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Abstract Cyclogenesis and long-fetched winds along the
southeastern coast of South America may lead to floods
in populated areas, as the Buenos Aires Province, with
important economic and social impacts. A numerical model
(SMARA) has already been implemented in the region to
forecast storm surges. The propagation time of the surge
in such extensive and shallow area allows the detection
of anomalies based on observations from several hours
up to the order of a day prior to the event. Here, we
investigate the impact and potential benefit of storm surge
level data assimilation into the SMARA model, with the
objective of improving the forecast. In the experiments,
the surface wind stress from an ensemble prediction sys-
tem drives a storm surge model ensemble, based on the
operational 2-D depth-averaged SMARA model. A 4-D
Local Ensemble Transform Kalman Filter (4D-LETKF)
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initializes the ensemble in a 6-h cycle, assimilating the
very few tide gauge observations available along the north-
ern coast and satellite altimeter data. The sparse coverage
of the altimeters is a challenge to data assimilation; how-
ever, the 4D-LETKF evolving covariance of the ensemble
perturbations provides realistic cross-track analysis incre-
ments. Improvements on the forecast ensemble mean show
the potential of an effective use of the sparse satellite altime-
ter and tidal gauges observations in the data assimilation
prototype. Furthermore, the effects of the localization scale
and of the observational errors of coastal altimetry and tidal
gauges in the data assimilation approach are assessed.

Keywords Storm surge prediction · Data assimilation ·
Ensemble Kalman filter

1 Introduction

The Argentine coast is prone to abnormal sea level rise
during particular meteorological events, especially at the
highly populated Rı́o de la Plata. Particularly, favourable
conditions for surge generation occur on the northernmost
shallow section of the shelf next to the mouth of the estu-
ary. Cold outbreaks producing along-shelf sustained strong
winds and extratropical cyclones lead to storm surges on
the Atlantic coast that propagate into the inner Rı́o de la
Plata, and they can occasionally produce flooding in exten-
sive areas. The most severe events occur when intense local
winds along the extremely shallow estuary enhance the
surge. The densely populated Buenos Aires City (Fig. 1)
is affected by storm surges mainly by (1) piling-up estu-
ary waters against the coast (positive surges due to strong
southeasterly winds) and thus causing severe floods in the
low-lying areas of the city or (2) by partially sweeping
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Fig. 1 Blue and red lines correspond to measurements done by Jason
1, Jason 2 and Envisat during September 2011. Red lines are limited
to 60 km along-track from the coast. Blue lines correspond to other
measurements where the water depth is less than 200 m. The positions
of the three tide gauges used are indicated with black dots, as well as
the validation point Buenos Aires

the waters from the coast (negative surges due to strong
northwesterly winds), thus affecting navigation safety and
drinking water supply. The surge can be anticipated sev-
eral hours and up to the order of a day ahead by the
signal on water level observations at stations conveniently
located upstream. The Center for Prevention of the Rı́o de la
Plata Rising at the Naval Hydrographic Service, Argentina
receives real-time water level data from tide gauges along
the Rı́o de la Plata south-western coast and the Atlantic
coast, which are shown in Fig. 1. With this information, in
conjunction with forecasted winds, the SHN produces advi-
sories which estimate the storm surge with a 12-h lead time
that may be increased to 24 h in the case of remote surges
generated along the open ocean coasts and detected at Mar
del Plata (Fig. 1). Thresholds for a rising sea level warning
depend on the position along the coast and vary from 2.10 m

above the reference level at Buenos Aires to 2.00 m at the
innermost or delta area. Alerts are issued whenever 2.70 and
2.60 m total water level are expected, respectively. A half-
meter rising surge coincident with spring tides can originate
a warning. Low water level warnings and alerts are issued
for −0.50 and −0.80 m (below the reference level), respec-
tively, from Buenos Aires to the head and into the delta area.
In consequence, the relatively long forecast horizon for the
innermost zone of the Rı́o de la Plata estuary provides an
excellent opportunity to make an attempt to improve the
forecast through water level data assimilation.

Sea surface height (SSH) as measured by satellites has
become a powerful tool for oceanographic- and climate-
related studies. Whereas in the open ocean good accuracy
has been achieved, more energetic dynamics and a number
of calibration problems have limited applications over con-
tinental shelves and near the coast. In recent years, a number
of dedicated corrections are suggesting that SSH altimetry
data significantly improve coastal altimetry data (Cipollini
et al. 2010). Despite the low spatial and temporal coverage
of satellite altimetry data, in large regions as the Patagonian
shelf, it is expected that they will contribute significatively
to the storm surge prediction.

The SMARA numerical model (Etala 2009a) provides
guidance to the storm surge forecast at the SHN. Within
a collaborative effort of the Argentine Naval Hydrographic
Service and the University of Buenos Aires, we aim at
investigating the impact and potential benefit of storm surge
level data assimilation into the numerical prediction models.
The tide gauge observations available only along the north-
ern coast are assimilated jointly with altimeter data on the
shelf sea. The sparse cross-track coverage of the altimeters
is a challenge to data assimilation. We aim at optimizing
their impact by realistically extending the cross-track cor-
rections produced by the observations to the modelled storm
surge. We intend to demonstrate that through improved
flow-dependent forecast uncertainties from an ensemble in
an advanced data assimilation method, we can achieve this
goal.

The development of steady-state Kalman filtering
(Heemink and Kloosterhuis 1990) for weakly nonlinear 2-
D shallow water hydrodynamic models lead to the most
extensive application of data assimilation to the storm surge
operational prediction (see, e.g. Verlaan et al. (2005)), still
in use. Selected tidal gauge observations along the British
and Dutch coasts are assimilated to improve the water level
forecast at the Royal Netherlands Meteorological Institute
(KNMI). The assimilation of remotely sensed data was
experimented at an early stage in the application of altime-
ters to the observation of water level in Philippart et al.
(1998). Unfortunately, in a limited area with abundant good
quality ground observations like the North Sea, a notice-
ably impact of satellite altimetry could not be assessed.
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Philippart et al. (1998) applied to the fully nonlinear storm
surge prediction problem, the Reduced Rank SQuare RooT
(RRSQRT) Kalman filter (Verlaan and Heemink 1997),
which is an efficient approximation to the Extended Kalman
Filter (EKF) through a simplification of the error covari-
ance calculation. The same approach was implemented by
Cañizares et al. (1998) in a different 2-D model, also for
the North Sea. Both practical methods were later included
in a common general framework for data assimilation in
hydrodynamic models, the COmmon Set of Tools for the
Assimilation of Data (COSTA) (van Velzen and Verlaan
2007), as well as the Ensemble Kalman Filter (EnKF). Other
approaches to assimilate data for storm-surge operational
prediction considered adjoint techniques (Li et al. 2013;
Lionello et al. 2006) and variational data assimilation (Peng
and Xie 2006).

Since Evensen (1994) first proposed the EnKF as an
alternative to the EKF, where flow-dependent background
errors were based on an ensemble, several approaches to
the model update or analysis step have been introduced and
applied to multiple problems in geophysics. The EnKF algo-
rithm is naturally independent from the prediction model
used. An efficient square root EnKF scheme based on the
singular evolutive interpolated Kalman (SEIK) filter was
implemented by Butler et al. (2012) to the problem of the
storm surge produced by hurricanes. The authors succeeded
in achieving improved maximum water levels by using
uncertainties from hindcasts of an advanced 2-D storm surge
model for selected events. Ott et al. (2004) proved the fea-
sibility of an entirely local scheme for the EnKF in the
so-called Local Ensemble Kalman Filter (LEKF) and Hunt
et al. (2007) dramatically improved the efficiency of cal-
culations in the Local Ensemble Transform Kalman Filter
(LETKF). The latter belongs to the SQuare RooT (SQRT)
filters type or “deterministic” EnKF, in which an analysis
for the ensemble mean is first produced and then the ensem-
ble perturbations expanded through the analysis covariance.
To our knowledge, this method has not been applied so far
to the storm surge prediction problem and its potential per-
formance is explored through the prototype presented in this
work.

The main goal of this initiative is to investigate the feasi-
bility and potential benefit of assimilating observations with
storm surge prediction purposes in a context of a large area
of generation lacking real-time conventional data, given the
opportunity provided by newly available satellite observa-
tion techniques. Section 2 refers to the observational data
used for both assimilation and validation. In Section 3, we
briefly explain the basics of the data assimilation method
and describe the application of the Miyoshi and Yamane
(2007) implementation of the 4D-LETKF. The data assim-
ilation scheme is mainly focused on a deterministic-type
6-h forecast, represented in this case by the ensemble mean.

Section 4 presents the design of 1-month assimilation exper-
iments. Results are presented and discussed in Section 5.
Finally, conclusions are summarized in Section 6.

2 The storm surge observations

Satellite altimetry data have been downloaded using Radar
Altimeter Database System (RADS, http://rads.tudelft.nl).
The data base contains validated and verified altimeter data
products that are consistent in accuracy, format, correction
and reference system parameters. Much effort has been put
in calibrating and validating the raw data, i.e. harmoniza-
tion of geophysical corrections, of secondary data and of the
measurements themselves. The validation includes editing,
tide experiments, radiometer-model collocation and Rossby
and Kelvin waves propagation analysis (Naeije et al. 2000).
Data for all satellite missions available for the periods of
time studied have been included in this study (Fig. 1).

Coastal water level stations are available from the SHN
for the northernmost part of the shelf and in the Rı́o de la
Plata only. In this study, hourly water level residuals from
three tide gauges are used in the assimilation: Mar del Plata
at the open sea coast, Santa Teresita at the mouth of the estu-
ary and Atalaya at the mid-estuary (Fig 1). The last two are
also used for validation of the 6-h forecasts produced in this
work. Satellite altimetry provides some coverage off-shore
and, occasionally, on the extensive areas lacking coastal
data.

3 The data assimilation method

A basic assumption is that the actual errors-of-the-day lie
within a lower dimension space than the full system. Then,
if the ensemble system provides a reasonably good estima-
tion of these errors, the dimension of the problem can be
reduced locally. The general approach of the EnKF com-
bines the flow-dependent background errors provided by
an ensemble prediction and the observations to build the
analysis ensemble, including the analysis uncertainty. The
analysis ensemble so obtained provides the initial state to a
new ensemble forecast cycle. Due to the unavoidable pres-
ence of model errors and non linearities, short cycles are in
general more suitable to the EnKF, and in particular to the
LETKF, than a longer assimilation cycle (e.g. Kalnay et al.
2007)

The 4D-LETKF, as originally coded by T. Miyoshi
(Miyoshi and Yamane 2007), has been adapted to assimi-
late storm surge data into an ad hoc 20-member storm surge
model ensemble. This 4-D scheme initializes the ensem-
ble in a 6-h cycle (Fig. 2). Given an n-dimensional model
state x and an m-member model ensemble, δX is the m × n

http://rads.tudelft.nl
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Fig. 2 The 4D-LETKF assimilation cycle. The ensemble forecast
provides a first-guess that is corrected with the observations in the
analysis. These analysis ensemble members are the initial fields in the
next forecast cycle

matrix containing the m perturbations of the ensemble. The
ist member perturbation is defined as its departure from the
ensemble mean δxi = xi − x̄. We will denote vectors in
lowercase and matrices in uppercase.

3.1 The forecast step

The ensemble forecast step is common to any EnKF. It is
performed globally in the model space by integrating the
model M forward from the analysed state Xa at the time
step t − 1:

X
f
t = M(Xa

t−1) (1)

Then, the forecast error covariance matrix provided by the
ensemble is

P f ≈ (m − 1)−1δXf (δXf )T (2)

The SMARA model is a regional 2-D depth-averaged
hydrodynamic model used to represent a limited number of
tidal constituents and surge, that is extensively described
in Etala (2009a). Its one-third degree lat/lon resolution on
the shelf is low, when compared to other current determin-
istic prediction models. In spite of its basic approach and
coarseness, the SMARA model showed up to be compara-
ble to global models with assimilation when validated with
off-shore altimeter data (Saraceno et al. 2010). Although
coastal tidal ranges at the southern shelf are sub-estimated,
its behaviour is well balanced throughout the Atlantic coast
and the shelf. Its low cost in an ensemble scheme also makes
it suitable for this study.

The observation operator H applied to the model vari-
able in the ensemble provides the “model observation”, i.e.
the model in the observation space Yf = H(Xf ). To
get the modelled surge values Xf , water levels from the
tides-only model run are substracted from the run includ-
ing atmospheric forcing and tides. δY f = H(δXf ) is the
perturbation of the model observation to the ensemble mean.

3.2 The analysis step: LETKF

The p available observations yo introduce the new infor-
mation in the observational increment or innovation in
(yo − y

f

i ). The observed water level residuals, calculated
as the total observed water level minus the astronomic tide,
are considered as the observed surge yo. The way these
observations are considered in the analysis step to update
the background (Section 3.2) is what distinguishes LETKF
from other EnKF methods.

The LETKF determines the analysis ensemble locally in
the space spanned by the ensemble, as a linear combination
of the background perturbations. The local transformation
formulated by (Hunt et al. 2007) allows to assimilate obser-
vations simultaneously and independently from point to
point while keeping horizontal smoothness. The updated
model state becomes:

Xa = x̄f + (δXf )Wa (3)

where W is a base of the space spanned by the perturba-
tions of the ensemble and defined with a null ensemble
mean w̄f = 0 and covariance P̃ f = (k − 1)−1I . The
authors demonstrate that the solution for W also minimizes
the original analysis cost function, and analysis equations
analogous to EnKF are solved for the w ensemble in the
local m × m ensemble space, substantially simplified by
the variable transformation. Variables in the local space are
hereinafter denoted by tilde.

P̃ a = [(m − 1)I + (δY f )T R−1(δY f )]−1 (4)

where R is the observational error covariance matrix of
the locally used observations and the “model observation”
y

f

i was defined in Section 3.1. The uppercase in Eqs. 5
and 4 indicates the p observations × m ensemble members
arrange. Finally, P̃ a is the analysis ensemble perturbation
covariance matrix P in the local space, and R is the obser-
vational error covariance matrix. The modification to R
introduced by the observation localization (10) is described
in Section 3.3.

The LETKF belongs to the class of the so-called “deter-
ministic” or square-root EnKF. It updates in a single step
the ensemble mean (5) and retrieves the analysis ensemble
perturbations from the covariance matrix in Eq. 6. So,

w̄a = P̃ a(δY f )T R−1(yo − ȳf ) (5)

and

δWa = [(m − 1)P̃ a]1/2 (6)

provide the transformation weights w. The innovation (yo−
yf ) represents the new information provided by the obser-
vation with respect to the model state. In Eq. 5, it is
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expressed in terms of the perturbation from the ensemble
mean.

Equations 4 to 6 are those actually solved by the algo-
rithm in the local space of the ensemble. The full analysis
ensemble is then built through (3) back into the global
model space. Alternatively, we may choose to update the
analysis mean or the deterministic model in a hybrid-type
approach by

x̄a = x̄f + (δXf )w̄a (7)

The analysis ensemble perturbations in this scheme are
close to the original background ensemble perturbations, as

δXa = (δXf )(δWa) (8)

from Eqs. 3 and 7.
The full analysis ensemble is then built including addi-

tive inflation, which is a tuning parameter for the ensemble
spread, as

Xa = x̄a + (δXa) + AI × (δXk) (9)

where AI is a tuning factor and (δXk) are the perturba-
tions of an arbitrary ensemble. It is an usual practice to set
any linear combination of the forecast perturbations after
the spin-up of the assimilation, while additive perturbations
may be generated by any other method or randomly at the
initiation of the cycles. The particular implementation in this
work is detailed in Section 4.

3.3 Observation localization

Any corrections introduced by the observations only take
place in the scale of the ensemble perturbations covariance
and cross-covariance, as will be shown in Section 5. Either
the extent of the ensemble perturbation covariances or an
arbitrary localization scale may limit the influence of the
observations in space and time in the analysis. Nevertheless,
some localization in space and time is required to override
occasional spurious background perturbations covariance,
not related to the local background uncertainty. Due to the
potentially large scale of the surge phenomena, observa-
tions within a wide local patch are selected for the analysis
around a grid point. The so-called “observation localiza-
tion” approach is applied, in which the observational error
is exponentially increased with distance to the analysis grid
point by the function ω in Eq. 10.

ω(dist) = e−dist2/2L2
(10)

The weight factor ω is applied to the inverse R matrix
in the calculations. In the local analysis of Eqs. 4 to 6, ω

is an attribute of every observation. This “smoothed local-
ization” approach lowers the influence of an observation

to half its value at a distance L while decreasing expo-
nentially. L is called the “localization scale”. Although in
a classical EnKF approach, as discussed in (Miyoshi and
Yamane 2007), the impact of this scale is closely related
to the observational errors and smoother than covariance
localization, in this LETKF scheme, it impacts directly
on the weight of the individual innovation through R in
Eq. 5.

Asynchronous observations from altimeters and hourly
observations from tide gauges are disposed at hourly time
slots within a 6-h assimilation window, centered on the anal-
ysis time. The innovations calculated on an hourly basis
pair with evolving forecast error covariances in Eq.5. A
localization in time ω(t), completely analogous to Eq. 10,
limits the observation influence within the assimilation win-
dow, where a parameter T plays the role of the localization
scale.

4 Experiments setup

Data assimilation experiments of storm surge observations
were carried out on the Argentine continental shelf for
September 2011. The experiments on the current prototype
were aimed at the assessment of the benefit of data assimi-
lation on the storm surge short-term prediction. We explore
the role of the basic parameters in the scheme, such as local-
ization scales and observational errors, in such an impact.
The period of study was chosen due to three moderate to
strong rising surge events that took place on the northern
shelf and estuary in that month. Residuals from hourly water
level observations at tide gauges in Fig. 1 are plotted in
Fig. 3. The observation in the City of Buenos Aires, at the
head of the estuary, is also shown for reference, although
it is not included in this study. It will be shown below that
the prototype ensemble mean failed to predict accurately
the peaks, providing a favourable scenario to test a potential
improvement through the assimilation.

Coastal stations are conveniently located for the fol-
lowup of the storm surge into the Rı́o de la Plata. On the
other hand, the lack of data on the rest of the shelf is only
tempered by the sparse and unevenly distributed altimeter
observations. Typical spatial distributions of data within a
9-h assimilation window are seen in Figs. 6 and 8. This is
why the knowledge of the forecast uncertainties becomes
particularly important for the correct estimation of analy-
sis increments. Occasionally, covariance of the surge level
perturbations δxiδxj extends along the coastline. The along-
shore storm surge produced by long-fetched southerly winds
provides the most suitable scenario for the data assimila-
tion. Alternatively, local southwesterly winds produced by
relatively small size perturbations may only benefit from
local data. The horizontal scale of the uncertainties and
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Fig. 3 Observed storm surge
level at Mar del Plata, Santa
Teresita, Atalaya and Buenos
Aires tide gauges for September
2011

their covariance is clearly reflected in the ensemble mean
analysis increments on a case-by-case basis in next section.

The storm surge model ensemble is driven by the NOAA
Global Ensemble Forecast System (GEFS) (Wei et al. 2008),
obtained from the THORPEX Interactive Grand Global
Ensemble (TIGGE) at a 1◦ × 1◦ resolution. A major limita-
tion is the too coarse resolution of the atmospheric input for
the problem of the storm surge, and possibly a low number
of members. We have not investigated into a better estima-
tion of the forecast uncertainties and this is a pending issue.
Calibration of an actual system is out of the scope of this
work.

The 4D-LETKF initializes the storm surge ensemble
members at every cycle. The means provided by the LETKF
to act on the ensemble spread is the inflation of the ini-
tial state perturbations in Eq. 9 in every cycle. In the
spin-up period (2−3 days, not shown) an extra ensem-
ble inflated the spread, which was null at the initial
state. That extra ensemble consisted of randomly selected
members of the original background ensemble from var-
ious time slots within the assimilation window. Inflation
at later cycles was handled with additional perturbations
from the model ensemble itself, being mindful of the
24-h continuity cycle of the forcing ensemble perturba-
tions so not to introduce extra noise (H. Alves, personal
communication). The latter is not a desirable property in
our short-cycle system, and any other method of infla-
tion involving the forcing fields perturbations was not
considered.

We designed a 9-h [t − 5, t + 3] assimilation win-
dow for observations. Data from the tidal gauge network,
at least, is usually expected before the initiation of the
actual run in an idealized practice. In consequence, the

cut-off time for data in wet models may be later that
its counterpart for the atmospheric model assimilation
cycle. It is true that, in this scenario, observations from
hours [t + 1, t + 3] may be assimilated twice, but that
would happen in different cycles to different background
fields.

The horizontal localization scale L in Eq. 10 ranged
from 1000 to 100 km, while the time localization scale
T varied between t ± 3 and t ± 1 hours in our various
experiments. The observations get their errors increased
according to Eq. 10. Apart from that, the filter performs a
gross quality check against first guess before the analysis.
We intervened in that control with a preliminary solution,
by allowing a tolerance parameterized as a 30 % above the
background root mean square error (RMSE) and the obser-
vational error, according to the source. We assumed 11-
and 5-cm RMSE for the altimeter observational errors in
separate tests, and a 3-cm RMSE for the tidal gauge obser-
vations. In all cases, we considered the 6-h forecast (back-
ground) error against observations as an objective decision
criteria.

5 Results and discussion

It is widely known that the spread provided by the atmo-
spheric perturbations only does not explain the magnitude
of the errors in the water level forecast. In the context of
data assimilation, this would lead to an overweighting of
the background fields relative to the observations, due to
the underestimation of forecast and model uncertainties. In
a recent study, Altaf et al. (2014) discuss the role of covari-
ance inflation in various ensemble Kalman filter methods,
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Fig. 4 Background and analysis ensemble mean and spread for
the peak of the event in the estuary on 22 September 18:00 from
the run with inflated spread, L=500 km, T=1 h, all data used.

Background ensemble mean (a), analysis ensemble mean (b), back-
ground ensemble spread (c) and analysis ensemble spread (d)

applied to storm surge assimilation for practical forecasting
purposes. The authors conclude that the use of inflation is
effective in a better estimation of the system variance, and

it improves the performance of the assimilation, in particu-
lar when the ensemble size is small and model errors are not
considered.
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As mentioned in the previous section, the limitation to
capture actual sources of uncertainty has not been com-
prehensively addressed in this work. We artificially modi-
fied the spread by inflating the initial perturbations of the
analysis ensemble in various tests, so to roughly match
the RMSE from the hindcast to the 12-h forecast storm
surge level. For the month of our study, the determin-
istic SMARA model RMSE in Mar del Plata for those
ranges was in the order of 0.15 m. The analysis and back-
ground ensemble mean and spread so obtained at the time
of the peak of the surge in Buenos Aires are presented
in Fig. 4.

The error in the background ensemble mean, i.e. the 6-
h forecast after the assimilation evaluates the performance

of the data assimilation scheme. The improved initializa-
tion should lead to a measurable benefit in the forecast from
cycle to cycle. In the following plots in this section, we
present the partial effect of different factors we assessed in
the scheme. Finally, we present the integral impact of the
data assimilation by comparing the same error curves to a
control run without data assimilation.

We provide first an overlook on the relative effect of the
model confidence against the two sources of observations
and their observational errors. In Fig. 5, we test the impact
of the calibration of the forecast uncertainties through the
analysis perturbations, against the effect of including the
altimeter observations. The mean and standard deviation
of the forecast error in three different runs for the last 20

Fig. 5 Mean (upper) and
standard deviation of the error
(lower panel) of the 6-h forecast
ensemble mean versus
observations from 10 to 30
September 2011. The black line
represents the run with all
observations. Only tide gauge
observations run in green and
the red line denotes the errors
for the run with all data when
the initial spread is enhanced by
additive inflation at every cycle
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Fig. 6 Upper panels: Storm
surge increment (m) in the
ensemble mean due to the
assimilation of tidal gauges on 7
September 00:00; L=1000 km
(a), L=500 km (b). Lower panel
(c): Surge level perturbation
covariance for Mar del Plata’s
location at that time
1/(m − 1)(δXf )MdP (δXf )

(units 10−5m2). Tidal gauges
locations are shown

-

days of the month are shown in the upper and lower pan-
els, respectively. The red lines in the plots represent the
run with inflated perturbations. The black and green lines
denote the runs where the model accuracy has been overes-
timated by not inflating the spread. Black and green differ
in the observation sources considered, i.e., black includes
altimeters and the run in green has included ground observa-
tions only. While the run in red (calibrated spread) generally
shows the best performance, we note that the magnitude of

the improvement in the errors is roughly comparable to the
inclusion of altimeter observations. Only around the time of
the peak (see Fig. 4), including the altimeter data and relying
on the model produced the best solution. The latter suggests
that overweighting the observations against the background
may be dangerous in the case of any misleading data from
the very few tidal gauges. The obvious relevance of a com-
prehensive review of quality control in this approach is,
anyway, highlighted.
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Fig. 7 Mean (upper) and standard deviation of the error (lower panel)
of the 6-h forecast ensemble mean versus observations for the most
active period in September 2011. Results correspond to different
localization scales for tide gauge observations only

As mentioned in the previous section, the information
provided by coastal tide gauges is the key to the storm
surge prediction in the estuary. With illustration purposes,
the isolated effect of these data on the analysis increments
(analysis corrections to the first-guess field) in the ensem-
ble mean is shown in Fig. 6, together with the column of the
background ensemble perturbation covariances correspond-
ing to the southernmost station’s location (Mar del Plata). In
order to avoid any external intervention in the free evolution
of covariances of the scheme, values in Fig. 6c correspond

to the run without additional inflation (the lower order of
magnitude is noted). Localization scale is L=1000 km and
L=500 km for Fig. 6a and b, respectively. Corrections at the
southern shelf area in Fig. 6a are based only on the informa-
tion provided by northern tide gauges and occasional error
covariance. These corrections could not be assessed by the
inclusion of altimeter observations in the more localized
scheme (not shown). Corrections introduced by the altime-
ters have eventually confirmed that covariances throughout
the shelf were realistic, but those cases have been more the
exception than the rule in these experiments.

The experiment results in terms of the bias and standard
deviation of the errors are presented in Fig. 7. As expected,
differences in performance were only noticeably in coinci-
dence with the most significant events. In most cases, the
widest localization performed better. An extra time local-
ization to favor the consideration of hourly data did not
introduce any benefit.

With the inclusion of altimeter data, differences are even
less remarkable in terms of forecast error, but in the same
sense as for the stations-only case. Contrast is certainly
smoothed when large amounts of satellite data in less per-
turbed areas are taken into account. We illustrate in Fig. 8
the impact of altimeters on analysis increments during the
rising stage of the strongest surge event on 22 September
06:00. Satellite tracks for the assimilation window and tidal
gauge locations are also plotted in the figure. Buenos Aires
is not assimilated. Corrections above 25 cm in the analysed
storm surge at the mouth of the estuary lead to significant
water level variations when propagated into the estuary by
the forecast, as seen from the validation in Fig. 9 below.
Panels Fig. 8a and c show the analysis increments produced
by stations only, while, in Fig. 8b and d, altimeters have
also been included. In the upper panels Fig.8a and b, a
localization scale of 1000 km has been used in the analy-
sis while, in Fig. 8c and d, L=500 km. We note the more
realistic increments in panels Fig. 8c and d. The column of
the background ensemble perturbation covariance matrix at
Mar del Plata’s location is displayed in Fig. 8e for reference.
Same as Fig. 6c, the covariances do not include additional
inflation. The 500-km localization scale looks qualita-
tively more convenient whenever observations may be more
sparse or not available at all, as it is the case in plots on
the left. The same conclusion stands for those cases with
smaller scale perturbations, as the one shown in Fig. 6.
The use of smaller observational errors, as described in
Section 3.3, enhanced the local influence of observations
(not shown). In all plots on the right, the altimeters correct
the exagerated influence of the isolated tidal gauge stations
(Fig. 8a, c) and provide further information in areas lacking
coastal observations.

Finally, the mean observational departure of the 3, 4,
and 5-h ensemble forecasts is plotted in Fig. 9 for the
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Fig. 8 Storm surge increment
(m) in the ensemble mean due to
the assimilation during the
rising storm surge event on 22
September 06:00. L=1000 km in
upper panels (a, b) and
L=500 km in central panels (c,
d). Experiments in left panels
(a, c) considered only tide gauge
data while panels on the right
(b, d) include all data in the
assimilation. In panel (e), surge
level perturbation covariance for
Mar del Plata’s location at that
time 1/(m−1)(δXf )MdP (δXf )

(units 10−5m2)

-
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32 cycles (4 per day), corresponding to the most active
week from 17 to 24 September. Only observations from
Santa Teresita and Atalaya, at the mouth and middle estu-
ary, respectively, were used in this validation. The benefit
introduced by the assimilation is clearly noted in the con-
trast between the non-assimilation control run (black line)
and any other test. Bias is practically bounded to ±0.10 m
whenever data assimilation is performed. Experiments vary-
ing the localization scale (L) and the altimeters observation
error (RMSE) suggest that the forecast uncertainty may be
better represented by larger localization scales, and that
smaller observation errors in the altimeters may improve the
water level forecast. Due to the influence of the nearby fixed
stations, the altimeters’ impact is somehow masked in this
validation.

Fig. 9 Mean (upper) and standard deviation of the observational
departure (lower panel) of the very short-range (3 to 9 h) fore-
cast ensemble mean in Atalaya and Santa Teresita during the 17−24
September stormy week. The black line denotes the control run
without assimilation. Standard localization in blue and red lines is
L=500 km (fixed stations and all data, respectively) and standard
observation RMSE=11 cm for altimeters in the red line. Reduced
RMSE=5 cm (green); a reduced localization scale L=300 km (purple)
yielded no benefit

6 Conclusions

Through these limited experiments, we have been able to
outline a general approach to the joint use of tide gauge
and altimeter storm surge observations, available from very
recent improvements in coastal altimetry. Although storm
surge data assimilation has been assessed and successfully
applied on an operational basis (Verlaan et al. 2005), the
availability of conventional data and local scenario vary
considerably from case to case. We achieved some insight
into the importance of a correction in the initial state for
the storm surge prediction, given the local morphology
and according to the scale of the perturbations, different
sources and distribution of data. The isolated effects of some
parameters which are significant to the assimilation, such
as observational errors, localization scale and additive infla-
tion, have been assessed. We demonstrated the adequacy
of the analysis increments produced by this ensemble-
based scheme, given the sparse and uneven distribution of
altimeter data.

Source of uncertainties in the storm surge forecast are
not completely captured by the atmospheric and storm
surge model ensembles. More adequate sources have to
be identified for the former, in order to advance towards
a fully established system. The later should be improved
by considering several model uncertainties that have been
identified in Etala (2009a, b) in parameterizations and forc-
ing, respectively, during the calibration of the model. The
4D-LETKF from its side provides analysis perturbations
in the initialization that are ideally representative of anal-
ysis and observational errors. The underestimation of any
of these elements would result in an overestimation of the
model accuracy, providing an overweighting of the back-
ground relatively to observations in the analyses results. The
need for adding external perturbations into the ensemble
suggests our still incomplete understanding of the system
uncertainties.

The events shown provided few but significant exam-
ples to test the performance of the 4D-LETKF assimilation
scheme applied to the storm surge prediction problem. How-
ever, the results from this prototype cannot be considered
as representative of the full operational system. Being a
deterministic-type EnKF, the scheme introduced for storm
surge data assimilation provides an excellent opportunity
to further applications in the deterministic model with
increased resolution in the forcing fields, in order to explore
the impact on longer forecast horizons. As an EnKF, its
formulation is independent from the model used, hence, it
is subjected to minimal changes upon any model update.
Its optimal performance in parallel computing environ-
ments due to the local independent calculations makes it
one of the most cost-effective advanced methods for data
assimilation.



Ocean Dynamics

The most important result we obtained in this work
was the remarkable positive impact of the data assimila-
tion on the short-range surge prediction at the mid and
outer Rı́o de la Plata. The impact at the inner estuary
was not tested directly, but can be inferred. The strongest
reduction of the error in the forecasted storm surge level
was obtained by introducing the assimilation in the fore-
cast cycle. Objective measures derived from differences in
parameterization details were negligible when compared
with the overall impact of the data assimilation. Satellite
altimetry data are very useful in the current scenario. Nev-
ertheless, the value of extra off-shore information could
not be fully assessed, due to the absence of real-time data
from tide gauges in extensive areas along the Argentine
coast.

These preliminary results suggest that numerical predic-
tion of the storm surge on the Argentine coast would benefit
from the availability of real-time observations through an
advanced assimilation method. We have demonstrated the
impact of an improved initial state in the short-range fore-
cast. The magnitude of the impact obtained at the mouth
and middle estuary with the assimilation suggests that a
significant improvement in the storm surge forecast at
the populated head may be achieved, particularly when
warning-levels are expected. This ongoing work is a part
of a collaborative effort aimed at enhancing operational
capabilities at the SHN.
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