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a b s t r a c t

Given a graph G = (V , E), a family of nonempty vertex-subsets S ⊆ 2V , and a weight
w : S → R+, themaximumstable set problemwithweights on vertex-subsets consists in find-
ing a stable set I ofGmaximizing the sumof theweights of the sets in S that intersect I . This
problem arises within a natural column generation approach for the vertex coloring prob-
lem. In this work we perform an initial polyhedral study of this problem, by introducing
a natural integer programming formulation and studying the associated polytope. We ad-
dress general facts on this polytope including some lifting results, we provide connections
with the stable set polytope, and we present three families of facet-inducing inequalities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this work we address a generalization of the maximum weighted stable set problem which arises in the solution of
the vertex coloring problem via column generation techniques. Given a graph G = (V , E), a family of nonempty vertex-
subsets S ⊆ 2V , and a weight w : S → R+, we define the maximum stable set problem with weights on vertex-subsets
(STABws) as the problem of finding a stable set I of G (i.e., a set I ⊆ V such that no two vertices from I are adjacent) that
maximizes the sum of the weights of the sets in S that intersect I . Formally, STABws consists in finding a stable set I ⊆ V
maximizing


{w(S) : S ∈ S and S ∩ I ≠ ∅}. In this context, the vertex subsets in S are called structures. For v ∈ V , define

S(v) = {S ∈ S : v ∈ S}.
STABws naturally arises within the column generation procedure of a straightforward algorithm for the classical vertex

coloring problem [2]. In this setting, let S ⊆ 2V be the set of maximal stable sets of G. We have a binary variable zI for every
I ∈ S, and the constraints

I∈S:v∈I

zI ≥ 1, v ∈ V . (1)
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In a standard column generation approach, the pricing problem reduces to finding a maximum weighted stable set [3–5].
However, if additional cutting planes are added then the column generation problem no longer corresponds to a classical
weighted stable set problem, since the objective function now includes the dual variables corresponding to the added
inequalities.

Indeed, let S1, . . . , Sk ⊆ V be subsets of vertices and assume that the following cuts have been added to the original
formulation:

I∈S:I∩Si≠∅

zI ≥ bi, i = 1, . . . , k, (2)

where b1, . . . , bk ∈ R are suitable values making these inequalities valid, i.e., bi is a lower bound on the minimum number
of colors needed to color the subgraph induced by Si. If λv is the dual variable corresponding to Eq. (1), for v ∈ V , and µi
is the dual variable corresponding to the inequality (2), for i = 1, . . . , k, then the column generation problem consists in
finding a stable set I ⊆ V maximizing


{λv : v ∈ I} +


{µi : Si ∩ I ≠ ∅, i = 1, . . . , k}. This problem reduces to STABws,

where the structures are S := {Si}ki=1 ∪ {{v}}v∈V . Note that it is not necessary to consider vertex weights in the definition of
STABws, since we can consider a singleton structure for each vertex, thus modeling such weights.

This pricing problem is addressed in [2], where the authors point out that the pricing problem is not exactly a maximum
weight stable set problem anymore, give some insights on how the two problems relate to each other, and use these insights
in order to improve the bounds of the coloring formulation. Section 6.4 from [2] points out the difficulty to deal with cut
generation approaches for the vertex coloring problem (based on the original column generation algorithm in [5]). In [2], the
authors attempt to circumvent this difficulty by stating an optimization problem that is ‘‘a good approximation of the pricing
problem’’. In practice, such an approximation leads to small improvements in the lower bound, at the cost of a moderate
increase in the running times. However, the authors state that the enumeration tree is in most cases significantly smaller.
Thus, one can expect that more efficient strategies to solve the pricing problemwhen cuts are present could help to improve
the performance of the whole procedure for solving the vertex coloring problem.

There are two possible approaches for tackling STABws, namely searching for combinatorial algorithms and studying
its polyhedral structure with the objective of implementing an algorithm based on integer programming techniques.
Combinatorial algorithms for the maximum stable set problem are more effective than integer-programming-based
procedures [6,7], but it is not clear how such algorithms can be applied to STABws. This motivates the present work, which
aims at providing more details on the structure of the generalized problem and its similarities and main differences with
the weighted maximum stable set problem.

In this work we address STABws from an integer programming point of view.We are interested in partial descriptions of
the polytope associatedwith a natural integer programming formulation of this problem.We provide general results on this
polytope, including some properties of general facet-inducing valid inequalities, relations between facets of this polytope
and facets of the stable set polytope, a straightforward lifting lemma, and a lifting procedure for generating more complex
facet-inducing inequalities. We also show how STABws can be reduced to a stable set problem on a larger graph. Although
this reductionmaynot be useful fromapractical point of view, it shows additional connections between the polytope studied
in this work and the standard stable set polytope. Finally, we present three families of facet-inducing inequalities, two of
them being of a quite general nature.

This paper is organized as follows. In Section 2 we present an integer programming formulation of STABws and provide
some initial results on the associated polytope P(G, S) (to be defined in Section 2). Section 3presents a procedure for deriving
strong inequalities for P(G, S) from the stable set polytope. Section 4 presents relations between P(G, S) and the stable set
polytope, and in Section 5we explore general families of facets for P(G, S). Finally, Section 6 closes the paperwith concluding
remarks and open problems.

2. Integer programming formulation

In this section we present an integer programming formulation for STABws. For each vertex v ∈ V , we introduce the
binary vertex variable xv such that xv = 1 if and only if the vertex v belongs to the solution. For each structure S ∈ S, we
introduce the binary structure variable yS such that yS = 1 only if the solution intersects S. With these definitions, STABws
can be formulated as follows.

max

S∈S

wSyS

xu + xv ≤ 1 ∀ uv ∈ E (3)

yS ≤


v∈S

xv ∀ S ∈ S (4)

xv ∈ {0, 1} ∀ v ∈ V (5)
yS ∈ {0, 1} ∀ S ∈ S. (6)

The objective function asks for the total weight to be maximized. Constraints (3) assert that no two adjacent vertices can be
selected (hence x is the characteristic vector of a stable set), whereas constraints (4) assert that yS = 0 if no vertex from S is
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selected. Note that we do not constrain yS to take value 1 when some vertex from S is selected in the current solution, since
we assume the weights to be non-negative.

Definition 1. Given a graph G = (V , E) and a family of vertex-subsets S ⊆ 2V , we define P(G, S) to be the convex hull of
the vectors (x, y) ∈ R|V |+|S| satisfying constraints (3)–(6).

We now collect some straightforward facts on P(G, S). For v ∈ V , we denote by NG(v) the neighborhood of v in G, and
we simply write N(v) when the graph is clear from the context.

Theorem 1. (i) The polytope P(G, S) is full-dimensional.
(ii) For each uv ∈ E, the model constraint (3) induces a facet of P(G, S) if and only if uv is not contained in a larger clique,

i.e., N(u) ∩ N(v) = ∅.
(iii) For each S ∈ S, the model constraint (4) induces a facet of P(G, S).
(iv) For each v ∈ V , the inequality xv ≥ 0 induces a facet of P(G, S). For each S ∈ S, the inequality yS ≥ 0 induces a facet of

P(G, S).

The following lemma states a property that will be useful throughout the paper. A similar property holds for the
x-variables in the stable set polytope STAB(G), defined as the convex hull of the vectors x ∈ R|V | satisfying constraints
(3) and (5).

Lemma 1. Let πx + µy ≤ π0 be a facet-inducing inequality of P(G, S), S ∈ S and v ∈ V . If the inequality differs from yS ≥ 0,
then µS ≥ 0. If the inequality differs from xv ≥ 0 and µS = 0 for all S ∈ S(v), then πv ≥ 0.

Proof. Sinceπx+µy ≤ π0 is different from yS ≥ 0 and is facet-inducing, there exists a solution (x, y) satisfying the inequal-
ity with equality and such that yS = 1 (otherwise, yS = 0 for every point in the face induced by the inequality, contradicting
facetness). Construct a new feasible solution (x, y′) only differing from (x, y) in y′

S = 0. If µS < 0 then this new solution
violates πx + µy ≤ π0, a contradiction. Hence, µS ≥ 0 for every S ∈ S.

Now assume that the inequality is different from xv ≥ 0 and µS = 0 for all S ∈ S(v). Therefore, there exists (x, y) ∈

P(G, S) satisfying πx+ µy = π0, xv = 1 and yS = 0, for all S ∈ S(v). Changing the xv to 0 leads to another feasible solution
that does not violate the inequality only if πv ≥ 0. �

The polytope P(G, S) admits facet-inducing inequalities with negative coefficients for x-variables, in contrast to STAB(G),
whose facets have nonnegative coefficients—with the exception of xv ≥ 0 for v ∈ V . This can only happen for vertices that
belong to at least one structure, as the following corollary to Lemma 1 shows.

Corollary 1. If v ∈ V does not belong to any structure in S and πx+µy ≤ π0 is a facet-inducing inequality of P(G, S) different
from xv ≥ 0, then πv ≥ 0.

The particular structure of the formulation (3)–(6) provides a simple lifting result for the structure variables, as the
following proposition shows.

Lemma 2 (Lifting Lemma). Every facet-inducing inequality for P(G, S) is also valid and facet-inducing for P(G, S ∪ {S}), for any
S ⊆ V , S ∉ S, S ≠ ∅.

Proof. If the facet-inducing inequality for P(G, S) is xv ≥ 0, then the lemmaholds by Theorem1.Otherwise, letπx+µy ≤ π0
be an inequality inducing the facet F of P(G, S) and S ⊆ V , S ∉ S, S ≠ ∅. Select affinely independent points (x1, y1), . . . ,
(x|V |+|S|, y|V |+|S|) in F . Since these selected points cannot be all in the intersection with the facet {(x, y) ∈ P(G, S) : xv = 0}
for any v ∈ V , let us consider a point (xi, yi), for some i ∈ {1, . . . , |V |+|S|}, such that there exists a v ∈ S with xiv = 1. Hence,
(xi, yi, 1), (x1, y1, 0), . . . , (x|V |+|S|, y|V |+|S|, 0) are |V | + |S| + 1 affinely independent points in {(x, y, yS) ∈ P(G, S ∪ {S}) :

πx + µy = π0}. �

The projection of P(G, S) onto the space of the vertex variables coincides with the stable set polytope STAB(G), so every
valid inequality for STAB(G) is also valid for P(G, S). Furthermore, Lemma 2 shows that facetness is also preserved.

Corollary 2. Every facet-inducing inequality of STAB(G) is also valid and facet-inducing for P(G, S).

On the other hand, as x ∈ STAB(G) implies (x, 0) ∈ P(G, S) and (x, y) ∈ P(G, S) implies x ∈ STAB(G), we get a converse
for the above statement.

Proposition 1. If πx ≤ π0 is facet-inducing for P(G, S), it is also valid and facet-inducing for STAB(G).

Lifting Lemma implies that all the facets for P(G, S) translate to P(G, S ∪{S}), for any S ∉ S. There exist additional facets,
in particular facets involving yS with a nonzero coefficient (which furthermoremust be positive, by Lemma 1). In those cases,
we have the following result.
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a b

Fig. 1. (a) Example instance (G, S) of STABws with S = {S1, S2, S3} and (b) the instance (G′, S′) constructed by the procedure in Section 3. The vertices v3
and v7 are adjacent to just one vertex from S, so they are deleted. Structure S1 has a vertex not adjacent to any vertex from S and structure S3 gets at least
one vertex deleted, so they are removed from S.

Proposition 2. If S ∈ S induces a clique, then a valid inequality πx + µy ≤ π0 with µS > 0 is facet-inducing if and only if it
coincides with the model constraint (4).

Proof. The ‘‘if’’ part is a direct rephrasing of Theorem 1(iii). For the converse direction, we claim that every feasible solution
(x, y) satisfying the inequality with equality also is in the facet {(x, y) ∈ P(G, S) : yS =


v∈S xv}. Since S induces a clique,

by (3)–(4) we have yS ≤


v∈S xv ≤ 1. If yS = 0 and


v∈S xv = 1, then by setting yS = 1 we still have a feasible solution
which violatesπx+µy ≤ π0 (sinceµS > 0), a contradiction.We conclude that yS =


v∈S xv and, since (x, y) is an arbitrary

solution satisfying πx + µy = π0, the claim holds. �

In the facetness results throughout this paper we will ask for the structures participating in the valid inequalities to
not induce cliques of G (or, alternatively, stronger hypotheses implying this condition). Proposition 2 ensures that these
hypotheses are indeed necessary for achieving facetness.

3. A procedure for generating strong valid inequalities

Lifting Lemma (Lemma 2) shows that every facet-inducing inequality of STAB(G) is also facet-inducing for P(G, S). In this
section we show that facets of P(G, S) involving the structure variables (i.e., the y-variables) can also be generated from
facets of the stable set polytope in certain particular situations, and we provide an iterative procedure for accomplishing
this task. If A, B ⊆ V are two vertex sets, we denote E(A, B) = {uv ∈ E : u ∈ A, v ∈ B} to be the set of edges with one
endpoint in A and the other endpoint in B.

Procedure. Let S ⊆ V , S ∉ S, S ≠ ∅.

1. Remove from G all vertices v ∈ V\S such that E(S, {v}) ≠ S × {v} and E(S, {v}) ≠ ∅. Call R ⊆ V the removed vertices
and G̃ = (Ṽ , Ẽ) the resulting graph.

2. Remove from S any structure S ′ such that S ′
∩ R ≠ ∅ or S ′

∩ {v : E(S, {v}) = ∅} or S ′
∩ S ≠ ∅. Call S′ the resulting family

of structures.
3. Identify the vertices in S onto a single vertex s. This identification operation consists in deleting all vertices in S from Ṽ

(and its incident edges), adding the new vertex s, and adding an edge sv for every v ∈ Ṽ \ S such that E(S, {v}) = S×{v}.
Call G′

= (V ′, E ′) the resulting graph (see Fig. 1 for an example).
4. Find a facet πx′

+ µy′
≤ π0 of P(G′, S′), and output the inequality

v∈V ′\{s}

πvxv + πsyS +


S′∈S′

µS′yS′ ≤ π0. (7)

Recall that Corollary 1 implies that πs ≥ 0, which is required by Lemma 1 for (7) to define a facet.

Theorem 2. The inequality (7) generated by the procedure is valid for P(G, S ∪ {S}). In addition, if S is not a clique, then (7) is
facet-inducing for P(G̃, S′

∪ {S}).

Proof. Let (x, y) ∈ P(G, S ∪{S}) be an arbitrary integer solution, and let (x′, y′) ∈ {0, 1}|V
′
|+|S′

| be an associated solution (to
be shown to belong to P(G′, S′)), defined by x′

v = xv for v ∈ V ′
\{s}, x′

s = yS , and y′

S′ = yS′ for S ′
∈ S′. Since every v ∈ NG′(s)

has E(S, {v}) = S × {v} by construction, then x′
s + x′

v = yS + xv ≤ 1 holds. Moreover, NG′(v) ⊆ NG(v) ∪ {s}, for all v ≠ s.
Then, x′ induces a stable set in G′. Also, if y′

S′ = 1 for some S ′
∈ S′ then x′

v = 1 for some v ∈ S ′, since all the vertices in
S ′ remain in G′. Hence, (x′, y′) ∈ P(G′, S ′). Since πx′

+ µy′
≤ π0 is valid for P(G′, S′) and x′

s = yS , we conclude that the
inequality generated by the procedure is valid for P(G, S ∪ {S}).

In order to prove that (7) induces a facet of P(G̃, S′
∪ {S}), we construct |Ṽ | + |S′

| + 1 affinely independent points in the
face induced by the inequality. To this end, fix some u ∈ S and defineΦ : P(G′, S′) → P(G̃, S′

∪{S})mapping a point (x′, y′)
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into a point Φ(x′, y′) = (x, y) as follows. We have xv = x′
v for all v ∈ V ′

\ {s}, xu = yS = x′
s, xv = 0 for all v ∈ S \ {u}, and

yS′ = y′

S′ for all S ′
∈ S′. Equipped with this mapping, we construct the following affinely independent points satisfying (7)

with equality:

• LetA = {(xi, yi)}|V
′
|+|S′

|

i=1 be a set of affinely independent points satisfyingπx′
+µy′

= π0, and construct {Φ(xi, yi)}|V
′
|+|S′

|

i=1 .
These new points are affinely independent and satisfy the new inequality with equality.

• Assume w.l.o.g. x1s = 1 and construct |S| − 1 new points from Φ(x1, y1) by alternatively replacing u by the remaining
vertices in S. The new points are feasible by construction, satisfy (7) with equality, and are affinely independent with the
preceding points since the new vertices are not present in the previously constructed feasible solutions. This way we get
|S| − 1 additional points.

• Let v, w ∈ S such that vw ∉ E (such vertices exist since S is not a clique), and construct a new point from Φ(x1, y1)
by replacing u by v and w. Since every neighbor of u in G′ is also a neighbor of v and w in G, then this new solution is
feasible, and satisfies (7) with equality. Differently from the previous points, this point is not included in the hyperplane
yS =


v∈S xv .

Since there exist |Ṽ |+|S′
|+1 affinely independent points satisfying (7) at equality, we conclude that this inequality induces

a facet of P(G̃, S′
∪ {S}). �

4. Relations to the stable set polytope

In this section we explore the close relationship that exists between P(G, S) and the stable set polytope, although on
a different graph. Fix a graph G and a set of structures S, and consider the following two operations. The first operation
constructs an equivalent instance with no intersecting structures.
Splitting. If there exists some vertex v ∈ V such that S(v) = {S1, . . . , Sk} with k ≥ 2, let D1,D2 be a nontrivial partition
of {1, . . . , k} and define a new graph G′

:= (V ∪ {v′
}, E ∪ {v′w : w ∈ NG(v)}) (i.e., vertex v′ is added to G, in such a way

that v and v′ are false twins), and consider the structure set S′
:=


S\S(v)


∪ {Si : i ∈ D1} ∪ {(Si\{v}) ∪ {v′

} : i ∈ D2}. In
other words, a false twin of v is created and the structures in S(v) are ‘‘divided’’ between these twins, namely the structures
indexed by D1 remain with v and the structures indexed by D2 are removed of vertex v and receive vertex v′ instead. Define
the weights w′

: S′
→ R+ as w′(S) = w(S) for S ∈ S\S(v), w′(Si) = w(Si) for i ∈ D1, and w′((Si\{v}) ∪ {v′

}) = w(Si) for
i ∈ D2. We call I1 := (G1, S1, w) := (G, S, w) the original instance of STABws, and I ′1 = (G′, S′, w′) the instance obtained
after this splitting operation.

Mappings that preserve the objective function value of the solutions of an instance of STABws and the one derived from
the splitting operation are as follows. Let I1 and I′

1, respectively, be the families of all solutions of the two instances I1 and
I ′1 mentioned above.

Definition 2 (Φ1,1′ : I1 → I′

1). A solution for I1 encoded as (x, y) maps to a solution Φ1,1′(x, y) = (x′, y′) of I ′1 such that
x′
v = x′

v′ = xv , x′
u = xu for all u ∈ V \ {v}, and y′

= y.

Definition 3 (Φ1′,1 : I′

1 → I1). A solution (x′, y′) ∈ I′

1 maps to a solution Φ1′,1(x′, y′) = (x, y) of I1 such that xv =

max{x′
v, x

′

v′}, xu = x′
u for all u ∈ V \ {v}, and y′

= y.

The mappings Φ1,1′ and Φ1′,1 yield an equivalence between the two problems, and imply the following result.

Proposition 3. The optimal values of I1 and I ′1 coincide.

After a finite number of applications of this operation, the resulting instance of STABws does not have intersecting
structures. We call I2 = (G2, S2, w

2) the instance obtained as a fixed point of this splitting operation. Let Φ1,2 represent
the composition of the several applications ofΦ1,1′ that transform a solution of I1 into a solution of I2. Similarly, let us define
Φ2,1 as the converse transformation.

The following operation converts I2 into an instance I3 of the maximum weighted stable set problem.
Conversion into cliques. Let G2 = (V2, E2) and construct I3 = (G3, w

3) by G3 = (V2, E2 ∪

∪S∈S2{uv : u, v ∈ S}


). Further-

more, construct vertex weights w3
: V2 → R+ defined by w3

v = w2
S if v ∈ S for some S ∈ S2, and w3

v = 0 otherwise, for
every v ∈ V2. Since each vertex belongs to at most one structure in S2, then w3 is well defined. In other words, we add all
the edges among the vertices of each structure S (so it becomes a clique in G3) and assign the structure weight wS to each
vertex in S. Note that the weight of any stable set I in G3 coincides with the weight of the corresponding feasible solution of
I2, where all the structures intersecting I are selected. This is the basis of the following result.

Again, an equivalence between the two problems is established by means of a definition of mappings that preserve the
value of the objective function. To this end, let I3 be the family of all solutions of instance I3 defined above.

Definition 4 (Φ2,3 : I2 → I3). A solution for I2 encoded as (x, y) maps to a solution Φ2,3(x, y) = x′ of I3 such that 0 ≤

x′
v ≤ xv , for all v ∈ V , and


v∈S x

′
v = yS , for all S ∈ S2.
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a b c

Fig. 2. (a) Example instance I1 of STABws, (b) splitted instance I2 , and (c) equivalent instance I3 of the maximum weighted stable set problem.

Definition 5 (Φ3,2 : I3 → I2). A solution x′
∈ I3 maps to a solution Φ3,2(x′) = (x, y) of I2 such that xv = x′

v , for all v ∈ V ,
and yS =


v∈S x

′
v , for all S ∈ S2.

Again, the existence of these mappings establishes the following result.

Proposition 4. The optimal values of I2 and I3 coincide.

This way, starting from the original instance I1 of STABws, we construct an equivalent instance I2 of STABws and an
equivalent instance I3 of the maximum weighted stable set problem (see Fig. 2 for an example). Let P1 := P(G1, S1), P2 :=

P(G2, S2), and P3 := STAB(G3) be the corresponding polytopes. We are interested in the relations among these three poly-
topes, and in this section we provide partial results on this issue.

It isworth remarking that in practice it is not generally a good idea to search for amaximum-weight stable set in I3 instead
of directly tackling I1, since in the setting that motivated this work the number of structures (corresponding to the number
of previously generated cutting planes) may be quite large. Due to this fact, I3 will generally be much larger than I1 if the
cutting planes have intersecting supports. Nevertheless, the relations between the corresponding polytopes are interesting
and – in our opinion – are worth investigating.

4.1. Relations between P1 and P2

We first consider relations between P1 and P2. For the sake of simplicity, we assume that G1 has exactly one vertex
v contained in more than one structure, and furthermore that v is contained in exactly two structures, called S1 and S2
respectively. This is not too strong an assumption, since if there are more than two structures containing v or there are
more vertices in this situation, we can iteratively apply the results we obtain for this basic case. In the new instance I2, we
assume S1 to include v, and S2 to include the false twin v′.

Given a vector z with entries indexed by a set U , and a subset U ′
⊆ U , let zU ′ denote the subvector comprising the entries

indexed by U ′.

Proposition 5 (Facets from P1 to P2). If πx + µy ≤ π0 is valid for P1 and πv ≥ 0, then this inequality is also valid for P2. If,
furthermore, (a) the inequality is facet-inducing for P1 and (b) µS2 = 0 or there exists a feasible solution (x, y) satisfying πx+µy
= π0, xv = 1, and


w∈S2

xw ≥ 2, then πx + µy ≤ π0 is facet-inducing for P2.

Proof. Let (x′, y′) be an integer point in P2 and (x, y) = Φ2,1(x′, y′). Since (x, y) ∈ P1, we get πx + µy ≤ π0. In addition,
Definition 3 states that y = y′ and x′

w ≤ xw holds for all w ∈ V , being satisfied at equality if w ≠ v. Thus, πv ≥ 0 leads to
πx′

V + 0x′

v′ + µy′
≤ πx + µy ≤ π0, which implies validity.

To show facetness, let (x1, y1), . . . , (x|V |+|S|, y|V |+|S|) be affinely independent points in F = {(x, y) ∈ P1 : πx+µy = π0}.
The points A = {Φ1,2(xi, yi)}

|V |+|S|

i=1 are also affinely independent, and satisfy πx + µy = π0. Let (x, y) ∈ F with xv = 1,
which exists because πv ≥ 0 and so the facet-inducing inequality is not −xv ≤ 0. By hypothesis (b), µS2 = 0 or we can
assume that xu = 1 for some u ∈ S2\{v}. In the first case, construct the feasible solution (x̄, ȳ) ∈ P2, where x̄V = x, x̄v′ = xv ,
ȳS2 = 1−yS2 and ȳS = yS , for all S ≠ S2. In the second case, construct the feasible solution (x̄, ȳ) ∈ P2, where x̄V = x, x̄v′ = 0
and ȳ = y. In both cases, the new solution is feasible and is affinely independent w.r.t. the points in A, since xv = xv′ and
y = y′ hold for every (x, y) ∈ A. Hence, A ∪ {(x̄, ȳ)} is a set of |V | + |S| + 1 affinely independent points in P2 satisfying
πx + µy ≤ π0 with equality, so this inequality induces a facet of P2. �

Some words on the hypothesis (b) are in order. Assume µS2 ≠ 0. Since yS2 ≤


w∈S2
xw and µS2 > 0 by Lemma 1, then

there is no feasible solution in the face of P1 with


w∈S2
xw ≥ 1 and yS2 = 0 (notice that setting yS2 = 1 would provide a

larger LHS, thus violating the inequality). This implies that theremust exist some feasible solution in this facewith


w∈S2
xw

≥ 2, since otherwise we would get yS2 =


w∈S2
xw , contradicting the fact that πx + µy ≤ π0 induces a facet and πv ≥ 0.

The hypothesis (b) asks for the existence of such a solution, where moreover one of the selected vertices is v.
Proposition 5 implies that the symmetrical inequality πvxv′ +


u≠v πuxu + µy ≤ π0 (i.e., the inequality obtained from

πx + µy ≤ π0 by replacing xv by xv′ ) is also valid for P2, and induces a facet under the same assumptions.
For the converse direction, note that P1 consists of the intersection of P2 with the hyperplane {(x, y) : xv = xv′}, then

projected down in order to eliminate the variable x′
v . If we denote projv′(P) to be the polytope obtained from P by projecting
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Fig. 3. Instance showing that the inclusion (8) is strict.

out the variable xv′ , then

P1 ⊆ projv′


P2 ∩ {(x, y) : xv = xv′}


, (8)

and this inclusion can be strict. Indeed, consider the instance depicted in Fig. 3. The point (x, y)with x = (1/2, 1/2, 1/2) and
y = (1, 1) does not belong to P1 (since, e.g., it violates yS1 + yS2 ≤ xv + 1, which is valid for P1) but the corresponding point
in P2, i.e., x = (1/2, 1/2, 1/2, 1/2) and y = (1, 1) is a convex combination of (x1v, x

1
v′ , x1u, x

1
w, y1S1 , y

1
S2

) = (1, 0, 0, 1, 1, 1)
and (x2v, x

2
v′ , x2u, x

2
w, y2S1 , y

2
S2

) = (0, 1, 1, 0, 1, 1).

Lemma 3. Let U = {1, 2, . . . , p} and U ′
= U ∪ {p + 1}. If {z i}i∈U is a linearly independent set in Rp+1, then {z iU }i∈U has a

linearly independent subset with p−1 vectors in Rp. If {z i}i∈U ′ is an affinely independent set in Rp+1, then {z iU }i∈U ′ has an affinely
independent subset with p vectors in Rp.

Proof. Let A ∈ R(p+1)×p and AU ∈ Rp×p be the matrices whose columns are the vectors {z i}i∈U and {z iU }i∈U , respectively. If
rank(A) = p, then rank(AU) ≥ p − 1. This proves the first part. To show the second one, it is enough to recall that {z i}i∈U ′ is
an affinely independent set if, and only if, {z i − zp+1

}i∈U is a linearly independent set. �

Proposition 6. If πx+ µy ≤ π0 is valid for P2, then


u≠v,v′ πuxu + (πv + πv′)xv + µy ≤ π0 is valid for P1. Furthermore, it is
facet-inducing for P1 if πx + µy ≤ π0 is facet-inducing for P2, πv′ = 0 and πv > 0.

Proof. Let (x, y) be an arbitrary point in P1, and consider (x′, y′) = Φ1,2(x, y). Since this new point belongs to P2, πx′
+ µy′

≤ π0 holds. By the definition of Φ1,2, we get πx′
+ µy′

=


u≠v,v′ πuxu + (πv + πv′)xv + µy, and the first part of the
proposition follows.

To show facetness, let (x1, y1), . . . , (x|V |+|S|+1, y|V |+|S|+1) be affinely independent integer points in F = {(x, y) ∈ P2 :

πx + µy = π0}. Let i = 1, 2, . . . , |V | + |S| + 1. If xi
v′ = 1, then xiv = 1—otherwise, setting xiv = 1 would lead to another

point in P2 violating the inequality, since πv > 0. Therefore, max{xi
v′ , xiv} = xiv . This implies (x̄i, ȳi) := Φ2,1(xi, yi) = (xiV , yi)

and


u≠v,v′ πux̄iu + (πv + πv′)x̄iv + µȳi = πxi + µyi = π0, provided that πv′ = 0. Finally, Lemma 3 ensures that the set

A = {(xiV , yi)}|V |+|S|+1
i=1 has an affinely independent subset with |V | + |S| points. �

4.2. Relations between P2 and P3

We now consider relations between P2 and P3. We will assume that S2 = {S}, so the following results apply for single-
structure instances, but they can be iteratively applied for general instances. In general, P3 is a projected face of P2, since
P=

2 = {(x, y) ∈ P2 : yS =


v∈S xv} is a facet of P2, and

P3 = projS(P
=

2 ),

where projS(P) denotes the polytope obtained from P by projecting out the variable yS (see Fig. 4).

Proposition 7. If πx + βyS ≤ π0 is a valid inequality for P2, then πx + β


v∈S xv ≤ π0 is valid for P3. Furthermore, if
πx + βyS ≤ π0 induces a facet of P=

2 , then πx + β


v∈S xv ≤ π0 is facet-inducing for P3.

Proof. Let x ∈ P3 be an arbitrary point in P3, and construct (x, y) = Φ3,2(x), which is feasible for P2. Since πx + βyS ≤ π0
and yS =


v∈S xv , then πx + β


v∈S xv ≤ π0 also holds. Since x is arbitrary, then this last inequality is valid for P3.

Now, suppose that the inequality is facet-inducing for P=

2 . Since dim(P=

2 ) = dim(P2) − 1 = |V |, there is an affinely inde-
pendent set A := {(xi, yiS) : i = 1, 2, . . . , |V |} of integer points in P=

2 satisfying the inequality at equality. Let i ∈ {1, 2, . . . ,
|V |}. Since yiS =


v∈S x

i
v ∈ {0, 1}, we have that Φ2,3(xi, yi) = xi and πxi + β


v∈S x

i
v = πxi + βyiS = π0. To show that {xi :

i = 1, 2, . . . , |V |} is affinely independent, consider a combination
|V |

i=1 αixi = 0. Notice that
|V |

i=1 αiyiS =


v∈S
|V |

i=1 αixiv
= 0. The desired result follows by the affine independence of A. �

Proposition 8. If πx ≤ π0 is a valid inequality for P3 with πi = β for every i ∈ S, then πV2\SxV2\S + βyS ≤ π0 is valid for P2.
If, furthermore, the inequality induces a facet of P3, then πV2\SxV2\S + βyS ≤ π0 is facet-inducing for P=

2 .
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Fig. 4. The polytope P3 is a projected face of P2 .

Propositions 8 and 6 allow us to perform a separation procedure in STAB(G3) and convert the obtained inequalities into
valid inequalities for P(G, S), as long as the separated inequalities for STAB(G3) have the same coefficient for all the vertices
in each structure (and this can be achieved by, e.g., separating rank inequalities as in [8]).

Overall, these results do not provide a complete characterization of either polytope in terms of the other ones, but still
point to the close relationship that exists between STABws and the maximum weighted stable set problem.

5. General facets of P(G, S)

Wenowpresent general families of facet-inducing inequalities for P(G, S). The emphasis on this section lies on generality,
so we shall provide quite general definitions, and when suitable we will provide particular cases corresponding to standard
graph structures.

5.1. The α-inequalities

Let S′
= {S1, . . . , Sk} ⊆ S be a family of structures such that all edges between every pair of structures Si, Sj, i, j =

1, . . . , k, i ≠ j, exist, i.e., E(Si, Sj) = Si × Sj. If S′
≠ ∅, define S = ∪

k
i=1 Si and N(S′) =


v∈S N(v) \ S, i.e., N(S′) is

the common neighborhood outside S′ of the vertices in S′. For consistency, if S′
= ∅, define S = ∅ and N(S′) = V . Let

U ⊆ N(S′). As depicted in the example of Fig. 5, this configuration is such that E(Si, Sj) = Si × Sj and E(Si,U) = Si × U , for
all i, j = 1, . . . , k, i ≠ j. Finally, for u ∈ U , denote by αu the size of the largest stable set of U containing u. We define

u∈U

1
αu

xu +


S∈S′

yS ≤ 1 (9)

to be the α-inequality associated with S′ and U . These inequalities are inspired by the external inequalities in [1] for the
asymmetric representatives formulation for the classical vertex coloring problem.

Proposition 9. The α-inequality (9) is valid for P(G, S).

Proof. In every feasible solution, if a structure Si ∈ S′ is chosen, then some v ∈ Si must be chosen as well, which implies
that no vertices in Sj ∈ S′, j ≠ i, or in U can be chosen. Consequently,


u∈U

1
αu

xu +


S∈S′,S≠Si
yS = 0 holds for such a

solution. On the other hand, if none of the structures in S′ is chosen, then a stable set I ⊆ U can be selected. Since |I| ≤ αu,
for all u ∈ I , we get


u∈I

1
αu

xu ≤ 1 and (9) holds. �

We now address the facetness properties of these inequalities. Following usual notation, we call α(T ) the size of the
largest stable set in G[T ] (i.e., the subgraph of G induced by T ). We say that U is α-maximal in N(S′) if U ≠ ∅ and
α(U ∪ {v}) > α(U), for every vertex v ∈ N(S′)\U . Call E(U) := {uv ∈ E : u, v ∈ U}. We say that the edge uv ∈ E(U) is safe
if there exist two stable sets Iu, Iv ⊆ U such that

• Iu\Iv = {u},
• Iv\Iu = {v}, and
• |Iu| = |Iv| = αz , for all z ∈ Iu ∪ Iv .

Define Gsafe
= (U, E ′) to be the graph with vertex set U and edge set E ′

= {uv ∈ E(U) : uv is safe}.
If A ⊆ V , then we define xA ∈ {0, 1}|V | to be the characteristic vector of A within V , i.e., xAv = 1 if v ∈ A and xAv = 0

otherwise. If v ∈ V , wewrite xv
:= x{v} as a notational shorthand. Similarly, if B ⊆ S, thenwe denote by yB the characteristic

vector of Bwithin S, and we define yS := y{S} for S ∈ S.
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Fig. 5. Example of the support for the α-inequalities: E(S1, S2) = S1 × S2 , E(S1,U) = S1 × U , and E(S2,U) = S2 × U .

Theorem 3. If (a)N(S′) = ∅ or U isα-maximal in N(S′), (b)G[C] contains a stable set of sizeαu, for every connected component
C of Gsafe and u ∈ C, and (c) no structure in S′ induces a clique, then the α-inequality (9) induces a facet of P(G, S).

Proof. Let F be the face of P(G, S) defined by the inequality (9), and let (π, µ, π0) ∈ R|V |+|S|+1 be such that πx + µy = π0
for every (x, y) ∈ F . We will show that (π, µ) is a multiple of the coefficient vector of (9), thus proving that this inequality
induces a facet of P(G, S).
Claim 1: πv = 0 for v ∈ V\(U ∪ S). If v ∉ N(S′), then there are S ∈ S′ and u ∈ S such that uv ∉ E. The points (xu, yS) and
(x{u,v}, yS), both in F , show that πv = 0. If v ∈ N(S′), by (a) U is α-maximal in N(S′), and so there exists a maximum stable set
I ⊆ U of G[U] such that I ∪ {v} is also stable. The feasible solutions (xI , 0) and (xI∪{v}, 0) both satisfy (9)with equality and show
that πv = 0.
Claim 2: πv = 0 for every v ∈ S. Let i ∈ {1, . . . , k}. Since Si is not a clique, there exist u, v ∈ Si such that uv ∉ E. The points
(xu, ySi), (xv, ySi), and (x{u,v}, ySi) show that πu = πv = 0. For every w ∈ Si\{u, v}, the solutions (xu, ySi) and (xw, ySi) imply
πw = πu, hence πw = 0. We conclude that πt = 0 for every t ∈ Si.
Claim 3: πu = πv for uv ∈ E ′. This equality is derived from points (xIu , 0) and (xIv , 0), where Iu and Iv are stable sets that
establish that uv is safe.
Claim 4: αuπu = µSi for u ∈ U and i = 1, . . . , k. Let C be the connected component of Gsafe including u. Let v ∈ Si and I ⊆ U be
a maximum stable set of G[C] containing u (given by hypothesis (b)). Claim 3 implies πr = πs for every r, s ∈ C, hence πv = πu
for all v ∈ I . Moreover, we have |I| = αu. The points (xI , 0) and (xv, ySi) establish the claim.
Claim 5: µSi = µSj for i, j = 1, . . . , k. Regarding Claim 4, it suffices to consider the case where U = ∅. The points (xu, ySi) and
(xv, ySj), for u ∈ Si and v ∈ Sj, show the desired equality.

By combining these claims, we get that (π, µ) is a multiple of the coefficient vector of (9), hence this inequality induces
a facet of P(G, S). �

Condition (b) in Theorem 3 is satisfied when U is a clique, odd cycle, or odd wheel, among others. Finding a violated α-
inequality such that U is a clique and k = 0 is equivalent to finding a clique of maximumweight. So if we restrict ourselves
to the case where the only violated α-inequalities have this property, the separation problem of these inequalities is NP-
complete. This suggests that the general separation problem for this family of inequalities is computationally hard.

5.2. Outer-set inequalities

Let S ∈ S be a structure, and let T ⊆ V\S be a vertex subset. Let k ∈ Z+ such that α(T ) ≤ k+ 1 and every u ∈ S satisfies
α(T\N(u)) ≤ k. In this setting, we define

yS +


u∈T

xu ≤ 1 + k (10)

to be the outer-set inequality associatedwith S, T , and k. Fig. 6 shows an example of such a structure, with k = 1. Note that the
anti-neighborhood in T of every vertex u ∈ S (i.e., the set T\N(u)) has stability number k = 1, whereas α(T ) = k + 1 = 2.
This is the key observation for the following result.

Proposition 10. The outer-set inequality (10) is valid for P(G, S).

Proof. Let (x, y)be an arbitrary feasible solution. If yS = 1 then somevertexv ∈ S has xv = 1, hence


u∈T xu =


u∈T\N(v) xu
≤ α(T \N(v)) ≤ k, and (10) is satisfied. On the other hand, if yS = 0 then inequality (10) holds trivially because


u∈T xu ≤

α(T ) ≤ k + 1. Since (x, y) is arbitrary, the inequality (10) is valid for P(G, S). �

In order to analyze facetness, define a pair u, v ∈ S ∪ T to be safe if there exist two stable sets Iu, Iv ⊆ S ∪ T such that

• |Iu| = |Iv| = k + 1,
• |Ir ∩ T | ≥ k, for r = u, v,
• Iu\Iv = {u}, and
• Iv\Iu = {v}.
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Fig. 6. Example of the support for the outer-set inequalities.

Define Gsafe
= (S ∪ T , E ′) to be the graph with vertex set S ∪ T and edge set E ′

= {uv : uv is safe}. Notice that, if u, v ∈ T is
a safe pair, then uv ∈ E. However, a safe pair with a vertex from S may be a non-edge.

Theorem 4. If

(a) α(T ) = k + 1,
(b) α(T\N(u)) = k for every u ∈ S,
(c) there is a safe pair belonging to S that defines a non-edge,
(d) T ismaximal with respect to properties (a) and (b), i.e., for every vertex v ∉ T∪S,α(T∪{v}) = k+2 or α((T∪{v})\N(u)) =

k + 1, for some u ∈ S, and
(e) T belongs to a connected component of Gsafe,

then the outer-set inequality (10) induces a facet of P(G, S).

Proof. Assume S = {S} by the Lifting Lemma. Let F be the face of P(G, S) defined by the inequality (10), and let (π, µ, π0)
∈ R|V |+|S|+1 be such that πx+ µy = π0 for every (x, y) ∈ F . Again, we will show that (π, µ) is a multiple of the coefficient
vector of (10).

Claim 1: πu = πv for u, v ∈ T . Let wz ∈ E ′ such that w, z ∈ S ∪ T is a safe pair and take the corresponding stable sets Iw and
Iz with k + 1 vertices. Consider three cases:

• w, z ∈ T : we must have |Iw ∩T | = |Iz ∩T | = k′
∈ {k, k+1}. If k′

= k+1, the points (xIw , 0) and (xIz , 0) are inF . If k′
= k,

then there is exactly one vertex from S in both Iw and Iz , and so (xIw , yS) and (xIz , yS) are in F . In both cases, we conclude that
πw = πz ;

• w, z ∈ S: in this case, |Iw ∩ T | = |Iz ∩ T | = k. Again (xIw , yS) and (xIz , yS) are in F , thus showing that πw = πz ;
• w ∈ T , z ∈ S: now, |Iw ∩ T | = k + 1 and |Iz ∩ T | = k. The solutions (xIw , 0) and (xIz , yS) are in F . Then, πw = πz + µS .

These three items imply that πr = πs for every pair of vertices r, s ∈ S ∪ T belonging to the same connected component of Gsafe.
Since T itself is included in a single connected component of Gsafe, the claim follows.

Claim 2: πu = πv for u, v ∈ S. By the hypothesis (b), there exist stable sets I ⊆ T\N(u) and I ′ ⊆ T\N(v), both of size k. The
solutions (xI∪{u}, yS) and (xI

′
∪{v}, yS) satisfy the inequality at equality and, together with Claim 1, imply πu = πv .

Claim 3: πu = 0 for u ∈ S. Let v, w ∈ S be a safe pair such that vw ∉ E, which exists by the hypothesis (c). The solutions
(xIw , yS) and (xIw∪{v}, yS) show that πv = 0. Together with Claim 2, this shows πu = 0 for every u ∈ S.

Claim 4: µS = πv for some v ∈ T . Pick a vertex w ∈ S. By the hypothesis (b), there exists a stable set I ⊆ T\N(w) of size k.
Also, the hypothesis (a) asserts that there exists a stable set I ′ ⊆ T with size k + 1. The points (xI∪{w}, yS) and (xI

′

, 0) satisfy the
inequality with equality, implying µs + πw +


u∈I πu =


u∈I ′ πu. Claim 1 and Claim 3 imply µS = πv , for some v ∈ I ′ ⊆ T .

Claim 5: πv = 0 for v ∉ T ∪ S. By the hypothesis (d), either (i) there exist some vertex u ∈ S and some stable set I ⊆ (T ∪

{v})\N(u) with |I| = k + 1 or (ii) there exists a stable set I ′ ⊆ T ∪ {v} with |I ′| = k + 2. Notice that both I and I ′ contain
v. If (i) holds, then the solutions (xI∪{u}, yS) and (xI∪{u}\{v}, yS) establish the claim. If (ii) holds, then the solutions (xI∪{u}, 0) and
(xI∪{u}\{v}, 0) establish the claim.

By combining these claims, we get that (π, µ) is a multiple of the coefficient vector of (10), hence this inequality induces
a facet of P(G, S). �

Again, if k = 0 then the outer-set inequality (10) amounts to finding a clique of maximum weight in the common
neighborhood of the vertices in S, hence its separation is NP-complete. We leave open the computational complexity of
the separation problem for general values of k, but we conjecture such problem to be computationally difficult, due to this
observation for k = 0.
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Fig. 7. Support for the cell inequalities.

5.3. Cell inequalities

Let S′
= {S1, . . . , Sk} ⊆ S, S′

≠ ∅. Let W ⊆ V , W ≠ ∅, and, for i = 1, . . . , k, define Ni := Si ∩ W and Ci = Si\W . Also
defineW out

:= W\ ∪
k
i=1 Si (see Fig. 7). An S′-partial transversal stable set (S′-PTSS) is a stable set I ⊆ V such that |I ∩ Si| ≤ 1

for every i = 1, . . . , k. Call αS(W ) the size of the largest S′-PTSS in G[W ]. In this setting, we define


S∈S′

yS +


v∈Wout

xv ≤ αS(W ) +

k
i=1


v∈Ci

xv (11)

to be the cell inequality associated with S′ andW . We assume Ni ≠ ∅ for i = 1, . . . , k, as otherwise (11) is dominated by the
model constraint (4) associated to Si combined with the cell inequality for S′

\Si andW .

Proposition 11. The cell inequality (11) is valid for P(G, S).

Proof. Let (x, y) be an arbitrary feasible solution, and let B = {Si ∈ S′
:


v∈Ni
xv ≥ 1}. We claim

S∈B

yS +


v∈Wout

xv ≤ αS(W ),

since the LHS is atmost the size of the largestB-PTSS included in the solution. Furthermore, for Si ∉ B weget ySi ≤


v∈Ci
xv ,

since xv = 0 for every v ∈ Ni. By summing these inequalities and 0 ≤


Si∈B


v∈Ci

xv , we get (11) which is, therefore,
valid. �

For facetness, define a pair of vertices (u, v) ∈ W × W to be safe if there exist S′-PTSSs Iu and Iv in G[W ] such that

• |Iu| = |Iv| = αS(W ),
• Iu\Iv = {u}, and
• Iv\Iu = {v}.

Again, define Gsafe
= (W , E ′) to be the graph with vertex set W and edge set E ′

= {uv ∈ E(W ) : uv is safe}. Finally, we say
thatW is αS-maximal if the addition of any vertex toW strictly increases αS(W ), i.e., αS(W ∪ {v}) > αS(W ) for any v ∉ W .

Theorem 5. If (a) W is αS-maximal, (b) Ni has a non-edge whose endpoints are a safe pair, for i = 1, . . . , k, and (c) Gsafe is
connected, then the cell inequality (11) induces a facet of P(G, S).

Proof. Assume S = S′ by the Lifting Lemma. Let F be the face of P(G, S) defined by the inequality (11), and let (π, µ, π0) ∈

R|V |+|S|+1 such that πx+µy = π0 for every (x, y) ∈ F . Again, we will show that (π, µ) is a multiple of the coefficient vector
of (11). Let S = ∪

k
i=1 Si and S′

I = {S ∈ S′
: S ∩ I ≠ ∅}, for I ⊆ V .

Claim 1: πu = 0 for u ∉ S ∪W. Since W ≠ ∅ is αS-maximal, there exists an S′-PTSS I ⊆ W such that I ∪ {u} is also an S′-PTSS.
We also get |I| = αS(W ), since otherwise the addition of u to W would keep αS(W ) unchanged. Then, the solutions (xI , yS′

I ) and
(xI∪{u}, yS′

I ) settle the claim.
Claim 2: πv = −µSi for Si ∈ S and v ∈ Ci. The αS-maximality of W ≠ ∅ implies that there exists an S′-PTSS I ⊆ W such that
I ∪ {v} is also an S′-PTSS. Therefore, the stable set I cannot have a vertex in Ni. Then, the solutions (xI∪{v}, yS′

I∪{Si}) and (xI , yS′
I )

imply πv + µSi = 0.
Claim 3: πu = 0 for u ∈ Ni, i = 1, . . . , k. By the hypothesis (b), Ni has a non-edge rs whose endpoints are a safe pair. The
set I := Ir ∪ Is is a stable set (although it is not an S′-PTSS) and furthermore (xI , yS′

I ) satisfies (11) with equality. The solutions
(xI , yS′

I ) and (xI\{r}, yS′
I ) show πr = 0. Since Gsafe is connected then πr = πt for every t ∈ Ni, and the claim follows.
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Claim 4: µSi = µSj = πu, for all i, j = 1, . . . , k and u ∈ W out. Let wz ∈ E ′ be a safe pair of vertices in W. Then, there exist

S′-PTSSs Iw and Iz in G[W ] such that the solutions (xIw , yS′
Iw ) and (xIz , yS′

Iz ) are in F . Since Iw\Iz = {w} and Iz\Iw = {z}, we get
πw + µyS′

Iw = πz + µyS′
Iz . Consider the following cases:

• If w ∈ Ni and z ∈ Nj for some i, j ∈ {1, . . . , k}, i ≠ j, we have that S′

Iw\S′

Iz = {Si} and S′

Iz\S′

Iw = {Sj}, so Claim 3 implies
µSi = µSj .

• If w ∈ Ni for some i ∈ {1, . . . , k} and z ∈ W out, then S′

Iw = S′

Iz ∪ {Si}, which implies µSi = πz .
• If w, z ∈ W out, then S′

Iw = S′

Iz , hence πw = πz .

Since S′
≠ ∅ and Gsafe is connected, we get the desired equalities.

By combining these claims, we get that (π, µ) is a multiple of the coefficient vector of (11), hence this inequality induces
a facet of P(G, S). �

Concerning the separation of the cell inequalities, let us consider the case where every Si is a clique and is contained
in W , which implies that Ci = ∅ and αS(W ) = α(W ). Then the separation problem for the corresponding inequality is
equivalent to finding a maximum weighted stable set in W . In this case, the inequality does not satisfy condition (b) and is
not facet-defining. So, this does not imply that the separation of the cell inequalities is computationally hard, but it leads us
to conjecture that this is indeed the case.

6. Concluding remarks

In this work we started an initial polyhedral study of the maximum stable set problem with weights on vertex subsets.
The polytope associated to a natural integer programming formulation shares many properties with the stable set polytope,
but has many additional features. Many open questions remain. On the one hand, it would be interesting to deepen the
knowledge on the relations between the polytope associated to STABws and the stable set polytope, studied in Section 4.
On the other hand, P(G, S) shows intrinsic properties that do not seem to be inherited from the stable set polytope (as,
e.g., facet-inducing inequalities with negative coefficients in the x-variables), and further studying such properties seems to
be a promising line of research, specially in order to tackle real-life instances arising within column-generation procedures
for the vertex coloring problem.
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