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a b s t r a c t

From the results of molecular dynamic simulations of lithium metasilicate glass – at tem-
peratures above and below their transition temperature (Tg ) – we propose a simple graphi-
cal representation to search for the broken ergodicity in an ionic oxide glass. Knowingwhen
ergodicity is lost is critical for the proper use of statistical mechanics as a tool for measur-
ing dynamical and structural properties throughmolecular dynamic simulation. This work
shows how an abrupt qualitative transformation occurs in the way the system explores its
possible states when it goes down below the glass transition temperature range.We revise
the broken ergodicity phenomena through its relationship with the observation time and
the dynamic diversity of their atoms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When referring to glassy systems we need to consider that they belong to a more general scientific classification: ‘‘they
are complex systems’’. Although this material has been known for thousands of years, scientific researchers are still looking
for an accurate definition of glass. A glass system can be considered as a frozen disordered state, originated from a high tem-
perature thermodynamic favorable state, arrested kinetically. Monasson says that the system that reaches a quasi-breaking
of ergodicity coincideswith the appearance of non vanishing density fluctuations; thus, the systembecomingpartially frozen
in metastable states with very large relaxation times when its temperature is a little higher than its Tg [1].

Another much more general definition of glassy systems has been proposed: ‘‘a solid having a non-crystalline structure,
which continuously converts to a liquid uponheating’’ [2].We can infer some ideas about its structure but this definition does
not givemuch information about the dynamical features of its components. Therefore, a universal law for a total description
of their properties (structural and dynamical) has not been achieved yet in this field.

One relevant question of glassy systems is related to the loss of ergodicity when a super-cooled liquid passes through the
glass transition temperature to become a glass. Since statistical physics is built on the ergodic hypothesis, this is a relevant
issue to understand before analyzing any simulation data set.
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One of the most prevalent, and often unstated, assumptions in statistical mechanics is that ergodicity asserts the
equivalence of time and ensemble averages of the thermodynamic properties of a system. Ergodicity implies that, given
enough time, a systemwill explore all allowable points of phase space. The term ‘‘broken ergodicity’’, introduced by Bantilan
and Palmerin 1981, denotes the loss of ergodicity that is common in many systems such as spin and structural glasses [3].

If we revise some related theoretical aspects, we find that close to the end of the XX century, D.L. Stein said that non-
ergodicity calls for a new paradigm that must go beyond equilibrium statistical mechanics [4]. In order to understand this
statement, it is convenient to go some steps backwards in time and review some basic concepts on statistical mechanics, as
O. Lombardi and M. Labarca have suggested in their works [5,6]. It is common to find in the literature that glass are systems
that lose their ergodicity and are trapped inside a region of their state space for a long time and this is why it is useful to un-
derstand some dynamical and thermal properties. In theMode Coupling Theory scenariowhen a liquid is cooled, it breaks its
ergodicity. Then, their molecules are kinetically arrested and are prevented from trying different states, even though those
states are thermodynamically available. That is explained through the formation of ‘‘cages’’ – spatial zones limited by their
nearest neighbors – inside of which the particles have to spend increasinglymore time until they find away tomove around
neighbors and rearrange their positions [7,8].

Ifwe approach the essentialmicroscopic dynamic of the phase transition in statistical terms, the dynamic changes suggest
that phase transitions can be understood through unexpected qualitative transformations in the way a system explores its
achievable states [9]. Some works show that the formation of glass is governed by kinetics rather than thermodynamics;
therefore, glass transition is based on the slowing down of its kinetics [10–12]. Also, it is well known that the glass transition
temperature varies with the system’s thermal history, i.e. different cooling rates involve changes on the Tg which tell us that
the structure keeps some information about the way in which it reached its frozen state.

In the present work, we show in a simple graphical way (through a paradigmatic ionic conductor oxide glass as is lithium
metasilicate) that there is a change into system’s dynamical features when it passes through the glass transition. But the
loss of its ergodicity is a matter of time scale or of how we explore the system.

In a very recent paper, a different kind of labeling of the system’s particles has been done. In this work, the authors
consider the relationship between the system in terms of its particles’ distinguishability and their relationship to broken
ergodicity. They emphasize that the distinguishability of the particles (the probability of a particle to be identified among
the other particles of the system) depends on the observation time at a fixed temperature: ‘‘in the limit of zero observa-
tional time, the particles of any classical system are fully distinguishable. For any positive temperature, as the observation
time increases, the distinguishability of the particles always decreasesmonotonically’’ [13]. These authors point out that the
issue of ergodicity is a question of time scale. Additionally, they note that the loss of ergodicity is accompanied by a con-
current loss of configurational entropy. In another recent work, about granular material, they pay attention to the necessity
to understand the time scale where the assumption of the ergodic hypothesis can be done. Additionally, they distinguish
between global and local ergodicity and use this approach to test this assumption by verifying its consequences. The theo-
retical approach computes what the occupation of the different states should be if ergodicity holds and then verifies if the
real system is indeed equally likely to be found in all of its states. In a few words, it checks if the assumption of the ergodic
approach has consequences in the property of the system which they are computing [14].

In the present work, from our molecular dynamic simulation results, we analyze the experimental data looking for evi-
dence to support the fact that the loss of ergodicity in glassy systems depends on the time scale and moreover, on the way
the system is considered.We show that it is necessary to understand the lithiummetasilicate as a combination of two differ-
ent ‘‘dynamic systems’’ contained in a homogeneous phase of matter. This is not a new idea. In fact, during the last century,
it has been proposed that this kind of systems (with very mobile ions in a glassy matrix) should be understood as a liquid
phase flowing through a solid one [15–17]. Therefore, in our proposal, we regard the lithium metasilicate glass systems as
two different dynamic phases, one is made up of lithium cations and the other by a more freezing dynamic phase where
the lithium cations move; i.e. a potential landscape given by the glassy silicate matrix. The main difference, compared to
different previous proposals, is that some features of the lithium dynamics are controlled by the matrix dynamic features
when the temperature is lower than its Tg . Finally, we show an example where the glassy system of this work is trapped
in single minimum of energy and, because of that, when we make a very short time dynamic analysis of the mobile ions, it
shows distinct features which vanishes soon as the system can pass over an energy barrier in its landscape.

2. Methodology

A system formed by 3456 particles (1152 Li, 570 Si and 1728 O) has been used. A procedure has been applied to equili-
brate the system. It allows us to reach the same density as the experimental data for any temperature, taking into account
the experimental error. The three-dimensional system was built by the pair potential of Gilbert–Ida type [18] including the
r−6 term:

Uij(r) =
qiqje2

4πε0r
−

cicj
r6

+ f0(bi + bj) exp

ai + aj − r
bi + bj


. (1)

The first term in Eq. (1) is the Coulomb interaction with the effective charge numbers qi; the second term is a dispersive
interaction and it presents those involving only oxygen ions; and the last term is a Born–Meyer type potential that takes
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Fig. 1. Volume variation as a function of temperature.
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Fig. 2. Incoherent intermediate scattering function of the oxygen atoms of the system at each studied temperature.

into account the repulsive short-range interactions. We applied the potentials parameters derived on the basis of ab-initio
molecular orbital calculations by Habasaki [19–21]. Then, we assigned to each atom its corresponding velocity drawn from
a Maxwell–Boltzmann distribution according to a temperature of 3000 K. The Verlet Algorithm with a time step of 1 fs
was used to integrate the motion equations. Periodic boundary conditions were applied in the software LAMMPS [22]. The
complete equilibration procedure of the system was: 0.5 ns/3000 K/NVE starting from a random atoms configuration. After
that, the temperature was slow down up to 2000 K and followed by 2 ns/2000 K/NPT; 1 ns/2000 K/NVT and 1 ns/2000 K/NVE
to ensure the absence of a drift in pressure and temperature. Finally, the NVE trajectories with a step of 1 fs were used to
perform the analysis. The same protocol was repeated for each temperature: 1500 K, 1100 K, 900 K and 700 K.

The mean square displacement for each atom type: ⟨r2j (t)⟩, MSD, is defined as:

MSD =

r2j (t)


= N−1

j

N
j=1

r⃗j(t) − r⃗j(0)
2 (2)

where r⃗j(t) is the position vector of atom j at time t .
The mean square displacement between configurations: ⟨R2(t)⟩, MCSDox, is defined as:

MCSDoxygen = R2(t) = N−1
Ox


n


i

[ri(t + n.1t) − ri(t)]
2

(3)
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Fig. 3. MSD of lithium and oxygen atoms at 1500 K, 1100 K and 900 K.

0 10 20 30 40 50 60 70 80 90 100
configuration

0

1

2

3

4

5

6

M
C

S
D

.1
00

/n
m

2  
(t

;t+
Δt

)

Fig. 4. MCSDox (Eq. (3)) between consecutive configuration (t; t + 10 ps).

where 1t = 10 ps. Therefore, we have taken 100 n-configurations for each temperature that are equivalent to 1 ns window
time and i mean oxygen atoms. We have also performed a long trajectory for T = 900 K with a 100 configurations with a
1t = 100 ps to analyze a 20 ns window time.

Finally, the incoherent intermediate scattering function F(q, t) is defined as:

Fs(q, t) =
1
N


N
j=1

exp(i
⇀
q ·(r⃗j(t) − r⃗j(0)))


(4)

where q⃗ is the wave vector (2.1 Å−1). Eq. (4) characterizes the mean (space and time) relaxation of the system.
Isoconfigurational method developed in Ref. [23] performs is a set of equal length MD runs (IC ensemble) which start

from the same initial configuration (the same point in its space state) but with different initial particle momentum taken
randomly from aMaxwell–Boltzmann distribution at the appropriate temperature. Then, the propensity of each particle for
a fixed time interval t , is defined as:

⟨1r2i ⟩IC = ⟨[ri(t) − ri(0)]2⟩ (5)

where [ri(t) − ri(0)]2 is the squared displacement of particle i and ⟨⟩IC indicates the average over the IC.

3. Results

Fig. 1 shows the volume variation as a function of temperature at three different quenching speeds. From this figure, we
learn that for this simulated lithiummetasilicate system the glass transition temperature is somewhere between the range
(970–1250) K – characterized by a change in the slope (in the plot showed with an arrow) – which is acceptable compared
to the lower experimental Tg obtained by DSC or DTA. Considering the simulation’s limitations, this Tg value is commonly
accepted for simulated lithium metasilicate [23–26]. Therefore, we assume that 900 K is a good temperature to make our
analysis because it is possible to consider that the system has reached the glassy state.

In Fig. 2, we see that when the system goes down through the interval temperature noticed in Fig. 1 as the Tg range, this
glassy matrix freezes in a solid glass state and its relaxation time is greater than 10 ns for temperatures lower than 900 K.
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Fig. 5. 2D representation of [MCSDox/MCSD] (Eq. (3)) at each studied temperature (t ′ and t ′′ are configuration number units). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 shows the MSD of lithium and oxygen atoms at every temperature in the present work. From this figure we learn
that the system at 1 ns reaches the diffusive behavior for lithium ions while oxygen remains almost frozen at 900 K; while
for 1500 K, the oxygen atoms are much more mobile.

Fig. 4 shows theMCSDox between consecutive configurations (t; t +1t) obtained with Eq. (3). In these plots we observe,
as it is expected, that below the Tg of the system one configuration (i.e. structure at time t) is very similar to the next, and
because of that, its MCSDox value is very small and close to the average value, MCSD. However, this behavior is completely
different for the highest temperature. Far above the Tg , where two consecutive configurations are quite different, its MCSDox
is large and has a high probability of being different from its average value. The system atoms coordinate changes verymuch
above its Tg temperature.
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Fig. 6. (a) Self-part of the van Hove functions for oxygen atoms and (b) for lithium atoms.

Fig. 5(a)–(e) shows the 2D representation of MCSDox/MCSD (normalized for each temperature by the average value
showed in Fig. 4). To build these plots, we have selected a box of l = 10 Å immersed in the center of the whole system (L =

30 Å) in order to avoid artifacts in the analysis because of effects caused by boundaries conditions. In these representations,
each coordinate of the square plot corresponds to one configuration, i.e. the structure given by the atoms coordinates
that the system reaches at time t during its trajectory of MD simulation. With Eq. (3), we obtain the representation that
Fig. 5 shows. The ‘‘normalized quadratic distance between two configurations (i.e. the average distance between the oxygen
coordinates of two configurations, t ′ and t ′′ taken from 1 to 100-’’ (MCSDox/MCSD)) for all different window times (e.g.,

{ri(t + 1t) − ri(t)}/MCSD;


{ri(t + 21t) − ri(t)}/MCSD;


{ri(t + 31t) − ri(t)}/MCSD; . . .) is represented through a
color scale, in which, the darker the color, the more similar the structures (for instance, one configuration against itself has
a zero value, this result corresponds to the main diagonal in the square, the dark gray). This kind of plot has been used in
many works to evidence particular events along the temporal evolution of a system [27–29].

4. The dynamics of different ion types

In this kind of representation, we easily understand that when the temperature is lower than Tg the different structures
visited by the system are very similar among them (i.e. the color scale in Fig. 5(a) is dark all theway thorough). But, when the
temperature is well above Tg , the system has the opportunity to visit very different structures. The oxygen atom coordinates
change verymuch and the system reaches extremely different structures during its dynamics and because of that, the graphs
in our representation (plots c to e) are dominated by a lighter color. Equivalent results (not shown in this work) are obtained
if these plots are built by adding the siliconmovements,which iswhat one expects since oxygen atoms resemble the skeleton
of the glassy matrix.

Fig. 6(a) and (b) shows the self-part of the van Hove function (Eq. (6)) for oxygen and lithium atoms, in each of the
temperatures studied:

Gs(r;t) =
1
Na

Na
i=1


δ

r −

ri(t) − ri(0)
 . (6)

Comparing Fig. 6(a) and (b), it is easy to realize that oxygen atoms are quite slower dynamically compared with lithium
atoms which can travel along further distances. What is more, two distinct peaks related to two distinctive lithium jumps
(1t is 10 ps window time) can be observed in Fig. 6(b), in good agreement with what was previously observed in other
works [30–33].

5. Looking for the broken ergodicity

In the present work, we develop an easy computational experiment to show how the graphical way presented above is
useful to identify what the literature notices: how to understand a glass system as a broken ergodic system.

In a very descriptive paper about broken ergodicity related to the dynamics of disordered systems, D.L. Stein and C.M.
Newman [4] have explained that for a systemwithmetastable states the typical timescale to escape from it grows exponen-
tially and its lost ergodicity depends on observational times. The state space can be decomposed into ‘‘components’’ which
are not intrinsic to the system. They have also proposed a probability of confinement on some timescales and assuming that,
while the system is restricted to that timescale, it is ergodic (within a ‘‘component’’). Therefore, the system has the opportu-
nity to visit a set of states whose average on state space equals the average in time provided that average involves the com-
ponent’s states. These concepts are easy to visualize through the 2D representation given by Eq. (3). Additionally, they have
proposed that the timescalewhere the system remains in the same component should diverge as the temperature decreases.
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Fig. 7. (a) 2D representation of MCSDox/MCSD (Eq. (3)) (normalized by the average value), (t ′ and t ′′ are configuration number units). (b) MSD of lithium,
oxygen and silicon atoms at 900 K; (c) the self-part of the van Hove function for oxygen and silicon atoms; for a larger window time of 20 ns at T = 900 K.

Other works have showed evidence that when the structures reached by a system during its dynamics are quite similar
(in this work, small values of MCSDox) these structures go down to the same minimum on the potential landscape; in other
words, they belong to the samemetabasin [29,34–38]. Although, the authors in those papers have reached their conclusions
through molecular dynamic simulations of the binary 80/20 Lennard-Jones system and others, we assume here that the
same behavior is obtained in other kinds of supercooled liquids and also in glassy systems.

Therefore, we could accept that the matrix of the paradigmatic oxide glass in the present work (lithiummetasilicate) is a
broken ergodic systemwhen its temperature is below its Tg . Taking into account that the system is limited to visit very near
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Fig. 8. 2D representation of MCSD(Li+Si+Ox)/MCSD (see Eq. (3)), but, in this case, for the whole system, i.e. i = lithium + silicon + oxygen atoms at the
same time, in a window time of 1 ns, (t ′ and t ′′ are configuration number units).

configurations in the state space (as Fig. 5(a) and (b) shows) and given that all the structures visited during this window
time are very similar, all of themwill belong to the sameminimum on the potential landscape.While above its Tg , but not so
far from it (T = 1100 K) as in Fig. 5(c), the configurations explored by the system are different enough among themselves.
Since the system has visited different ‘‘components’’, or more generally speaking, it has explored its state space more and
more extensively, those configurations will belong to different minimums in the landscape. Then, we should have to accept
that the system is not more a broken ergodic system.

As we have mentioned before and as intuitive as it may be, all of these are of uppermost importance at the moment of
deciding the window time for measuring a property in this kind of systems in order to apply the statistical mechanic tools.

Another interesting observation made by Stein and Newman is that given a fixed temperature, there is a cut off on the
timescale above which the confinement mechanism breaks down. However, this time is not always the same. For Fig. 7
we test this statement through the same method used in Fig. 5. We observe there a larger window time of 20 ns (in
this case each configuration was taken every 100 ps) and now, we see that the system is not confined to a single set of
similar structures anymore. The system is exploring different configurations showing several transitions to different sets
of self-similar configurations. In the words of Stein and Newman again, the system can visit different components or, by
comparison with the results proposed in simulations for the Lennard-Jones systems [29,34,35,38], the system can visit
several metabasins that belong to different minimums in its potential landscape. Then, at least from this point of view, it is
not obvious that the glassy matrix has lost its ergodicity since the system still behaves as a glass where it is clear that the
atoms which built the matrix are still almost frozen. Something similar has been recently shown by B. Ruta et al., in sodium
silicate. In their work, they have provided experimental evidence showing that glasses display fast atomic rearrangements
within a few minutes, even in the deep glassy state [39].

In order to complete this search for ergodicity lost, we have analyzed the system in the same way (2D representation of
MCSDox/MCSD) but now taking into account all the types of atoms that constitute this system, i.e. considering lithium, silicon
and oxygen atoms at the same time. Fig. 7 shows these results and it is easy to realize that the system is not confined to any
set of configurations. It is able to explore its state spacemuchmore freely (at this time it is useful to compare Figs. 8 and 5(b)).

Therefore, all the results in the present work allow us to assume that ionic conducting glassesmade by oxides, where one
oxide is the glass former (SiO2) and a modifier oxide provides the mobile ions (Li2O), are broken ergodic systems ‘‘only’’ for
their matrices and at temperatures below their Tg . Whenwe analyze the systemwithout distinguishing between themobile
atoms from the almost frozen ones in the matrix, we see that the system does not remain confined during a large window
time. This is why, it is crucial to do a complete characterization of each system before valuating statistically a property on it.
Moreover when the analysis is made in the context of what is commonly denominated ‘‘short time dynamic of the system’’.

Consequently, if one is interested in the dynamics of mobile ions in a glassy system, e.g. its ionic diffusion coefficient
(on laboratory observable times), these systems can always be considered ergodic systems because their confinement to a
metabasin, or to an only minimum on the potential landscape, it is not a relevant issue. We should bear the aforementioned
observation in mind when we analyze the simulation data through statistical mechanics. Similar proposals, but in different
contexts, are presented in referenced works [40,41]. Those papers, which clearly show evidence that there is a bridge
between experimental (laboratory) and computational results, tell us that we should revise some issues if we want to find
the best way to join the macroscopic and microscopic views in order to reach a complete understanding of the properties
behavior of glassy systems.
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Fig. 9. (a) Mean square displacement of the labeled lithium atoms in the lithium metasilicate. (b) Zoom of 2D representation of MCSDox/MCSD (Eq. (3))
(normalized by the average value) shown in Fig. 7.

6. Illustrative example

In 2004, Widmer-Cooper, Harrowell and Fynewever proposed a very interesting statistical tool called isoconfigurational
ensemble (IC) to study the relationship between particle motion and initial structural configuration. This method allows
us to find the propensities of the system’s particles. This procedure provides a link between a given configuration and its
dynamics [23]. This quantity named propensity allows us to label the particles in the system as verymobile (high propensity
particle: HP) or almost motionless (low propensity particle: LP) regarding their position in the glassy matrix, according to
Eq. (5). With this idea in mind, in a previous work, we showed the existence of regions which are potential candidates for
hosting the ionic conduction channels [42].

Considering the above mentioned procedure, we compare the mean square displacement of the labeled lithium atoms
in the lithium metasilicate. Fig. 9(a) shows those results for the system at 900 K. In this figure this differentiation between
HP and LP before 2 ns is clear but it is not after that window time. These results are consistent with a transition from one
metabasin to the following as it is easy to see in Fig. 7 and clearer in Fig. 9(b) where we have zoomed that window time. The
hypothesis of the present work is clearly evidenced in this example; some properties can change according to the window
time where they are evaluated. Then, it is important to know if the system under study has or has not lost its ergodicity in
order to understand the statistical results that are obtained from the simulation data.
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7. Summary

From the results ofmolecular dynamic simulation of lithiummetasilicate glasses,we have found a simpleway to establish
the windows time in which broken ergodicity of an oxide glassy matrix could be considered. It is important to take this
particular behavior of the system into account when one is analyzing dynamical and structural properties using statistical
mechanics in different scale times. The glass transition temperature is a sign of a suddenqualitative change in the exploration
of the potential landscape. The broken ergodicity phenomenon is clearly seen through the easy graphical representation used
in this work. It is important to note that the confinement in a reduced area of the space states of the system is associated
to the glassy matrix although this is not strictly true neither when the very mobile ions (lithium ions in this system) are
considered in the analysis of the data nor when the window time where the system is analyzed is long enough.
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