, 2, . . . , j − 1, (4)

where λ1 and λ2 are predefined positive constants, called regularization pa-

rameters, which balance the amount of sparsity and the number of correlated

variables, respectively.

Problem (4) is alternately and iteratively solved as follows. At first θj

is hold fixed and optimization is performed with respect to βj. Then βj is

hold fixed and optimization is performed with respect to θj. The following

two steps are iterated:
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1. For given (fixed) θj, solve:

βj = arg min
β∈Rp

{‖Yθj −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22}. (5)

2. For given (fixed) βj, solve:

θj = arg min
θ∈RK

‖Yθ −Xβj‖22

s.t.
1

n
θTYTYθ = 1, θTYTYθl = 0 ∀l = 1, 2, . . . , j − 1.

For computational implementation details of the above steps we refer the

reader to [25] and [31].

The solution of problem (4), just like in LDA, provides q discriminant

directions, β1,β2, ...,βq, over which the classes of the projected data ma-

trix
(
Xβ1 Xβ2 . . . Xβq

)
∈ Rn×q cab be well-separated by a simply linear

classifier.

Solving (5) involves the well-known elastic-net problem (e-net) [32]. Be-

sides performing sparse variable selection like LASSO (least absolute shrink-

age and selection operator [33]), e-net tends to overcome one of LASSO’s

main limitations, which, as stated by several authors (e.g. [32, 34, 35]) is the

fact that from a group of correlated variables, it always chooses only one of

them.

In this work we propose a generalized version of the SDA method to

efficiently solve the binary classification problem appearing in BCI systems

based on ERPs. This new method seeks to increase classification performance

by taking into account information about the difference between classes by

means of the inclusion of appropriate anisotropy matrices into the penalizing

terms. The use of adaptive penalizers and, in particular of anisotropy matri-

ces in regularization method for inverse ill-posed problems is a new approach
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that has shown to produce significantly better results than those obtained

with the corresponding non-adaptive or isotropic penalizers [36, 37].

3. A new approach: Generalized Sparse Discriminant Analysis

An ERP-based BCI system implies solving a binary classification problem

(K = 2). In this case, our GSDA scheme consists of solving the following

regularized constrained least squares problem:(
β̂, θ̂

)
= arg min

β∈Rp,θ∈RK

{‖Yθ −Xβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22},

s.t.
1

n
θTYTYθ = 1, (6)

where X is a data matrix, Y is a n× 2 matrix of binary variables accounting

for class-membership as before, β and θ are generic p and 2-dimensional

vectors, λ1 and λ2 are positive regularization parameters, and D1 and D2

are appropriately defined p× p positive definite matrices.

Note that since K = 2, the orthogonality condition in (4) is vacuous. As

in the SDA case, the solution to problem (6) is approximated by alternatively

iterating the following two steps (with an adequate initialization):

1. Given θ, solution of (8), solve:

β̂ = arg min
β∈Rp

{‖Yθ −Xβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22}. (7)

2. Given, β solution of (7), solve:

θ̂ = arg min
θ∈R2

‖Yθ −Xβ‖22 s.t.
1

n
θTYTYθ = 1. (8)

11



The vector β̂, solution of (6), not only inherits both the correlated vari-

ables selection and sparsity properties of SDA, but it also contains in each

one of its components appropriate discriminative information which is suit-

able for improving separability between classes. As before, the classification

rule is constructed based upon the n × 1 projected matrix Xβ̂. In the fol-

lowing subsection we show how the Kullback-Leibler divergence can be used

for constructing the anisotropy matrices D1 and D2 in such a way that they

appropriately incorporate discriminative information into GSDA.

3.1. Kullback-Leibler discriminant information

Discriminative information can be incorporated into GSDA by appropri-

ately quantifying the “distances” between classes, or more precisely, between

their probability distributions. Although there is a wide variety of “metrics”

for comparing probability distributions [38], we shall use here the well-known

Kullback-Leibler divergence [39]. The decision to use this particular “metric”

is due not only to its nice mathematical properties, but also to the fact that

it was already successfully applied in many classification problems [40–42].

Let N be a discrete random variable defined on a discrete outcome space

N and consider two probability functions f1(n) and f2(n), n ∈ N . Then,

the Kullback-Leibler “distance” (KLD) of f1 relative to f2 is defined as:

DKL(f1||f2)=̇
∑
n∈N

f1(n) log

(
f1(n)

f2(n)

)
,

with the convention that 0. log 0=̇0. Although DKL(f1||f2) quantifies the dis-

crepancy between f1 and f2, it is not a metric in the rigorous mathematical

sense, because it is not symmetric and it does not satisfy the triangle in-

equality. If, for any reason, symmetry is desired then a modified KLD, called
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J-divergence, can be defined as follows:

JKL(f1, f2)=̇
DKL(f1||f2) +DKL(f2||f1)

2
.

Let f ij(·) be the probability function of the jth class in the ith feature,

with j = 1, 2 and i = 1, 2, . . . , p. We define the J-divergence at feature i as

JKL(i)=̇JKL

({
f ij
}K=2

j=1

)
. (9)

This function quantifies the discrepancy between the two classes at feature i.

A value of JKL(i) close to zero means that there is very little discriminative

information at feature i, while a large value of JKL(i) means that feature i

contains a significant amount of discriminative information which we defi-

nitely want to take into account in the construction of the solution vector β̂.

In Section 6.1 we show in detail how the J-divergence is able to highlight the

most discriminative features.

As mentioned before, the available a-priori discriminative information can

be incorporated into the GSDA formulation (6) by means of appropriately

constructed anisotropy matrices D1 and D2. Since we wish to spotlight

those features containing significant amount of discriminative information,

the matrices D1 and D2 must be constructed so as to strongly penalize

those features where there is little or none discriminative information while

avoiding penalization at the remaining ones (see Section 5).

3.2. Computational implementation

Our computational implementation of GSDA bellow is made by appro-

priately modifying the original SDA algorithm [31]. Thus GSDA is mainly
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solved in two steps. In the first step we solve equation (7), which is a gener-

alized version of the e-net problem [43]. The second step consists of updating

the optimal score vector θ by solving (8). It is shown in [25] that the solution

of (8) is given by θ̂ = s(I− θθTπ)π−1YTXβ̂, where π
.
= 1

n
YTY and s is a

proportionality constant such that θ̂πθ̂ = 1.

In regard to the first step, it is known that the e-net problem can be re-

formulated by means of LASSO. In fact by defining the following augmented

variables:

X̃
.
=

 X
√
λ2 D2


(n+p)×p

, Ỹ
.
=

 Yθ

0p×1


(n+p)×1

,

the generalized e-net problem (7) can be re-written as:

β̂ = arg min
β∈Rp

{‖Ỹ − X̃β‖22 + λ1‖D1β‖1}, (10)

which is known as generalized LASSO [44]. If D1 is invertible the solution

of (10) can be explicitly found as β̂ = D−11 α̂, where α̂ is the solution of:

α̂ = arg min
α∈Rp

{‖Ỹ − X̃D−11 α‖22 + λ1‖α‖1}. (11)

Thus, given this relationship (11), the first GSDA step (7) can be im-

plemented by using the modified LARS-EN algorithm presented in [31], in

which e-net is performed with early stopping. This criterion consists of in-

troducing a parameter called stop, in such a way that if stop is negative, its

absolute value corresponds to the desired number of variables, and while if

stop is non-negative, it corresponds to an upper bound for ‖β‖1.

3.3. Regularization parameters

It is well-known that in every regularization method the choice of the

regularization parameters is crucial. For Tikhonov-type functionals a popular
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and widely used method for approximating the optimal parameters is the so

called L-curve criterion [45]. One of the main advantages of this selection

criterion is the fact that it does not require of any prior knowledge about the

noise. Roughly speaking, the method finds an optimal compromise between

the norm of the residual and the norm of the regularized solution by selecting

the point of maximal curvature in the curve described by those two quantities,

parametrized by the corresponding regularization parameter (for details see

[45]).

Despite its popularity, the L-curve method cannot be directly applied

to multi-parameter penalization functionals like (7). In 1998, Belge et al.

proposed and extension of the L-curve technique, called L-hypersurface, for

approximating the optimal regularization parameters in those cases [46]. The

authors show that a good approximation to the optimal regularization pa-

rameter is given by the minimizer of the residual norm.

Within the GSDA context formalized by (6) or, more precisely, in the

context of the generalized e-net problem (7), the L-hypersurface is defined

as S(λ)
.
= {(x1(λ), x2(λ), z(λ)) : λ ∈ R2

+}, where x1(λ)
.
= log ‖D1β(λ)‖1,

x2(λ)
.
= log ‖D2β(λ)‖22 and z(λ)=̇ log ‖y − Xβ(λ)‖22. Then, the optimal

regularized parameter vector ends up being defined by λ̂=̇ arg minλ∈RM
+
z(λ).

Although generalized e-net is defined in terms of λ1 and λ2, there are other

possible choices for tuning parameters [32]. For example, the `1-norm of the

coefficients (t) can be chosen instead of λ1. In fact, this can be achieved by

re-writing the LASSO version (11) of our generalized e-net as a constrained

optimization problem with an upper bound on ‖α‖1. Similarly, since the

LARS-EN algorithm is a forward stage-wise additive fitting procedure, the
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number of steps (κ) of the algorithm can also be used as a tuning parameter

replacing λ1. This is so because, for each fixed λ2, LARS-EN produces a finite

number of vectors β̂ ∈ Rp which are approximations of the true solution at

each step. In our GSDA implementation we adopted λ2 and κ as tuning

parameters, i.e. λ=̇ (λ2, κ). By defining z(λ)
.
= ‖Yθ − Xβ(λ)‖22, and, in

accordance to Belge’s remark described above, the best parameter vector λ∗

was selected as that minimizing the residual norm. The steps for solving

GSDA with this proposal (together with automatic parameter selection) are

presented in Algorithm 1.

4. P300 speller databases

Two real ERP-EEG databases were used to evaluate the classification per-

formance of our GSDA method. In both databases the P300 speller paradigm

was used [4].

4.1. Dataset-1

Dataset-1 is an open-access P300 speller database from the “Labora-

torio de Investigación en Neuroimagenoloǵıa de la Universidad Autónoma

Metropolitana”, Mexico D.F., described in [47]. This database consists of

EEG records acquired from 25 healthy subjects, recorded by 10 channels

(Fz, C3, Cz, C4, P3, Pz, P4, PO7, PO8, Oz) at 256 Hz sampling rate using a

gUSBamp (g.tec, Austria). A 6-by-6 matrix containing letters and numbers

was presented to each subject on a computer screen. Each row/column was

highlighted for a period of 62.5 ms with inter-stimuli intervals of 125 ms. For

each character to be spelled the stimulating block (12 consecutive flashings)

was repeated 15 times.
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Algorithm 1 GSDA with automatic parameter selection

Inputs: X, Y , D1, D2, Λ2 =
{
λ
(1)
2 , . . . , λ

(d)
2

}
.

1: Define π
.
= 1

nY
TY, K = 2

2: Initialize: θ = eye(K, 1).

3: while the sparse discriminative direction β has not converged do

4: for i = 1, . . . , d do

5: Re-define the variables:

X̃ =

 X√
λ
(i)
2 D2


(n+p)×p

, Ỹ =

 Yθ

0p×1


(n+p)×1

6: Solve the generalized e-net problem and save the solution path:

(A, κ) = LARSEN(X̃D−11 , Ỹ), B = D−11 A

7: Find the residual:

R(λ2, 1 : κ) = ‖Yθ −XBj‖22

8: Save the solutions:

Ball(λ2, 1 : κ, :) = B

9: end for

10: Select the optimal direction:

(λ̂2, κ̂) = arg min
λ2,κ

R(λ2, κ)

β = Ball(λ̂2, κ̂, :)

11: Update θ:

θ̃ = (I− θθTπ)π−1YTXβ, θ =
θ̃√
θ̃
T
πθ̃

12: end while

Outputs: : θ, β
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Each subject participated in 4 sessions, the first two of which were copy-

spelling runs, i.e. they contained the true label data vector. For this reason,

in this work we used those two copy-spelling sessions as our dataset. Each

subject had to spell 21 characters and the stimulating block was repeated

15 times. In the preprocessing stage, the EEG records were filtered from 0.1

Hz to 12 Hz by a 4th order forward-backward Butterworth band-pass filter.

A 1000 ms data segment (trial) was extracted (windowed) from the EEG

records at the beginning of each stimulus. A total of 3780 EEG trials (630 of

them being target) of dimension of 10× 256 = 2560, conforms each subject’s

database.

4.2. Dataset-2

Dataset-2 corresponds to dataset II of the BCI competition III1. The

dataset consists of EEG records from two subjects (A and B) recorded at

240 Hz sampling rate with 64 channels, divided into train and test datasets,

containing 85 and 100 characters, respectively, with 15 repetitions of the

stimulating block for each character. In this case each row/column of the

P300 speller was intensified for 100 ms with inter-stimuli intervals of 75 ms.

For more information we refer the reader to [48].

In the present work only the train data was used to test our method, since

it contains the true labels and a large number (15300 of which 2550 are target)

of EEG trials. The same pre-processing stage for Dataset-1 was implemented.

We used the EEG patterns from 16 channels (F3, Fz, F4, T7, C3, Cz, C4,

T8, P7, P3, Pz, P4, P8, PO7, PO8 and Oz) as selected by the authors in

1http://www.bbci.de/competition/iii/
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[17, 20]. Therefore, the dimension of each pattern is 16× 240 = 3840.

5. Experiments and Results

5.1. GSDA vs. SDA

In this section we compare the performance of our GSDA method with

the one obtained with the standard SDA in the context of the aforementioned

real ERP-based BCI classification problem using both datasets described in

Section 4.

The symmetric JKL version of KLD 9 was used as measure of discrepancy.

To compute JKL, the probability distribution of each class was estimated by

using appropriate discrete sample distribution constructed from the avail-

able training data. The KLD information was then used to construct the

followings two p× p diagonal anisotropy matrices:

D1
.
= diag (1− αi + αici) ,

D2
.
= diag(ci),

where

ci
.
=

(∏p
j=1 JKL(j)

)1/p
JKL(i)

, αi
.
=

max{cj}pj=1 − ci
max{cj}pj=1 −min{cj}pj=1

, i = 1, . . . , p.

Note that with D1 and D2 so defined, ci is large where JKL(i) is small,

and vice-versa. The parameter αi (observe that 0 ≤ αi ≤ 1, ∀i = 1, . . . , p)

weights the KLD information proportionally to its relevance. Thus αi = 1

if JKL(i) = max{JKL(j)}pj=1 and αi = 0 if JKL(i) = min{JKL(j)}pj=1. Hence,

with this choice of D1 the KLD based information is used with preference (as

measured by αi) in the `1−norm over those features having large discriminant
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information, while with the introduction of D2 in the `2−norm we avoid

penalization where KLD information is large. Clearly, if there exist i0, 1 ≤

i0 ≤ p, such that JKL(i0) = 0 then the matrices D1 and D2 cannot be

formally defined as above. This case, however, can be overcome by simply

replacing JKL(i0) by JKL(i0) + ε, with ε > 0 very small.

Both SDA (corresponding to D1 = D2 = I) and our GSDA methods were

implemented with automatic parameter selection as described in Algorithm

1, in which the parameter λ2 was allowed to vary between 10−6 and 10−1 in a

log-scale. In order to compare SDA and GSDA under the same stopping con-

dition we set the upper bound of the `1-norm of the coefficients equal to 10%

ans 20% of the dimension of the patterns (p) for Dataset-1 and Dataset-2,

respectively. The decision of using all sample features with no downsampling

was made in order to work with high dimensional data scenarios in which

LASSO and e-net have already been largely applied. All codes were run in

MATLABr on an Intelr CoreTM i7-6700K CPU @ 4.00GHz × 8 with 32GB

of memory.

Several measures exist for evaluating the classification performance of a

BCI classification method [49]. The receiver operator characteristics (ROC)

curve is a powerful tool for evaluating a two-class unbalanced problem [50]. In

the present work the Area Under the ROC Curve [51], denoted by AUC, was

used as the classification performance measure. For avoiding classification

bias, a 3-fold cross-validation procedure was implemented. In each fold, KLD

is estimated with the available training data. A one-way anova with a level

of significance α = 0.05 was performed to statistically analyze difference

between the performance reached by both methods.
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The GSDA and SDA classification results obtained with Dataset-1 and

Dataset-2 are shown in Figure 1 and Table 1, respectively.
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Figure 1: Area under the ROC curve (AUC) on test data from Dataset-1 evaluated by 3-

fold cross-validation derived by SDA and GSDA. The errorbars for each subject correspond

to the AUC standard deviation on the 3-fold. The errorbars of the average correspond to

the standard deviation on all subjects. Here “∗∗” indicates GSDA>SDA with p-value<

0.05.

As it can be seen in Figure 1 and Table 1, GSDA outperforms SDA for

both subjects of Dataset-2 and for all but one of the 25 subjects of Dataset-1.

These results reinforce our original belief that the appropriate inclusion of a-
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Table 1: Mean and standard deviation of the area under the ROC curve (AUC) on test

data from Dataset-2 evaluated by 3-fold cross-validation derived by SDA and GSDA.

SDA GSDA

Subject A 0.7547 (± 0.0087) 0.7551 (± 0.0098)

Subject B 0.8418 (± 0.0041) 0.8490 (± 0.0024)

Average 0.7982 (± 0.0033) 0.8020 (± 0.0053)

priori discriminant information into the model may significantly influence the

classification results. In this regard, we have first performed a naive approach

in which the KLD information is used as a dimentionality reduction tool by

selecting those features with larger KLD values. We selected the N features

(N = 0.1 × p) associated to the N samples at which KLD is larger, and

afterwards, simple LDA was performed. The average classification results

over the 3-fold for Dataset-1 and Dataset-2 were found to be 0.5529 (±0.0858)

and 0.5207 (±0.0345). These results clearly indicate both the importance of

appropriate usage of the a-priori available information and the advantage of

tackling feature selection and classification together. In the case of Subject

14 of Dataset-1, the inclusion of KLD information reduces the classification

performance. Although it is not clear why this happens, for reasons beyond

our understanding, for this particular subject there seems to be no clear

relation between the information provided by KLD and the P300 wave (as it

can be seen in Figure 4a).

Since solution sparsity was desired, the mean of the number of non-zero

values for each method was analyzed. For the SDA and GSDA the mean
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of the percentage of non-zero values with respect to the number of sample

points for Dataset-1 were found to be around 14% and 6%, respectively, while

for Dataset-2 those values were found to be around 24% and 5%, respectively.

It is timely to highlight that with less than 6% of the features high classifi-

cation performances are achieved for both datasets. In light of the sparsity

degree of the solutions and the classification performances obtained, the re-

sults indicate that the implemented automatic parameter selection procedure

is adequate.

We have also analyzed the number of iterations required for both meth-

ods to fin the discriminant vector β̂. This is depicted in Figure 2 for both

datasets.
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Figure 2: Number of iterations needed for SDA and GSDA to find the solution vector β̂

for Dataset-1 and Dataset-2.

It is highly important to note that our GSDA method reaches convergence

in a lower number of iterations than those needed by SDA. In turn, this is

translated into a reduction in the computing time needed for GSDA. In our

cases the elapsed time was cutback in average by more than 2.9% and 9.4%
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for Datasets 1 and 2, respectively.

5.2. Small training size scenarios

Now with the main objective of reducing as much as possible the calibra-

tion time required by any ERP-based BCI system, the GSDA classification

performance is compared in different hard training scenarios by using a small

number of samples to train the classifier. In this case, GSDA is compared

with the LDA, SWLDA, SKLDA and FC+LDA methods in small training

size scenarios by randomly selecting patterns for spelling different given num-

ber of characters (2, 4, 6, 8, 10 y 12 out of 21 for Dataset-1 and 2, 4, 8, 10, 15

and 20 out of 85 for Dataset-2). This selection procedure was repeated 100

times. For reducing the pattern dimension a proper downsampling step was

made for both datasets. The EEG segments for both datasets were down-

sampled by selecting each 8th point from the filtered data resulting in 32 and

30 sample points for Dataset-1 and Dataset-2, respectively. It is important to

mention here that each spelling character generates 180 patterns (1×12×15).

The SWLDA method was implemented by setting the add-feature param-

eter to 0.1, the remove-feature parameter to 0.15 and the maximal number

of feature to 60, as suggested in [15]. The SKLDA method was implemented

by common diagonalization as presented in [14]. This two algorithms were

implemented by using the BBCI toolbox [52]. In regard to the FC method,

the first two spatial filter were used to reduce the dimension of the EEG data

(320 to 64 features) and then ordinary LDA was applied, as in [20]. For our

GSDA method, in order to speed up convergence, LARS-EN with early neg-

ative stopping criterion was implemented. After analyzing several different

stopping criteria, for Dataset-1 we decided to start with a number of non-
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zero features equal to 40% (128 features) of the dimension of the patterns

with increments of 5% for each scenario (reaching a 65% (208 features) in the

last one) while for Dataset-2 we found those values from 25% (120 features)

to 50% (240 features) in increments of 5%. This choice seems to be a rea-

sonable compromise between optimality and generalizability of the solution.

For statistical analysis a one-way anova with α = 0.05 and multi-comparison

test were implemented in each scenario.

Comparison results are shown in Figure 3. Several remarks are in order.

Firstly, GSDA is always significantly better (p-value<0.05) than the other

methods for Dataset-1, and in all but two cases (SKLDA and FC+LDA in

2 character training scenario) for Dataset-2. Secondly, the smallest error

variance among all methods most of the times corresponds to GSDA, what

indicates that this constitutes a highly stable classifier method. Thirdly and

finally, for both datasets increasing the number of training characters beyond

10 seems to have very little effect on classification results.
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Figure 3: Averaged AUC on test data delivered by LDA, SWLDA, SKLDA, FC+LDA

and GSDA, respectively, using different number of training characters for Dataset-1 and

Dataset-2. The errorbar denotes the standard deviation of AUC on the 100 repetitions.
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6. Discussion

6.1. KLD and anisotropy matrices

An analysis of the J-divergence as a function of channel and time allowed

us to detect the most discriminative features. The KLD discriminant infor-

mation was introduced into the GSDA formulation through the anisotropy

matrices D1 and D2. Figure 4 shows three plots on the time-channel plane,

for subjects 1 and 14 of Dataset-1 and subjects A and B of Dataset-2. These

plots depict the KLD information and the matrices D1 and D2. Several

observation are in order. First, the KLD plots indicate that most of the

discriminant information is located in the 250-500 ms time window, in accor-

dance with the well-known latency window of the P300 wave. Secondly, note

that some channels seem to have no contribution at all to class separation. In

the case of Subject 14 of Dataset-1 (the peculiar case previously mentioned

in Section 5), the KLD plot does not seem to point out to any preferable dis-

criminative region. The plots corresponding to D1 and D2 show how these

anisotropy matrices avoid penalization at places where KLD values are large.

Figure 4 also shows the high variability of the ERP morphology between sub-

jects, as pointed out in Section 1. Finally, it is reasonable to think that KLD

is an appropriate measure for enhancing the impact of the P300 wave in the

GSDA solution, by selecting both the most discriminative channels and the

most discriminative time samples.

6.2. Practicability of GSDA

Better classification performance in small training sample size scenarios

suggest that our GSDA method could be effective to reduce calibration times
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Figure 4: J-divergence (KLD) and anisotropy matrices (D1 and D2) for different subject

of Dataset-1 and Dataset-2

for ERP-based BCI systems. Indeed, from the results shown in Figure 3 for

Dataset-1, we see that GSDA needs of only 4 training characters (720 training

samples) to achieve averaged AUC around 86% in single-trial classification

while reaching close to 90% in the case of 10 training characters (1800 training
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samples). A similar analysis for Dataset-2 reveals that those percentages are

about 72 and 77, respectively. Thus, if an ERP-based BCI system is to be

calibrated with 10 training characters, we estimates that only 5 minutes are

required for data collection (assuming 100 ms flashing stimulus time and

75 ms inter-stimulus time with 12 flashing per block and 15 repetition of

each block). In our experiments we found that the complete GSDA training

procedure by using 1800 training samples requires only between 5 and 10

seconds. Hence, GSDA seem to be very suitable for daily calibration setting,

by better adopting to the changes in the users’ physiological pre-condition.

Due to the high classification performance and the small variance obtain for

the 100 iterations on the 10 character training scenario, we expected that

our GSDA will yield a very good performance in an on-line context.

7. Conclusions

In the present work we briefly reviewed different LDA approaches for

classification purposes from both statistical signal processing and BCI liter-

ature and developed a new penalized sparse discriminant analysis method,

called Generalized Sparse Discriminant Analysis. This new method not only

inherits the good properties of SDA, but it also allows for the inclusion of

appropriate a-priori discriminative information. Our GSDA implementation

also incorporates automatic tuning parameter selection.

We compared the new GSDA approach with the standard SDA. An anal-

ysis of the results showed that GSDA outperforms SDA not only in the sense

of classification results, but also in the sense of the degree of sparsity and in

required the number of iterations. Comparison results of GSDA with several
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other well-known state of the art methods in small training size scenarios

seem to indicate that GSDA is a potential tool for reducing calibration times

while keeping high classification performances.

Although these results are quite encouraging and they indicate that GSDA

could be a valuable alternative for the ERP-EEG classification problem, and

for many other applications, there is certainly much room for improvement.

Further research is currently under-way in several directions. In particular,

different discrepancy measures, anisotropy matrices and penalizing terms are

being considered. Moreover we plan to extend the binary GSDA framework

introduced in this article to a multi-class classification problem and to test

it in well-known databases.
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