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Abstract

We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying
especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene
sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by
radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the
existence of total absorption.
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The localization provided by surface plasmons (SPs) is very
attractive for many applications such as data storage, mi-
croscopy, light generation or biophotonics [1, 2]. Apart from
the well known SPs supported by an insulator–metal interface,
long living SPs can be supported by graphene –a 2 D sheet of
carbon atoms organized in a honeycomb lattice– from terahertz
up to mid–infrared frequencies [3]. High confinement, relative
low loss, and the ability of tuning the SP spectrum through elec-
trical or chemical modification of the carrier density, makes the
graphene a promising plasmonic alternative material to noble
metals at long wavelengths [4, 5]. Phase–coupling techniques
which give the photon the additional propagation constant in-
crease needed to achieve SP excitation have been extensively
used. One of the most popular coupling techniques is based on
the use of attenuated total reflection (ATR) which requires the
introduction of a second surface, usually the base of a prism, as
shown in Figure 1 for the Otto configuration [6, 7]. The exci-
tation of SPs causes a pronounced minimum in the reflectivity
which may reach zero value (total absorption condition) for op-
timized ATR structures [6, 8].

In this letter, we report the main results of our theoretical
study about the total absorption phenomenon in an ATR sys-
tem in Otto configuration with graphene monolayer. By apply-
ing energy conservation in a finite–size region, we demonstrate
that critical coupling in which the incident radiation is totally
absorbed is achieved when the energy loss of the SP by radi-
ation into the prism is equal to its energy loss by absorption
into the graphene monolayer. This result is in accord with those
obtained in Ref. [9] by applying a different method and for
a metallic ATR structure. In addition, it is found that the re-
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flection coefficient can have two zeros for two different angles
of incidence and thicknesses of the vacuum layer (or chemical
potentials on the graphene monolayer). In [10], it was reported
that the reflectivity of an ATR system in Otto configuration may
have two zeros, but only one of them is caused by excitation of
SPs. In contrast, we show that the two zeros found here are due
to the excitation of SPs on the graphene monolayer. Further-
more, we give necessary conditions on ATR parameters for the
existence of total absorption. The Gaussian system of units is
used and an exp(−iω t) time–dependence is implicit through-
out the paper, with ω as the angular frequency, t as the time,
and i =

√
−1.

Figure 1 shows the Otto–ATR structure. Medium 2 is vac-
uum in contact with two nonmagnetic dielectric materials (µ1 =

µ3 = 1) with real and positive electric permittivities (ε1, ε3). A
SP can be excited along the graphene monolayer located at in-
terface 2–3 when the incident plane wave reaches the base of the
prism (interface 1–2) with an angle θ greater than the critical an-
gle of total reflection. To illustrate this coupling mechanism, we
study the electromagnetic response of the ATR structure when
excited by an plane wave (plane wave scattering problem, or
reflectivity problem). On the other hand, this coupling is re-
ciprocal, i.e., the SP propagating by the graphene monolayer in
+x direction radiates away from the vacuum layer in the form
of a beam that progresses at an angle θ in the prism region, as
shows figure 1. This fact leads to radiation losses which are
expressed as an increase of the imaginary part of the SP prop-
agation constant. To obtain all the propagation characteristics
of SPs in the ATR system, we study the non–trivial solutions
to the boundary value problem in the absence of incident fields
(guided–wave eigenvalue problem, or eigenmode problem).

For p polarization the magnetic field of the electromagnetic
eigenmodes is parallel to the z axis, H = eiαx h(y) z, where α is
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Figure 1: (Color online) Schematic illustration of the ATR geometry. The
graphene sheet is located at y = 0 interface, between media 2 and 3. Closed
region where energy conservation is applied (dashed line). Lines of Poynt-
ing vector flux are plotted (blue lines) for ω/c = 0.025µm−1 and thickness
d = 0.026λ. ε1 = 16, ε2 = 1, ε3 = 3.9 and graphene parameters are
µc = 0.35eV, γ = 0.1meV and T = 300K.

the propagation constant of the ATR eigenmodes and

h(y) =


r1 eiβ(1)y y > d,[
r2 eiβ(2)y + t1 e−iβ(2)y)

]
0 < y < d,

t2 e−iβ(3)y y < 0.
(1)

Here, r j and t j ( j = 1, 2) are complex magnitudes, and β( j) =√
k2

0ε j − α2 ( j = 1, 2, 3) is the component in the y direction of
the wave vector in each of the media, k0 = ω/c is the mod-
ulus of the photon wave vector in vacuum, ω is the angular
frequency and c is the vacuum speed of light. The electric field
E = eiαx e(y) are easily written also as functions of r j and t j by
means of a Maxwell curl equation, where

e(y) =


r1

k0ε1
[−β(1)x + αy]eiβ(1)y y > 0,

1
k0ε2

[−β(2)(t1eiβ(2)y − r2e−iβ(2)y)x
+α(t1eiβ(2)y + r2e−iβ(2)y)y] 0 < y < d,

t2
k0ε3

[β(3)x + αy]e−iβ(3)y y < 0.

(2)

There are two types of boundary conditions which must fulfill
the solutions given by Eqs. (1) and (2), boundary conditions at
y = ±∞ and boundary conditions at interfaces y = 0 and y = d.
The former requires either outgoing waves at infinity or expo-
nentially decaying waves at infinity, depending on the values
of α and k0

√
ε j [12]. The boundary conditions at y = d re-

quire the continuity of the tangential components of the electric
field and the magnetic field. The boundary conditions at y = 0
require the tangential component of the electric field to be con-
tinuous and the tangential component of the magnetic field to be
discontinuous across the interface by an amount whose magni-
tude is equal to the magnitude of the surface current density on
graphene sheet [5, 11]. Applying these conditions in Eqs. (1)
and (2) we obtain a homogeneous system for the four unknown
coefficients r j and t j ( j = 1, 2) [5]. The dispersion equation

for the propagation constant α can be obtained by requiring the
determinant D of this system to be zero, a condition that can be
written as

D = (Z1 + Z2)
(
Z2 + Z3W+2

)
+ (Z1 − Z2)

(
Z2 − Z3W−2

)
ei2β(2)d = 0, (3)

where Z j =
β( j)

ε j
, W±2 = 1 ± 4πσ

ck0
Z2 and σ is the conductivity of

the graphene sheet given by the Kubo formula [11]. It should
be noted that the eigenvalue α is complex–valued, where Imα
is the spatial decay rates and it represents the total damping of
the eigenmode. In addition to SPs, there also exist eigenmodes
having |Reα| < k0. In this case, the field inside the vacuum
layer propagates along x direction bouncing between the two
boundaries at y = 0 and at y = d before it loses most of its
energy by refraction, i.e., by radiation into the semi infinite re-
gions above (y > d) and below (y < 0) the vacuum layer. In this
paper we confine our attention to just SPs which are evanescent
waves in the vacuum layer and in the semi infinite region y < 0.

Since Eq. (3) gives two complex solutions differing in sign
(for propagation along ±x), we have chosen the one with Reα >
0. For conventional media, in this case dielectric media 1, 2 and
3, the physically correct Riemann sheet gives Imα ≥ 0 [12].

After calculating α, we obtain the field amplitudes
r2, t1, and t2 in Eq. (1) as a function of r1. As both the mag-
netic and the electric SP fields depend on x axis in the form
eiαx, the time–averaged Poynting vector thus reads

⟨S⟩ = c
8π

Re (E ×H∗) = e−2Imαxs(y), (4)

where the asterisk denotes the complex conjugate and s(y) =
e(y) × zh∗(y). In the second equality in Eq. (4) we have taken
into account that α is a complex number. According with Eq.
(4), surface plasmons are attenuated as propagate along +x di-
rection. The attenuation is due by two damping processes,
namely, energy radiation and energy absorption. This means
that, as the SP propagates along the graphene sheet, part of the
energy it carries can be radiated into the prism and the other
part is absorbed in the graphene sheet. In the proximity of the
graphene surface, the lines of Poynting vector flux are almost
parallel to the x–axis. Due to absorption losses in the graphene
sheet, a small number of lines finish on this surface, as can be
seen in figure 1, where we have plotted the lines of Poynting
vector for ω/c = 0.025µm−1 and for a thickness d = 0.026λ
(λ = 2π c/ω is the photon wavelength). The presence of sur-
face 1–2 at the base of the prism is manifested in the existence
of current lines that emerge from the surface in region y > d
in the form of radiation flow. The density of these lines along
the propagation direction decreases as a consequence of the de-
crease in the power density carried by the SP. These lines can be
verified to form an angle θ with the y−axis given by the relation
ω/c
√
ε1 sin θ = Reα.

In considering the energy balance in the region
OAA′O′B′C′CB of Figure 1, lines OA and O′A′ are taken
to be parallel to the radiation direction. As a consequence, the
energy flows i1 through the line OA and i

′

1 through the line
O′A′ are equal to zero. The total incident energy flow reaching
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the region CBOA has two parts: the flow i3 through the line CB
in the lower medium 3 and the incident energy flow i2 through
the line BO in the medium 2. One part i(2)

ag of the incident
energy flow i2 is absorbed by the graphene sheet and another
part is is transmitted to the medium 1 through the line OO′. A
third part i

′

2 is transmitted through the line O′B′. Taking into
account Eq. (4), we can see that this part is i

′

2 = i2 e−2 Imα X ,
where X is the length of the segment AA′ . Since the medium 2
is lossless, the energy conservation in region BOO′B′ is written
as

i2(1 − e−2 Imα X) = is + i(2)
ag . (5)

Taking into account that i1 = i
′

1 = 0, the energy conservation in
region OAA′O′ gives is = ir and Eq. (5) is rewritten as

i2(1 − e−2 Imα X) = ir + i(2)
ag , (6)

where ir is the energy flow radiated by the SP. On the other
hand, one part i(3)

ag of the energy flow i3 is absorbed by the
graphene sheet, a second part i

′

3 = i3 e−2 Imα X is transmitted
through the line C′B′ and a third part it is transmitted through
the line CC′. Due to evanescent character of the field in medium
3, as CB tends to infinite, then it tends to zero. Therefore, the
energy conservation in region CBB′C′ is written as

i3(1 − e−2 Imα X) = i(3)
ag . (7)

If we divide Eqs. (6) and (7) by the energy ia = (i2 + i3)(1 −
e−2 Imα X) leakage into the region OAA′O′B′C′CB, we obtain

i2
i2 + i3

=
ir
ia
+

i(2)
ag

ia
, (8)

and

i3
i2 + i3

=
i(3)
ag

ia
. (9)

By adding Eqs. (8) and (9) we obtain the energy conservation
in the region OAA′O′B′C′CB

1 =
ir
ia
+

iag

ia
, (10)

where iag = i(2)
ag + i(3)

ag is the total energy flow absorbed by the
graphene sheet.

Figures 2a and 2b show the real and the imaginary parts of
the nondimensional propagation constant κ = cα/ω as a func-
tion of d/λ (λ = 250µm) at ω/c = 0.025µm−1 (ω = 7.5THz)
and for µc = 0.35eV. For values of d/λ ≥ 0.11, both functions
Re κ(d/λ) and Im κ(d/λ) take a value that is almost constant and
equal to the corresponding values at d/λ→ ∞ . This shows that
both the phase velocity and the surface plasmon energy losses
are essentially those corresponding to a single graphene sheet
sandwiched between two dielectric half space with permitivi-
ties ε2 and ε3, where the surface plasmon does not radiate. As
the thickness d is reduced (d/λ < 0.11), Re κ(d/λ) increases
significantly, indicating a decrease in the surface phase veloc-
ity, whereas Im κ(d/λ) increases until it reaches a maximum
value at d/λ ≈ 0.0153, and then decreases. Figure 2c shows

the energy absorbed in the graphene sheet and the energy ra-
diated into the upper medium, both normalized with respect to
the total energy leakage ia, as a function of d/λ. These curves
intersect at thicknesses d = 0.01268 λ and d = 0.02609 λ, indi-
cating that a critical coupling in which the intrinsic damping of
the surface plasmon equals its radiative damping occurs at two
different conditions (power–matched condition). Under these

Figure 2: (Color online) (a) Real and (b) imaginary parts of the nondimensional
surface plasmon propagation constant κ for different thickness d and for ω/c =
0.025µm−1 (ω ≈ 7.5THz). (c) iag/ia and ir/ia as a function of d/λ. ε1 = 16,
ε2 = 1, ε3 = 3.9 and graphene parameters are µc = 0.35eV, γ = 0.1meV and
T = 300K.

conditions we expect that when a p–polarized plane wave is
impinging from region y > d, all the incoming radiation be ab-
sorbed at resonance. This fact can be confirmed by studying the
reflectivity problem in which an incident plane wave is coming
under the angle θ to the y axis. The complex amplitude r1 of
the fields reflected in medium 1 can be obtained by following
steps formally similar to those already presented to calculate the
magnitude denoted by the same name in the eigenmode prob-
lem, adding to the fields in region y > d in Eqs. (1) and (2) a
term which takes into account the presence of the incident plane
wave. The boundary conditions are the same as in the eigen-
value problem but the scattered field must satisfy the radiation
condition at y = ±∞. Under these hypotheses, the complex am-
plitude r1 of the fields reflected in medium 1 results r1 = N/D,
where

N = (Z1 − Z2)
(
Z2 + Z3W+2

)
+ (Z1 + Z2)

(
Z2 − Z3W−2

)
ei2β(2)d. (11)

It is noteworthy that whereas in the eigenmode problem previ-
ously analized α is a complex magnitude that represents the
propagation constant of an SP, in the reflectivity problem α
takes a real value imposed by the incident plane wave, α =
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k0
√
ε1 sin θ. When the condition k0

√
ε1 sin θ = Reα holds, we

expect an energy transfer from the incident wave to the SP and
therefore a decrease in the reflectivity of the system. Figure 3a
shows the reflectivity |r1|2 as a function of the angle of incidence
θ for two thicknesses d/λ = 0.01268 and d/λ = 0.02609, which
correspond to the power–matching condition. Although curves
with a pronounced dip (computed minima 10−6) can be ob-
served at an angle of incidence θ ≈ 57.35◦ for d/λ = 0.02609,
and θ ≈ 77◦ for d/λ = 0.01268, we confirm the total absorp-
tion condition by a more rigorous way based on the computa-
tion in the complex plane of the zeros of the reflection coeffi-
cient (zeros of Eq. (11)), i.e., by calculating the complex zero
z0 = sin θ0, where θ0 is the extension to the complex plane of
the angle of incidence where the reflection coefficient is zero,
as a parametric function of d/λ and for the same parameters
as in Figure 2. As the value of d/λ is changed, the positions
of the zero determine a trajectory in the complex plane. This
trajectory cross the real axis (where θ0 is real) for some crit-
ical value of d/λ where the total absorption phenomenon oc-
cur. Figure 3b shows the parametric trajectory of z0(d/λ) for

r1

Figure 3: (Color online) (a) Reflectivity |r1(sin(θ))|2 as a function of the sine of
the angle of incidence θ and for the two values of the thickness d/λ where the
two damping processes, surface plasmon radiation and surface plasmon absorp-
tion, are of equal magnitude (power matched condition ir = iag). (b) Trajectory
of the zero of the reflectivity in the complex plane as a function of d/λ (z0(d/λ)).
Frequency and constitutive parameters are the same as in Figure 2

0.012 < d/λ < 0.043. When d/λ is increasing, the imaginary
part of z0 changes its sign at a critical value of d/λ between
d/λ = 0.01267 and d/λ = 0.01269, for which the reflectivity is
null. The trajectory of Figure 3b shows that the imaginary part
of z0 changes its sign again, at a critical value of d/λ between
d/λ = 0.02608 and d/λ = 0.02610, indicating a new condition
of total absorption.

It is well known that it is possible to tune the ATR conditions

by changing the chemical potential µc of the graphene mono-
layer [6]. Following a similar procedure as used to determine
the complex zeros as a parametric function of thickness d, by
varying the value of µc (mantaining fixed the value of d), one
can obtain the trajectory of the zero in the complex plane as
a parametric function of µc. When this trajectory crosses the
real axis, the total absorption phenomenon occur for a criti-
cal value of µc. Thereby, the total absorption condition, i.e.
the power matched condition, can be tuned by changing ge-
ometric or electrical parameters (the thickness of the vacuum
layer or the chemical potential). We set r1 = 0 and obtain
how the values of µc change with the values of d/λ . In Fig-
ure 4a we plot the pair of these two variables giving r1 = 0 for
ω/c = 0.01, 0.025 and 0.04µm−1.

~

~

Total Absorption allowed

Total Absorption forbidden

Total Absorption allowed

Total Absorption forbidden

Figure 4: (Color online) (a) Thickness d/λ, and chemical potential µc, cor-
responding to zero reflectivity of the ATR structure for frequencies ω/c =
0.01, 0.025 and 0.04µm−1. Regions of the plane (b) µ − ω/c and (c) d/λ − ω/c
for which total absorption occur. (b) and (c) show a plot of µ̃c and d̃/λ, both as
a function of frequency, respectively.

From this figure, it can be seen that there are a maximum
value of d/λ (d̃/λ) and a minimum value of µc (µ̃c), both quan-
tities depending of frequency, for which the total absorption
phenomenon occur. For instance, for ω/c = 0.025µm−1 the
maximum thickness value is d̃ = 0.05537λ and the correspond-
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ing chemical potential µc = 0.92431eV (point A in figure 4a).
As we move along the curve from the point A, by decreasing
the value of µc, we arrive to the point B where the minimum
value of the chemical potential µ̃c = 0.32949eV for the oc-
currence of total absorption is reached. It is worth noting that
for values of µc lower than µ̃c or for values of d larger than d̃,
the total absorption phenomenon is forbidden. Figure 4b shows
the curve of µ̃c as a function of frequency, which separates the
region where total absorption occur for two conditions from re-
gion where such phenomenon is forbidden. When µc lies on the
boundary curve µ̃c(ω/c), the two zeros of the reflection coef-
ficient coincide. Similarly, we found that, when thickness d/λ
lies bellow or above the curve of d̃/λ as a function of frequency
in Figure 4c, the reflectivity can have zeros (one or two zeros)
and no zero, respectively.

In conclusion, we have investigated the occurrence of to-
tal absorption in an Otto–ATR system with graphene mono-
layer. By calculating the complex zeros of the reflectivity and
by solving the dispersion relation for the complex propagation
constant of SPs, we have demonstrated that this phenomenon
can be achieved for two different resonant conditions. When
the chemical potential of the graphene monolayer is maintained
fixed, these conditions can appear at two angles of incidence
and thicknesses of the vacuum layer, while if the thickness of
the vacuum layer is fixed, these conditions can appear at two
angles of incidence and chemical potentials. We have demon-
strated that in these resonant conditions the total absorption
phenomenon occurs when the power radiated by the SP is equal
to the power absorbed into the graphene monolayer. Further-
more, we have calculated the value of µ̃c(ω/c) and of d̃/λ(ω/c)
which separates the region where total absorption occur from
region where such phenomenon is forbidden.
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