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We present a detailed analysis about the electromagnetic response of a metamaterial surface with a 
localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing 
a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a 
direct demonstration of the forward or backward surface wave propagation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A property of conventional materials that exhibit a real negative 
electric permittivity — such as metals — is their capacity to guide 
surface plasmon polaritons (SPPs) along their boundary [1]. SPPs 
are waves trapped at the interface whose electromagnetic fields 
decay exponentially into both media. On a single plane interface, 
the electromagnetic wave is backward inside the metal, i.e., the 
direction of the energy flux parallel to the interface is opposite to 
the direction of the wave propagation, but forward on the vacuum 
side, that is, the direction of the energy flux is the same as the 
direction of the wave propagation, where the larger fraction of the 
energy flows. Thus, the net behavior of the SPP in a single metallic 
surface is always a forward wave for which the total energy flux is 
in the same direction as the phase velocity [2].

Continuous advances in the realization of negative index ma-
terials (NIMs) [3] (artificial media with electric permittivity and 
magnetic permeability simultaneously negative in the same fre-
quency range), have stimulated a revived interest in the electro-
magnetic properties of SPPs, and novel characteristics that do not 
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exist in conventional media, such as backward behavior — with 
a total energy flux, parallel to the interface, that is opposed to 
the phase velocity — have been reported in Ref. [4]. When the 
flat boundary of a NIM medium is perturbed with a periodic cor-
rugation, novel SPP radiation characteristics together with new 
SPP–photon coupling effects, not present in the metallic case, ap-
pear [5]. On the other hand, the scattering of light from a topo-
logical defect on a metallic surface is currently being investigated, 
since it provides a convenient way to generate locally SPPs from 
the incident light [6–8]. One way of characterizing the SPP gener-
ation efficiency is by scanning the field near the defect, since its 
distribution is strongly characterized by the generated SPPs [7,9]. 
The purpose of this letter is to show that, when a flat boundary 
is perturbed with a single defect, the near field distribution is re-
lated to the forward or backward character of the SPPs excited. 
In particular, we report near field evidence of backward SPPs, not 
present in the metallic case, that appear under certain particular 
conditions on a NIM interface. Within this framework, by using a 
rigorous method based on Green’s second identity [10] for model-
ing the scattering process, we study the electromagnetic response 
of an isolated protuberance when illuminated by an electromag-
netic, linearly polarized wave. To avoid diffraction effects at the 
edge of the surface, which must be of finite length in the numeri-
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Fig. 1. (Color online.) Schematic illustration of the protuberance and the geometrical 
parameters.

cal treatment, as in Ref. [10] we assume the incident field to be a 
beam of finite width.

2. Scattering problem

In Fig. 1, we present schematically a single protuberance 
showing the geometrical parameters defining the structure and 
the coordinate axes used. The conventional material is vacuum 
(ε1 = μ1 = 1) and the boundary is a single sinusoidally cor-
rugated as follows: f (x) = h/2 [1 + cos(2π/d)] rec(x/d) where 
rec(u) is the rectangular function centered at the origin with 
unit width and height. In all the examples presented here, the 
illumination is accomplished by a Gaussian beam, ϕi(x, y) =
e−(x cos θ0+y sin θ0)2/w2

ei ω
c (x sin θ0−y cos θ0) , where ϕi(x, y) is the

z-directed component of the total magnetic field (p polarization) or 
the total electric field (s polarization), w is half of the beam width 
at the waist, ω is the angular frequency and c is the speed of 
light in vacuum. The angle of incidence θ0 of the beam is defined 
with respect to the y axis. It is known (see Ref. [11], and refer-
ences therein) that outside the corrugated region (y > max f (x) or 
y < min f (x)), the fields can be rigorously represented by super-
positions of plane waves,

ϕ1(x, y) = ϕi(x, y) +
+∞∫

−∞
R(α) ei(α x+β(1)(α) y) dα, (1)

for y > max f (x) and

ϕ2(x, y) =
+∞∫

−∞
T (α)ei(α x−β(2)(α) y) dα, (2)

for y < min f (x), where R(α) and T (α) are complex amplitudes 
and β( j)(α) =

√
ω2

c2 ε jμ j − α2. Note that the quantities β(1)(α) are 
real or purely imaginary. In the first case, which occurs in the so-
called radiative zone |α| < ω/c, the integrand in eq. (1) represents 
plane waves propagating away from the surface along a direction 
that forms a scattering angle θs [sin θs = c α/ω] with the +y axis. 
In the second case, which occurs in the so-called non radiative 
zone |α| > ω/c, these fields represent evanescent waves that at-
tenuate for y −→ +∞. In the real case of lossy transmission media 
(Im ε2 > 0, Im μ2 > 0), the quantities β(2)(α) are always complex 
with a nonzero imaginary part, Im β(2)(α) > 0, so that the fields 
in eq. (2) attenuate for y −→ −∞. After imposing the boundary 
conditions, we arrive at the electromagnetic fields above and be-
low the boundary y = f (x). The calculations are obtained using an 
integral method based on Green’s second identity [10] and incor-
porating the changes made in Ref. [11] in order to include media 
with negative indices of refraction. According to expression (1), the 
near field on the vacuum side is a superposition of propagating 
and evanescent waves, being R(α) the weight of each of them de-
pending on whether |α| < ω/c or |α| > ω/c, respectively. In order 
to clarify the role of these waves, we calculate the amplitude R(α).
Fig. 2. (Color online.) Curves of |R(z)|2 for a sinusoidal protuberance with 
h = 0.012λ illuminated at normal incidence (θ0 = 0). Width (a) d = 4 λ, p and s 
polarization, (b) d = 2λ, 4/3 λ, λ, p polarization. The relative constitutive parame-
ters are ε = −1.3 + i0.01 and μ = −0.35 + i0.01.

First we consider the constitutive parameters ε = −1.3 + i0.01
and μ = −0.35 + i0.01 (n = −0.674 + i0.012), for which the flat 
interface supports a p-polarized forward SPP [4] with a com-
plex dimensionless propagation constant κ = c α/ω = 1.337 +
i0.020. We consider a protuberance with h = 0.012 λ and d = 4 λ
(h/d = 0.003) where λ = c/(2πω) is the wavelength in the vac-
uum. Fig. 2a shows the square modulus of the complex amplitude 
R(z) as a function of the dimensionless wave vector z = c/ω α
for a normal beam wave incidence (θ0 = 0) and w = 20λ. In the 
radiative zone, |z| < 1, the curves are almost identical for both 
polarizations, with a principal peak whose spectral half width 
�z = c/ω (2/w) = 0.1/(2π), centered at the value of the spec-
tral variable z = 0. This peak represents the wave reflected by 
the flat surface, reaching a maximum value of 50000 × 10−4 [not 
shown in Fig. 2a]. The presence of the protuberance is manifested 
by non-zero values of |R|2 in the non-specular direction, reach-
ing a maximum value ≈ 2.5 × 10−4 for z = 0 and two minima 
located at z = ±0.5 (see inset of Fig. 2a). We observe that only 
the values of R(z) with z between these two minima significantly 
contribute to the scattered power. Unlike the radiative zone, the 
curve |R(z)|2 shows a significant difference between the s and p 
polarizations beyond the radiative zone, as can be seen in Fig. 2a 
for |z| > 1. For p polarization, this curve shows two enhanced 
maxima at values of z ≈ ± Re κ , indicating that two SPPs, one 
SPP propagating in +x direction and the other one propagating in 
−x direction, are excited by the p-polarized incident beam wave. 
However, there is no maximum for s polarization due to the fact 
that no SPPs with s polarization are supported by the surface. As 
we decrease the width of the protuberance d with respect to the 
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wavelength λ, the presence of the protuberance becomes more ev-
ident both in the radiative zone and in the non-radiative zone, 
as can be seen in Fig. 2b, where we have included the curves 
of |R(z)|2 with λ/d = 1/2, 3/4, and 1 for p polarization. On the 
one hand, the power scattered in the non-specular direction is 
spread toward larger angles. Moreover, we observe that, while the 
curve for λ/d = 1/4 has two minima on the radiative zone, at 
z = ±1/2, the curves for λ/d = 1/2, 3/4 and 1 have their min-
ima at z = ±1, ±1.5 and ±2 respectively. The location of these 
minima coincides with the location of the zeroes corresponding to 
the Fourier transform of the surface profile, z = ±2 λ/d, in agree-
ment with the fact that in the limit of shallow corrugation, the 
diffracted field amplitude R(z) corresponding with a plane wave 
incident is proportional to the Fourier transform of the profile f (x)
for both polarizations [11]. Although in the above examples the in-
cident field is not a plane wave, the beam impinging on the surface 
is over 2 w = 40 λ, largely covering the entire protuberance. Thus 
the incident wave can be regarded as a plane wave in this case. 
On the other hand, when λ/d increases from 1/4 to 1, we ob-
serve that the peaks located in |z| ≈ Re κ become more and more 
pronounced, exhibiting a higher maximum ≈ 3500 × 10−4 [not 
shown in Fig. 2b] for λ/d = 1. As a consequence, the major con-
tributions to the integrand in eq. (1) are given by the amplitude 
R(± Re κ) of the excited SPPs and the amplitude R(z) associated 
with the reflection by an infinite plane. Given the small value of 
the spectral width considered in the above examples, each plane 
wave component of the incident beam undergoes a reflection with 
identical amplitude as that of the specular component, and there-
fore R(z) ≈ R F (sin θ0), where R F is the Fresnel coefficient of the 
interface. From this fact, it follows that the near field given by 
eq. (1) on the vacuum side can be approximately represented by 
the following expression,

ϕ1(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

ϕi(x, y) + ϕr(x, y)R F (sin θ0)

+ R̄(−Reκ)ei(α− x +β(1)(α−) y) y < 0,

ϕi(x, y) + ϕr(x, y)R F (sin θ0)

+ R̄(Reκ)ei(α+ x +β(1)(α−) y) y > 0,

(3)

where the sign + and − must be taken for x > 0 and for x < 0 re-
spectively, α+ = ωκ/c is the propagation constant of SPP on x > 0
side, α− = −ωκ/c is the propagation constant of SPP on x < 0
side, R̄(κ) is the amplitude of the SPP field on x > 0 side, R̄(−κ) is 
the amplitude of the SPP field on x < 0 side and

φr(x, y) = e−(x cos θ0+y sin θ0)2/w2
ei ω

c (x sin θ0+y cos θ0). (4)

This simplified model has been suggested in Ref. [7] where it 
was used to extract the SPP generation efficiency in the metal-
lic case. Within the framework of this model, the square modulus 
|ϕ1(x, y)|2 is a background plus a term I± that contains the cross 
product between the first two terms with the third one, i.e., the 
interference of the incident (and reflected) fields with the field of 
generated SPPs,

I± = e−2(x cos θ0+y sin θ0)2/w2
Re {R̄(±Re κ)ei(Re α±−α0) x

× [e−i(β0+Re β) y + R∗
0ei(β0−Re β) y]}e− Im β y e− Im α± x, (5)

where I+ and I− refers to x > 0 and x < 0, respectively,
α0 = ω

c sin θ0 is the x component of the wave vector of the in-
cident and the reflected field. Eq. (5) shows a periodic spatial 
dependence along the x-direction, gradually attenuating with the 
increase of |x|, with a decay length ∼ 1/| Im α±| owing to losses 
arising from absorption in the metamaterial medium. The periods 
at each side of the protuberance are: d+ = 2π/|α0 − Re α+| for 
x > 0, and d− = 2π/|α0 − Re α−| for x < 0. Thus, when the beam 
impinges on the surface with an angle θ0 �= 0, fringes with differ-
ent periods (d+ �= d−) appear at each side of the protuberance.
Fig. 3. (Color online.) Map of normalized field |ϕ(x, y)| near the protuberance for 
a boundary given by f (x) = h/2 [1 + cos(2π/d)] rec(x/d), with d = 0.75 λ and h =
0.125 λ separating the vacuum from a NIM medium. a) ε = −1.3 + i0.01 and μ =
−0.35 + i0.01, the beam width w = 10 λ, θ0 = 20◦ and p polarization. b) ε = −1.6 +
i0.01 and μ = −0.8 + i0.01, w = 10 λ, θ0 = 30◦ and s polarization.

In order to illustrate this assertion, by using the Green’s 
method, we have calculated the distribution of the magnetic 
field amplitude (normalized to the amplitude of the incident 
beam) near the surface for a protuberance with d = 0.75 λ and 
h = 0.125 λ (h/d = 1/6) when the illumination is accomplished by 
a Gaussian beam of width w = 10 λ. Fig. 3a shows the absolute 
value of the magnetic field near the surface for θ0 = 20◦ . Two pe-
riodicities are present in the field distribution at each side of the 
protuberance: i) a rapid variation in the region x < 0 from which 
the incident beam impinges; and ii) a slow variation in the re-
gion x > 0. This behavior can be understood from the fact that 
the two excited SPPs, one SPP propagating in +x direction and 
the other one propagating in −x direction, have their wave vector 
pointing out of the protuberance. In other words, the propaga-
tion constant of excited SPPs propagating on half-space x > 0 is 
Re α+ = (ω/c) Re κ and the propagation constant of excited SPPs 
propagating on half-space x < 0 is Re α− = −(ω/c) Re κ as shown 
in Fig. 2. Therefore, the period in the half-space x > 0 takes a value 
d+ = 2π/|α0 − Re α+| = λ/| sin θ0 − Re κ | ≈ λ/| sin 20◦ − 1.34| ≈
1.002λ. On the other hand, in the half-space x < 0, the period 
d− = 2π/|α0 − Re α−| = λ/| sin θ0 + Re κ | ≈ λ/| sin 20◦ + 1.34| ≈
0.594λ.

It is worth noting that, according to our calculations, the near-
field fringes are well-visible for values of d lower than eight times 
the value of the height (d < 8 h), and that these fringes are no 
longer visible for values of d > 15 h. On the other hand, if we sub-
stitute the NIM medium by a metallic medium, the interference 
pattern will be like as shown in figure 3a [7]. This is true because 
the forward nature of metallic SPPs.

Another SPP–photon coupling regime which radically differs 
from what has been known so far for metallic boundaries oc-
curs in the regions of constitutive parameters supporting backward 
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SPPs. In our next example we consider constitutive parameters 
ε = −1.6 + i0.01 and μ = −0.8 + i0.01 (n = −1.131 + i0.0106). 
Without corrugation, this boundary supports s-polarized backward 
SPPs with dimensionless propagation constant κ = 1.332 − i0.0379. 
By solving the scattering problem for these constitutive param-
eters, and for protuberance heights in the range considered in 
the former example, we have verified that, as shown in Fig. 2, 
in the radiative zone the curves of |R(z)|2 show similar values 
for both s and p polarizations, and the curve for s polarization 
reaches a maximum value due to the excitation of SPPs in the 
vicinity of |z| = κ R ≈ 1.332. However, as the near field mostly de-
pends on the excited SPPs, the different propagation characteristics 
between backward SPPs and forward SPPs lead to a spatial distri-
bution of the field that differs from those plotted in Fig. 3a. This 
is shown in Fig. 3b, where we plot the near electric field distri-
bution for the same geometrical parameters of the protuberance 
as those in Fig. 3a, but for an angle of incidence θ0 = 30◦ and a 
beam width w = 10 λ. Unlike the distribution plotted in Fig. 3a, 
in which the rapidly varying fringes are presented on the left side 
(d− < d+), Fig. 3b shows the rapidly varying fringes on the right 
side (d− > d+). This difference can be understood by taking into 
account the fact that the energy carried by the backward SPP is 
opposite to its propagation direction. For this reason, in backward 
SPPs the sign of the real part of the propagation constant is op-
posite to the corresponding imaginary part. As the energy must 
attenuate, the exponential SPP decay is in the same direction as 
the total energy flow, that is, the imaginary part of the propaga-
tion constant must be positive in the half-space x > 0 (Im α+ > 0) 
and negative in the half-space x < 0 (Im α− < 0). Therefore, for 
x > 0 is Re α+ < 0, and for x < 0 is Re α− > 0. From the above 
discussion it follows that the spatial periodicity of the distribu-
tion of the near field on the right side of the protuberance is d+ =
2π/|α0 −Re α+| = λ/| sin θ0 +Re κ | ≈ λ/| sin 30◦ +1.33| ≈ 0.545λ, 
and on the left side is d− = 2π/|α0 − Re α−| = λ/| sin θ0 − Re κ | ≈
λ/| sin 30◦ − 1.33| ≈ 1.248λ.

3. Conclusions

In conclusion, we have studied the electromagnetic response of 
a localized protuberance on a NIM interface. Whereas in the radia-
tive zone, the field only depends on geometrical and constitutive 
parameters of the NIM interface, the electromagnetic field distri-
bution in the vicinity of the protuberance strongly depends on 
polarization. We have demonstrated that this distribution is highly 
dependent on the propagation characteristics of the SPP generated 
and provides an indirect but vivid demonstration of the backward 
or forward nature of the SPPs.

The possibility to vary the form of the surface defect consider-
ing asymmetric structures as well as finite gratings, allows another 
degree of freedom to modify the SPP spectral peaks. Although we 
are planning to report the results of such study in a future pa-
per, as a first step we have restricted ourselves to performing an 
analysis on a single sinusoidally surface defect.
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