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Abstract
This work analyzes the spontaneous emission of a single emitter placed near the graphene
waveguide formed by two parallel graphene monolayers, with an insulator spacer layer. In this
case, the eigenmodes supported by the structure, such as surface plasmon and wave guided
modes, provide decay channels for the electric dipole placed close to the waveguide. We
calculated the contribution to the decay rate of symmetric and antisymmetric eigenmodes as a
function of frequency and the orientation of the emitter. Our results show that the modification of
the spontaneous emission due to excitation of guided modes is much lower than the
corresponding decays through the excitation of symmetric and antisymmetric surface plasmons,
for which, the spontaneous emission is dramatically enhanced. As a consequence of the high
confinement of surface plasmons in the graphene waveguide, we found that the decay rate of the
emitter with vertical orientation (with respect to graphene sheets) is twice the corresponding
decay of the same emitter with parallel orientation in the whole frequency range where surface
plasmon modes exist. Differently from metallo-dielectric structures, where structural parameters
determine the range and magnitude of this emission, our work shows that, by dynamically tuning
the chemical potential of graphene, the spectral region where the decay rate is enhanced can be
chosen over a wide range.
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1. Introduction

A property of materials that exhibit a real negative electric
permittivity—such as metals—is their capacity to guide sur-
face plasmons (SPs) along their boundary [1, 2]. SPs prop-
agate along the surface with a periodicity lower than the
wavelength of same frequency electromagnetic radiation,
which is a suitable feature for the miniaturization of photonic
devices. In bounded geometries, these modes, called localized
SPs, are characterized by discrete frequencies that depend on
the size and shape of the object to which they are confined.
The localization provided by SPs is quite adequate for many

applications such as data storage, microscopy, light genera-
tion, biochemical sensing, antennas working at nanoscale
[3, 4] and control applications like light trapping [5].

Apart from the well known SPs supported by an insu-
lator–metal interface, long livid SPs can be supported by
graphene—a 2D sheet of carbon atoms arranged in a hon-
eycomb lattice [6]—from terahertz up to mid-infrared fre-
quencies [7, 8]. High confinement, relative low loss, and good
tunability of SP spectrum through electrical or chemical
modification of the carrier densitiy [7, 9–12], are three char-
acteristics that make graphene a promising plasmonic alter-
native material to noble metals.
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This paper deals with the modification of the spontaneous
emission of a single optical emitter by interaction with its
local enviroment [13], a process that plays a key role in the
realization of current light control devices, such as photonic
band gaps [14], high efficient single photon sources [15] or
single-photon transistors [16]. Since SPs are non-radiative
modes trapped on the surface, an emitter close to a plane
surface can be regarded as an element of surface roughness
that serves to couple photons to SPs [17]. Experiments con-
cerning this coupling have proved the non-radiative energy
transfer to SPs on a planar metallic interface [18, 19].

Rigorous classical theoretical approach, using Hertz-
vector representation of electromagnetic fields [20, 21] or
Green’s tensor approach [22] have been applied to determine
the contribution of the radiating and evanescent modes to the
power emitted by a source close to the reflecting surface. The
coupling between a single emitter and metals surface states
was also studied in the framework of quantum electro-
dynamics, as emission stimulated by zero-point fluctuations
of the electromagnetic field [17, 23–25]. In the limit of weak
coupling, results of quantum mechanical calculations have
been found to be similar to those derived by classical
electromagnetic theory [17, 23, 26, 27]. Both classical and
quantum formalisms have been applied to study the sponta-
neous emission of a single emitter near a planar microcavity
characterized by more than two interfaces. In these structures,
wave guided modes (WG) are resonant optical modes that,
like SPs, provide new channels for the spontaneous decay rate
of a single emitter [28–31]. Enhanced emission rate due to
excitation of p and s polarized SPs or WG modes on negative
index material multilayers has been reported [32–34]. A
variety of structures such as uniform planar microcavities
[35], periodically patterned metallic or dielectric membranes
(2D photonic crystal) [36, 37], cylindrical nanowires [38] and
gratings [39] have been the object of intensive research over
the last few years due to the possibility to engineer the WG or
SP mode density of states and consequently modify the
emission into a particular mode.

Interactions between single optical emitters and SPs on
graphene have been investigated in different structures, such
as infinite graphene monolayers [40–43], ribbons or nan-
ometer sized disks [44]. Double-layer graphene waveguides
have also become the focus of particular attention. For
example, a thin glass film coated with graphene and with a
dipole emitter embedded at the center of the glass has been
recently proposed [45]. On the other hand, coupling between
a single emitter and SPs in paired graphene layers has recently
been examined [46]. To efficiently couple the fundamental SP
mode, the emitter is set to be vertically polarized to graphene
layers and positioned at the center of the gap between them.
However, there is no reference in the literature about a
comprehensive examination of the role played by each of the
waveguide SPs in modifying the spontaneous emission rate
for an arbitrary polarization of the emitter.

In this paper we analytically study the spontaneous
emission rate of a dipole located above a waveguide formed
by two parallel graphene sheets with an insulator spacer layer,
and we present results showing the role of the eigenmodes of

the structure (SPs or WG modes) in modifying the sponta-
neous emission rate with respect to the rate in absence of the
waveguide. One of the interesting differences with a single
graphene monolayer structure is that the graphene waveguide
studied here has two graphene interfaces, each of which may
carry SP modes, and the fields of these modes can overlap
through the gap dielectric layer, leading SPs into separated
branches. By exploiting the separation between the two gra-
phene sheets as a degree of freedom, it is possible to modify
these branches and consequently their influence on the
spontaneous emission rate. In this context, several works
focused on the role that the eigenmodes play on metallic
waveguides [30, 35, 47] or on metamaterial waveguides
[33, 34, 48]. In addition, when graphene is included, by
exploiting the chemical potential on graphene monolayers as
another degree of freedom, one can shift these properties to
other frequency regions.

The plan of the paper is as follows. In section 2, we
sketch the classical electromagnetic formalism based on the
calculation of the electric vector potential. By virtue of the
translational invariance of the system along a plane parallel to
graphene sheets (x–y plane), we reduce the solution of the
original vectorial problem to the treatment of two scalar
problems corresponding to the basic modes of polarization p
(magnetic field parallel to the x–y plane) and s (electric field
parallel to the x–y plane). In section 3 we provide a general
expression for the spontaneous decay rate of an oscillating
emitter with an arbitrary orientation of its dipole moment.
Assuming that the graphene surface conductivity follows the
Kubo model, we determine the eigenmode dispersion curves
—that is, the real and the imaginary parts of the eigenmode
propagation constant as functions of the frequency—and we
present approximated analytic expressions for the sponta-
neous decay rate into these eigenmodes. By applying the
residues method, in section 4 we calculate the contribution of
each eigenmode to the total decay rate. We find that, the
decay rate near the interface through SPs is much larger (by
over five orders of magnitude) than the decay rate through
guided modes. Within the framework of quantum electro-
dynamics, results are discussed in terms of both the SP den-
sity of states and the effective mode length. Concluding
remarks are provided in section 5. The Gaussian system of
units is used and an w- texp i( ) time-dependence is implicit
throughout the paper, with ω as the angular frequency, t as the
time, and = -i 1 . The symbols Re and Im are used for
denoting the real and imaginary parts of a complex quantity,
respectively.

2. Electromagnetic field of a radiating dipole

Let us consider a structure made up of three linear, isotropic
and homogeneous media arranged as shown in figure 1. The
interfaces of the layers are parallel to the x–y plane. It is
assumed that the graphene monolayers are embedded between
adjacent dielectric layers, at z=0 and z=d. An electric
dipole is located at = ¢

 x z z, at a distance ¢ >z d from the
plane interface z=0. The current density of the electric
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dipole with moment

p placed at = ¢

 
x x is

w d= - - ¢
    
j x p x xi . 1e ( ) ( ) ( )

Since the decay rate can be related to the electric field induced
by a dipole itself, the aim of this section is to derive an
analytical expression for the scattered electric field in the
same region where the dipole is embedded. Taking into
account the infinitesimal translational invariance in the x and
y directions, the field of the electric dipole can be represented
as a superposition of two basic polarization modes: p
polarization mode, for which the magnetic field is parallel
to the x–y plane in figure 1, and s polarization mode, for
which the electric field is parallel to the x–y plane. From the
mathematical point of view, the electromagnetic field can be
represented by two scalar functions


a xp ( ) and


a xs ( ) which

are, respectively, the z component electric and magnetic
vector potentials [21, 27]
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The direct field emitted by the dipole placed at = ¢
 
x x is

written as [21, 27, 49]
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where t = p s, indicates the polarization mode,

g a b= - -k1
1
2 2 2( ) , e m=k k1

2
0
2

1 1, w=k c0 is the mod-
ulus of the photon wave vector in vacuum, ω is the angular
frequency, c is the vacuum speed of light, e1 and m1 are the
electric permittivity and magnetic permeability, respectively,
and the spectral functions dτ are given by [21, 27]
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Note that in lossless media the quantities g 1( ) are real or
purely imaginary. In the first case, which occurs in the so–
called radiative zone a b w e m+ < c2 2

1 1( ) , the inte-
grand in equation (7) represents plane waves propagating
away from the dipole along a direction that forms an angle θ

( q w e m= csin 1 1( )) with the z axis. In the second case,
which occurs in the so-called non-radiative zone
a b w e m+ > c2 2

1 1( ) , these fields represent evanescent
waves that attenuate for  ¥z .

The infinitesimal translational invariance in x and y
directions of the system for which the scalar potentials are
being searched, allows us to write the Fourier representation
of scalar potentials


a xp ( ) and 

a xs ( ) like
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where functions a b ¢tf z z, , ,m ( )( ) ( =m 1, 2, 3) depend on
the location of the source and of the polarization
mode t = p s, .

The integrand in (7) is written as
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where the superscript =m 1, 2, 3 denotes medium 1 ( >z d),
medium 2 ( < <z d0 ) or medium 3 ( <z 0), and

g a b= - +km
m
2 2 2( )( ) , with e m=k km m m

2
0
2 , is the normal

component of the wave vector in each homogeneous region.
The complex coefficients tA m( ) and tB m( ) in equations (8)–(10)
correspond to the amplitude of upgoing (+z propagation
direction) and downgoing (-z propagation direction) plane
waves, respectively, and they are solutions of Helmholtz
equation, whereas the former term in equation (8) is
associated to the primary dipole emission of the source.
There are two types of boundary conditions which must fulfill
the solutions given by equations (7)–(10), boundary condi-
tions at = ¥z and boundary conditions at interfaces z=0
and z=d. The former requires either outgoing waves at

Figure 1. Schematic illustration of the system. Two graphene sheets,
characterized by surface conductivity σ, are embedded between
adjacent dielectric layers at z=0 and z=d. The electric dipole is
located at = ¢

 x z z .
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infinity or exponentially decaying waves at infinity, depend-
ing on the values of α, β and ω.

The boundary conditions on interfaces z=0 and z=d
impose that
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where σ is the graphene conductivity, =d d1 and =d 02 .
Inserting the expressions for


Ep and


Hp given by equation (3)
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Similarly, by using equations (4) and (11) we obtain
following conditions on the scalar potential
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To obtain the complex amplitudes tA m( ) and tB m( ) we must
combine equation (7), with tf

m( ) given by equations (8) to
(10), with conditions (12) and (13) for t = p and t = s
polarization, respectively. Here, we write the amplitude
corresponding to region m=1, where the dipole is placed
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are the Fresnel reflection and transmission coefficients,
respectively, for p polarization, whereas
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are the Fresnel reflection and transmission coefficients,
respectively, for s polarization. Note that, in the case of
s = 0, i.e., in the absence of current density induced in each
graphene sheet, Fτ given by equation (16) is equal to unity
and then the coefficient (15) converges to the well known
reflection coefficient of three-layer medium without gra-
phene [49].

The potential of the scattered field in the medium m=1
can be obtained subtracting the first term in equation (8)
corresponding to the primary dipole field
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Introducing equation (21) into (7), and using equations (3)
and (4) we obtain an expression for the scattered electric field
on region >z d
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where Ap
1( ) and As

1( ) are given by equation (14).

3. Spontaneous emission on a graphene waveguide

The aim of this section is to derive a general formula of the
spontaneous decay rate of an oscillating dipole placed above a
graphene waveguide, paying special attention to the decay
rate into the eigenmodes of the structure. All of the materials
are non-magnetic (m = =m1, 1, 2, 3m ). The waveguide is
embedded in a transparent medium with an electric permit-
tivity e e=1 3 and the region of space between graphene sheets
is filled with a transparent material with an electric permit-
tivity e2.

The graphene layer is considered as an infinitesimally
thin, local and isotropic two-sided layer with frequency-
dependent surface conductivity s w( ) given by the Kubo
formula [50, 51], which can be read as s s s= +intra inter,
with the intraband and interband contributions being
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where mc is the chemical potential (controlled with the help of
a gate voltage), gc the carriers scattering rate, e the electron
charge, kB the Boltzmann constant and ÿ the reduced Planck
constant.

3.1. Radiated power

According to Poynting theorem, the time-averaged radiated
power P by a dipole with a harmonic time dependence is
given by [52]

*ò= -
 

P j E V
1

2
Re d 25

V
e{ · } ( )

where V encloses the source and

j represents the source

density current. Introducing the value of the current in
equation (1), we obtain

*
w

= ¢
  

P p E x
2

Im , 26{ · ( )} ( )

where the field

E is evaluated at the dipole position ¢


x . For an

electric dipole above the plane waveguide interface we have

= +
     
E x E x E x , 270 scatt( ) ( ) ( )∣ ( )

where
 
E x0 ( ) and

 
E x scatt( )∣ are the primary dipole field and

the scattered field, respectively. Inserting equation (27) into
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where the substitutions a f= k cos k and b f= k sin k have
been made, and tr

1,3( ) is the reflection coefficient of three-layer
medium given by equation (15), with e e=1 3.

The first term in expressions (30) and (31), equal to unity,
corresponds to the direct dipole radiation in the homogeneous
medium 1. The integration range +¥0,[ ] can be divided into
the two ranges k0, 1[ ] and +¥k ,1[ ]. In the first range, the z-
component of the propagation wave vector g 1( ) is real, which
means the waves in medium 1 are propagating. This integral
yields the contribution of multiple reflections on the graphene
waveguide of all the plane waves emitted by the dipole at
= ¢

 x z z and arriving at this position. In the second range of
integration +¥k ,1[ ], the z-component of the propagation
wave vector g 1( ) is imaginary, which means the waves in
medium 1 are exponentially decaying in the normal direction.
This integral yields the contribution of the evanescent field
radiated by the dipole, and thus it has a noticeable effect when
the dipole is close enough to the interface 1–2.

3.2. Decay through graphene eigenmodes

Eigenmodes, like WG modes or SPs, may provide decay
channels for the electric dipole placed close to the waveguide
[28]. The WG modes refer to modes which are evanescent
waves in the two semi infinite regions (regions 1 and 3) and
standing waves in the insulator spacer layer (region 2), and
SPs refer to modes which propagate along the waveguide
with their electric and magnetic fields decaying exponentially
away from the graphene sheets in all three regions.

As in any resonance phenomenon, the full characteristics
of the electromagnetic eigenmodes supported by the graphene
waveguide can be obtained by studying the singularities of
the analytic continuation of the field (22). Pole singularities
occur at generally complex locations (k is a complex mag-
nitude) and they represent the propagation constant of the
eigenmodes supported by the graphene waveguide. In the
present case of the symmetric waveguide (e e=1 3 and both
graphene sheets with the same value of the conductivity σ),
the dispersion equation of p-polarized SPs splits into two
branches [54]. The posibility of tuning the electronic prop-
erties of graphene by adjusting the bias voltage leads to
unprecedented control over the location of plasmon reso-
nances, for which this system has been suggested as an effi-
cient plasmonic modulator [55]. Apart from these plasmon
modes, p and s polarized guided modes can also be supported
by the symmetric waveguide [56].

In order to obtain all the propagation characteristics of
these eigenmodes, the propagation constants are obtained by
requiring the denominator in equation (15) to be zero

- =t
gr1 e 0, 32d2,1 2 i 22[ ] ( )( ) ( )

where we have taken into account the equality e e=1 3.
Physically, resonant condition (32) implies that a self-
consistent field is established by means of a wave bouncing
between the two boundaries of the layer at z=0 and z=d.
This mean that the wave, after reflecting from the top and the
bottom interfaces, together with a phase shift through the
layer, should become in phase with itself again [49]. Because
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the expression for the field (22) are derived from Maxwell’s
equations and boundary conditions, the resonant condition
(32) holds for both homogeneous and inhomogeneous plane
wave [57]. As a consequence of the waveguide symmetry, the
modal fields are either odd or even with respect to the mirror
symmetry plane at =z d 2. Following the same procedure
developed in [54, 56], we can see that, for p polarization
equation (32) splits into two branches, one with a symmetric
and the other with an antisymmetric magnetic field across the
gap dieliectric layer

g

g

=
+

= +

g e
g e psg

we

g e
g e

psg
we

H
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i tan
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1
symmetric,
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Similarly, for s polarization equation (32) splits into two
branches, one with a symmetric and the other with an
antisymmetric electric field across the gap dieliectric layer

g
g e
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Complex roots of equations (33) and (34) have been found by
adapting a numerical code based on Newton–Raphson
method to complex values. Figures 2(a) and (b) show the
real and the imaginary parts of the non-dimensional
propagation constant wck of SPs as a function of w c
obtained by solving equations (33) for e e= = 11 3 , e = 3.92

and for two different waveguide thicknesses, m=d 0.2 m and
m=d 0.02 m. The graphene parameters are m = 0.2c eV,

g = 0.1c meV and T=300 K. These figures also show the
curves corresponding to the propagation constant of eigen-
modes supported by a single graphene sheet interface (dashed
line), i.e., a system with the flat graphene sandwiched
between two dielectric half space with permittivities e1 and
e2. Since sIm changes sign from positive to negative, due to
the presence of the interband term in the conductivity σ, at
w m » 1.667c (w m» -c 1.667 m 1) equation (33) predicts p
polarized SPs restricted to the range below this frequency.
Moreover, the dispersion curves plotted in figure 2(a) exhibit
backbending in the vecinity of w m» -c 1.667 m 1. This
behavior has also been observed in the dispersion curves of
metallic SPs when damping is taken into account [53]. At
high frequencies, w m> -c 0.25 m 1 for m=d 0.2 m or
w m> -c 1 m 1 for m=d 0.02 m, the layer between the two
graphene sheets is thick relative to the decay length of SP in
medium 2. Therefore, SPs of the two graphene sheets are
essentially uncoupled from each other and their dispersion
curves are practically unchanged from the single interface
case. On the contrary, at lower frequencies, the fields of these
modes strongly overlap through the thin layer (medium 2),
leading to solutions into well separated branches. The upper
branch corresponds to the antisymmetric surface plasmon
(AP) mode and the lower branch corresponds to the
symmetric surface plasmon (SSP) mode.

Figure 3 shows the real part of the dimensionless pro-
pagation constant wck of WG modes as a function of w c
obtained by solving the equations (33) and (34) for p and s
polarization, respectively, and for three different waveguide
thicknesses, m=d 1 m (figure 3(a)) and =d 0.2 and

m0.02 m (figure 3(b)). It has been verified (not shown in
figure 3) that the imaginary part of the dimensionless propa-
gation constant of these modes is less than 10−4. From this
figure, it can be seen that the dimensionless propagation
constant lies between =n 11 and e= »n 1.972 2

( w< <n ck nRe1 2), thus in the upper (medium 1) and the
lower (medium 3) claddings g m( ) ( =m 1, 3) is almost purely

imaginary, g g= im
wg

( ) where g = - wk
cwg

2 2( ) , and hence,

the field mode exponentially decays along the z axis. In the
core (medium 2) g 2( ) is real and hence the field mode is
propagating along the z axis resulting in a standing wave in
this medium. This analysis confirms the guided wave nature
of these modes, which also exists for a waveguide without
graphene, provided that the core has a higher index of
refraction than the cladding, e e>2 1. Moreover, wckRe
decreases with decreasing values of d, thus the WG mode is
less tightly bound as the spacing between the two graphene
sheets decreases. This fact highlights the small degree of
localization of WG modes for very small thicknesses.

Figure 2. Dispersion curves for SSP and ASP modes, calculated for
m = 0.2 eV, T=300 K, g = 0.1c meV, e = 11 and e = 3.92 . (a)

wckRe and (b) wckIm as a function of w c. Plots also show the
SP dispersion curve for a single graphene sheet sandwiched between
two dielectric half space with permittivities e1 and e2.
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Once the zeros of equations (33) and (34) are determined,
the contribution of each pole to the total decay rate has been
calculated by the residues method [58]. These contributions
dominate the behavior of the spontaneous emission on fre-
quency regions where the eigenmodes are well defined.

In order to obtain an approximated analytic expression
for the normal decay rate into each of the eigenmodes, each
pole contribution is extracted of equation (30) in the small
losses limit for which the imaginary part of the eigenmode
propagation constant can be neglected

⎡
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where kmod is the real part of the propagation constant of a
particular eigenmode, kspp for SP or kwg for WG modes (both
quantities higher than the modulus of the photon wave vector

in vacuum w=k c0 ), g = = -g wk
cmod i mod

2 21 ( )( )
is the z

component of the wave vector in medium 1, and Res is the
residue of the integrand in (30) at the pole =k kmod,
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Similarly, the contribution of each eigenmodes to the parallel
decay rate can be approximated by evaluating each pole

contribution, in the small losses limit, in equation (31)
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Note that, for a horizontal dipole, there are s and p polarized
decay channels involved in the first and in the second term in
equation (37), respectively. Since only p polarized SPs exist,
only the second term corresponds to the decay rates into SPs.

From figure 2(a), it is clear that the modulus of the
photon wave vector is negligible compared with the propa-
gation constant of SPs ( w n c km spp, where =m 1, 2, 3
and kspp denotes either the symmetric or the antisymmetric SP
propagation constant). As a consequence, g » kspp spp and
hence, the pole contribution in equation (37) corresponding to
the plasmonic contribution (SSP or ASP) can be approxi-
mated as follows
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where in the last equality equation (35) has been used. From
equation (39) we see that the spontaneous decay rate into SPs
of a single emitter whose dipole moment is perpendicular to
the graphene monolayers is twice the corresponding value to
the same emitter but with the dipole moment in the parallel
direction to the graphene monolayers.

4. Results and discussion

Initially, we analyze the contribution of eigenmodes to the
total decay rate of a dipole located at distance

m= ¢ - =l z d 0.01 m from the surface of the graphene
waveguide. Thickness m=d 1 m, constitutive parameters of
the dielectric slab and graphene sheets are e = 11 , e = 3.92 ,
and m = 0.2c eV, g = 0.1c meV, T=300 K, respectively.

Figures 4 and5 show the normal and the parallel decay
rates as a function of w c frequency, respectively. The total
decay rate is the numerical result of equations (30) and (31)
for perpendicular and parallel dipole orientation, respectively.
In the former case only p polarized eigenmodes can be
excited, while in the second case p and s polarized eigen-
modes can be excited. These figures also show the different
contributions to the spontaneous emission rate obtained by
using equations (35) and (37). The acronym SWG refers to
symmetric WG modes, i.e, to solutions of the first

Figure 3.Real part of the dispersion curves for s and p-polarized WG
modes calculated for m = 0.2 eV, T=300 K, g = 0.1c meV as a
function of w c. (a) m=d 1 m and (b) m=d 0.2, 0.02 m.
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equation (33) or to solutions of the first equation (34).
Similarly, the acronym AWG refers to antisymmetric WG
modes, i.e, to solutions of the second equation (33) or to
solutions of the second equation (34). From these figures, it is
clear that the decay rates through the WG modes is much
lower (by a factor 105) than the corresponding decays through
the excitation of SSP and ASP modes. This is true because the
field of SPs concentrates near the surface much more strongly
than the field of the WG modes. As figures 4(a) and 5(a)
show, the total decay rate and the sum of the contributions
from SP modes overlap. These figures also shows the curve
corresponding to the same emitter placed at a distance

m=l 0.01 m above a single graphene sheet separating med-
ium 1 (where the dipole is placed) from medium 2. We see
that the contribution of both SSP and ASP modes coincide in
the whole frequency range, in agreement with the fact that, for

sufficiently large d, both the symmetric and the antisymmetric
branches merge into the dispersion curve of the single SP
mode supported by a graphene monolayer (dashed line in
figure 2). Moreover, the total contribution to the decay rate of
SPs (ASP + SSP) agree with the corresponding contribution
to the decay rate of SPs on a single graphene monolayer,
according to the fact that for large enough d values and for
low values of l ( l d) the system formed by the source and
the graphene waveguide resembles a system formed by the
source and a single graphene sheet. As the thickness d is
decreased, a splitting of the dispersion curves into the sym-
metric and the antisymmetric mode curves occurs (figure 2(a))
and, as a consequence different contributions to the decay rate
by the symmetric and the antisymmetric SPs are expected.
This fact can be seen in figure 6(a), where we have plotted the
integrand of equation (30), w ^c P kd d( ) (k -space power

Figure 4. (a) Total decay rate and SP contributions to the decay rate
of a vertical dipole placed at a distance m=l 0.01 m above a
graphene waveguide as a function of w c. (b) WG mode
contributions to the decay rate as a function of w c. The waveguide
parameters are m = 0.2c eV, g = 0.1c meV, e e= = 11 3 , e = 3.92 ,

m=d 1 m and T=300 K. Plot (a) also shows a curve corresp-
onding to the SP contribution of a vertical dipole placed at a distance

m=l 0.01 m above a single graphene sheet.

Figure 5. (a) Total decay rate and SP contributions to the decay rate
of a parallel dipole placed at a distance m=l 0.01 m above a
graphene waveguide as a function of w c. s polarized (b) and p
polarized (c) WG mode contributions to the decay rate as a function
of w c. Plot (a) also shows a curve corresponding to the SP
contribution of a parallel dipole placed at a distance m=l 0.01 m
above a single graphene sheet. The waveguide parameters are the
same as in figure 4.
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spectrum), as a function of the dimensionless parallel wave
vector wck for a vertical dipole placed at distance

m=l 0.01 m from the waveguide and for several
w m=c 0.3, 0.5, and 0.8 m−1 frequency values. All curves
show two prominent peaks due to excitation of antisymmetric
(low wavenumber) and symmetric (high wavenumber) SPs.
The correspondence between these peaks and the SP reso-
nances of the graphene waveguide is evidenced in figure 6(b),
where we have plotted the real part of the dispersion curves
for symmetric and antisymmetric SP modes. Moreover, as the
frequency increases both peaks are widened in accordance
with the fact that, in this frequency range, the imaginary part
of the dimensionless propagation constant of both symmetric
and antisymmetric SPs increases as the frequency increases
(figure 2(b)). Similar behavior has been observed (not shown
in figure 6) in the case for which the dipole is placed parallel
to the graphene waveguide. From figure 6(a), we observe that
most of the contribution to the power spectrum is given by SP
peaks, and observing this figure allows us to assert that each
of these peaks contributes with a different value to the
spontaneous decay rate. This fact can be viewed in figure 7 in
which the frequency dependence of the total decay rate and
the SP contributions are plotted for the same parameters as in
figure 6, except now for distances =l 0.008, 0.02, and

m0.03 m. From this figure, it can be seen that the differences
between the total decay rate and the sum of the contributions

from SP modes are small. On the other hand, for small values
of l, the level of the total decay rate for graphene waveguide is
larger than the corresponding level reached for a single gra-
phene sheet (figures 7(a) and (d)). As the distance l is
increased, the level of the total decay rate for graphene
waveguide is equal or even lower than for a single graphene
sheet (figures 7(b), (c) and (e), (f)).

It is worth noting that the shape of the spontaneous
emission spectrum is strongly influenced by the SP branches.
For instance, when the distance l is small, the coupling strength
between the near field emitted by the source and SPs with large
wave vectors is high, leading to an increase of the decay rate in
the corresponding high frequency range. In this range, the
dispersion of the ASP and SSP modes are similar to that of the
SP mode on a single graphene interface (figure 2(a)) and, thus,
the frequency of the peak in the total decay rate curve for
graphene waveguide coincides with the frequency of the peak
corresponding to a single graphene sheet (figures 7(a) and (d)).
As l distance is increased, the strength in this range of fre-
quency falls because the near field can only excite SPs with
increasingly smaller wave vectors. In this range, the fields of
the ASP and SSP modes strongly overlap through the thin
layer, leading to well separated branches (figure 2(a)), where
the upper branch corresponds to the ASP mode and the lower
branch corresponds to the SSP mode. As a consequence, the
frequency of the peak in the ASP decay rate curve is larger than
that corresponding to decay rate through the excitation of SSP
modes, explaining the separation between the peaks in the
decay rate curves for graphene waveguide and for a single
graphene sheet observed in figures 7(b), (c), (e), and (f).
Moreover, as l is increased, the peak of the curves shifts to
lower frequencies and, for large enough l values the total decay
rate for graphene waveguide exhibits a double peak structure,
as can be seen in figures 7(c) and (f). Note that, according to
equation (39), the values of the decay rates plotted in
figures 7(a)–(c) are approximately twice the values of the decay
rates plotted in figures 7(d)–(f), respectively.

It is well established nowadays that the phenomenon of
the spontaneous emission can be understood in the framework
of quantum electrodynamics. In the weak coupling regime,
within the dipole approximation, the decay constant for a
radiating dipole located at ¢ = ¢


x z z is given by Fermi’s

golden rule (see [25, 59])
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factor related to the vacuum fluctuation energy
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If the dipole lies in the x–y plane ( = +
  p p x p yx y ), so that

= =p p p 2x y
2 2 2 , then the decay rate (40) can be written as
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Figure 6. (a) k space power spectrum for a vertical dipole placed a
distance m=l 0.01 m above a graphene waveguide and for
frequencies w =c 0.3, 0.5 and m -0.8 m 1. (b) Dispersion curves for
p polarized SPs. The waveguide parameters are m = 0.2c eV,
g = 0.1c meV, e e= = 11 3 , e = 3.92 , m=d 0.02 m and T=300 K.
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where S is the in-plane quantization area, =V SLeff eff, is the
effective mode volume, and Leff, is the effective mode length
in z-axis direction for a dipole oriented parallel to the x–y
plane
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with

E being the parallel component of the plasmon field.

The surface plasmon density of states is obtained calculating
the number of corresponding modes in the two-dimensional k
space
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with vp and vg representing the phase and group velocities of
the SP mode calculated at the dipole emission frequency,
respectively. Inserting equation (44) into (42), using

equation (43), we find the normalized emission lifetime to be
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where l p w= c2 is the wavelength of the source,
t w=- 

p c4 30
1 2 3 3∣ ∣ ( ) is the spontaneous emission decay

constant for vacuum derived from cavity quantum electro-
dynamics considerations [60].

On the other hand, if the dipole is oriented in the z axis,
=

 p pz , following the same procedure as used to deduce
equation (45), the decay rate (40) can be written as
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Figure 7. Total decay rate and different contributions to the decay rate as a function of w c of a dipole placed above a graphene waveguide
for the same parameters as in figure 6. Plots also show a curve corresponding to total decay rate of a same dipole placed above a single
graphene sheet. The orientation of the dipole is vertical for the three panels on the top row and it is horizontal for the three panels on the
bottom row. The distance m=l 0.008 m (a) and (d), m=l 0.02 m (b) and (e), and m=l 0.03 m (c) and (f).
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is the effective mode length when the dipole is oriented in
z-axis direction and ^


E is the perpendicular component of the

plasmon field.
It is known that [27] if we identify the dipole matrix

element

p in equations (45) and (46) with the classical dipole

in equations (30) and (31), then the normalized decay con-
stant is equal to the normalized classical radiation power, i.e.,
t t = P P0 0 for both dipole orientations, parallel and
perpendicular to the x–y plane. In this framework, the
enhancement of the spontaneous emission rate can be quan-
tified by the reduction of effective mode length and the group
velocity of surface plasmons, i.e., L veff g.

To illustrate, we explore the tunability of the spontaneous
emission by varying the chemical potential mc on graphene
sheets. As in the classical treatment, from the quantum point
of view the decay rate of a dipole with parallel orientation is
close to half of the corresponding decay of the same dipole
with perpendicular orientation in the whole frequency range
where SP modes exist. This fact can be viewed as follows.
Due to the fact that the modulus of the photon wave vector is
negligible compared with the propagation constant of SPs,
w c kspp, the modulus of both components of SP electric

fields,

E∣ ∣ and ^


E∣ ∣, are approximately equal. Therefore, from

equations (45) and (46) it follows that » ^P P P P 20 0[ ] [ ] .
We have numerically verified this assertion. Thus, we only
show examples corresponding to an emitter whose dipole
moment is perpendicular to graphene monolayers. The
waveguide parameters chosen are the same as in figure 7.

Figures 8(a) and (c) show the normalized decay rate of a
vertical dipole placed at a distance m=l 0.01 m above the
graphene waveguide into the symmetric and the antisym-
metric SPs, respectively, calculated by using equation (46).
The drop in these curves occur at the frequency where σ

changes sign from positive to negative, w m» 1.667 c. At this
frequency the slope of the dispersion curves tends to zero, as
can be seen in figures 8(b) and (d) where these curves have
been plotted for symmetric and antisymmetric SPs, respec-
tively. Unlike section 3.2, the dispersion curves shown in
figures 8(b) and (d) have been calculated neglecting losses in
graphene sheets, a basic approach to derive equations (45)
and (46) from the quantization scheme of SP field [26]. We
have verified that results obtained from equation (46) are in
agreement with those obtained from classical formalism by
using equation (35).

Figures 8(a) and (c) show that the decay rate peak shifts
to blue, as the value of mc increases. This behavior can be
understood with the help of figure 9, where both the effective
mode length Leff and the group velocity of surface plasmons
as a function of w c have been plotted. From figures 9(a) and
(b), it can be seen that the curves of Leff exhibit a minimum at
a frequency value slightly lower than the frequency where the
curves corresponding to spontaneous decay rates shown in
figures 8(a) and (b) exhibit a maximum. The reduction of the
group velocity with the frequency, shown in figures 9(c) and
(d), moves the minimum of the denominator in equation (46)
(L veff g) toward the position of the spontaneous decay
rate peak.

5. Conclusions

We have presented an exhaustive study of the spontaneous
emission rate of a single emitter (atom or molecule) in a
planar graphene waveguide formed by two parallel graphene
monolayers with an insulator spacer layer. We developed an
analytical classical method and obtained a rigorous solution in
a closed integral form. This solution has the functional form
corresponding to a dielectric or a metallic slab, although the
current density induced in the graphene sheets leads to a
marked difference between the reflection coefficient corresp-
onding to a graphene waveguide and a waveguide without
graphene monolayers (bare waveguide).

We separately calculated the contribution of symmetric
and antisymmetric eigenmodes—SPs and WG modes—to the
total decay rate. In the presented examples, we have varied
the location of the emitter for both dipole moment orienta-
tions, parallel and perpendicular to the graphene monolayers.
The dipole moment perpendicular to the graphene monolayers
cannot couple to s-polarized eigenmodes, whereas the dipole
moment parallel to the graphene monolayers couples to both s
and p eigenmodes. The emphasis has been centered around

Figure 8.Decay rate of a vertical dipole located at m=l 0.01 m from
the graphene waveguide into (a) ASP and (c) SSP for different
values of the chemical potential mc (0.2, 0.3, 0.4 and 0.5 eV).
Dispersion curves for (b) ASPs and (d) SSPs calculated for the same
chemical potential values of (a) and (c). The waveguide parameters
are g = 0.1c meV, e e= = 11 3 , e = 3.92 , m=d 0.02 m and
T=300 K.
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the plasmonic channels, since their contributions play a pro-
minent role in the spontaneous emission rate of single emit-
ters placed near the graphene waveguide. An interesting result
revealed in this study is related with a redistribution of the
emitted power by a dipole located near a waveguide structure,
i.e., the influence of the SP branches on the shape of the
emission spectrum. We have shown that by increasing the
distance between the emitter and the graphene waveguide,
one can obtain spectral behaviors ranging from a single peak
curve similar to that of a single graphene sheet to a double
peak curve.

The coupling efficiency between the emitter and SP
modes was also studied from an equation based on Fermi
golden rule. Our examples show that the reduction of both the
effective mode length and the group velocity of surface
plasmons lead to an enhancement of the spontaneous emis-
sion rate. We have shown that, by tuning of the chemical
potential of graphene, it is possible to modify the density of
states as well as the effective mode volume of SPs leading to
unprecedented control over the location and magnitude of the
spontaneous emission rate.

The possibility to vary the chemical potential of one of
the graphene sheets with respect to the other one fixed, allows

another degree of freedom to modify SP branches, with fields
no longer symmetric or antisymmetric across the gap di-
electric layer, and their influence on the spontaneous emission
rate. Although we are planning to report the results of such
study in a future paper, as a first step, here we have restricted
ourselves to performing an analysis of the symmetric wave-
guide in which the two conductivities of the graphene sheets
are equal.
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