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This paper reports the modeling of excitation-emission matrices for classification of Argentinean white
wines according to the grape variety employing chemometric tools for pattern recognition. The discrim-
inative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel
Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one sam-

ples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms
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evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed
by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape
of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA
and SPA-LDA with 76% and 80% accuracy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wine is a fermented alcoholic beverage containing various com-
pounds of different type, with polyphenols being one of the most
important components which influence their quality parameters
(Fernandez-Pachén, Villafio, Garcia-Parrilla, & Troncoso, 2004).
Polyphenols contribute to the organoleptic characteristics, such
as color, astringency and bitterness and also exert antimicrobial
and antioxidant properties. In addition, other substances such as
amino acids, anthocyanin and ethanol, are present in wine
(Godoy-Navajas, Aguilar-Caballos, & Gémez-Hens, 2015).

Authenticity and commercial value of wines is often linked to
its geographical origin and certain countries or regions are known
for producing excellent wines of high commercial value (Selih,
Sala, & Drgan, 2014). Due to its composition and worldwide avail-
ability, the controlled denomination of origin (CDO) is usually
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required to demonstrate the provenance of wines. In the same
way, due the cost and/or production volume of several varieties
of white wines in comparison to others, the control of grape variety
is usually required to avoid the adulteration or fraud in fractioned
or selected wines, which can involve the use of high cost analytical
methods and well trained analysts (de Villiers, Alberts, Lynen,
Crouch, & Sandra, 2003; Wang, Geil, Kolling, & Padua, 2003).

According to data from 2013, Chardonnay, Sauvignon blanc and
Torrontés were the main white wines varieties produced in
Argentina, while the main producer provinces were Rio Negro
Mendoza, San Juan and Salta. Torrontés has been the most
exported white wine variety over the last year, followed to
Chardonnay and Sauvignon blanc in second and third place,
respectively: USA, Canada, Russia and United Kingdom were the
main importers of these wines (Instituto Nacional de
Vitivinicultura, 2014).

Many efforts have been devoted to the development of new
analytical methods for the quality control of wines worldwide
(Briz-Cid, Figueiredo-Gonzalez, Rial-Otero, Cancho-Grande, &
Simal-Gandara, 2015; Gonzélez-Alvarez, Noguerol-Pato,
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Gonzalez-Barreiro, Cancho-Grande, & Simal-Gandara, 2013), with
molecular absorption spectroscopy and gas or liquid chro-
matography coupled to mass spectrometry detection (GC-MS
and LC-MS) being the most common instrumentation (de
Villiers, Alberts, Tredoux, & Nieuwoudt, 2012).

Recently, Markechové and collaborators employed fluorescence
excitation-emission matrices (EEM) and Parallel Factor Analysis
(PARAFAC) for the determination of brandy adulteration with
mixed wine spirit (Markechova, Majek, & Sadecka, 2014).
However, the use of fluorescence spectroscopy for quality control
of wines regarding the authenticity of the grape type, geographic
origin, brand, or fingerprint has been scarcely explored. For exam-
ple, Dufour et al., employed both excitation and emission spectra
for French and German wine classification (Dufour, Letort,
Laguet, Lebecque, & Serra, 2006), and Sadecka et al. reported the
classification of brandies and wine distillates using total lumines-
cence and synchronous fluorescence spectra (Sadecka, Téthova, &
Majek, 2009), but only first-order data and algorithms were used
in an unsupervised manner in both cases. On the other hand,
Ariado-Rodrigues and collaborators employed EEM and PARAFAC
for fingerprinting of red wines (Airado-Rodriguez, Galeano-Diaz,
Duran-Meras, & Wold, 2009) and quality control in the wine indus-
try (Airado-Rodriguez, Duran-Meras, Galeano-Diaz, & Wold, 2011).
Interestingly, and different from the present report, an unsuper-
vised approch was used in both reports. Finally, it should be noted
that a study of the possibilities of multi-way fluorescence linked to
PARAFAC and to classify the different sherry vinegars accordingly
to their ageing was presented by Callejon et al. (2012).

In the present work, a methodology is presented for exploring
the feasibility of discrimination of Argentinean white wines vari-
eties by using second-order data obtained recording excitation—
emission matrices in samples with minimum pre-treatment.
Different algorithms for pattern recognition were implemented:
PCA, PARAFAC, soft independent modeling of class analogy
(SIMCA), discriminant analysis by unfolded partial least squares
(U-PLS-DA), discriminant analysis by multi-way partial least
squares (N-PLS-DA) and successive projection algorithm (SPA-
LDA). All of them were evaluated by using independent sample
sets. As will be shown, the best results in terms of accuracy were
obtained for U-PLS-DA and SPA-LDA, while the latter algorithm
allowed building extremely parsimonious models, i.e. models that
accomplish a desired level of explanation or prediction with as few
predictor variables as possible.

2. Experimental
2.1. Samples

Forty-one different varieties of commercial white wine samples
from four wine-producing provinces of Argentina (Mendoza, San
Juan, Salta, and Rio Negro) were included in this study: 12
Torrontés wine (from Mendoza, San Juan, Salta, and Rio Negro),
14 Chardonnay wine (from Mendoza and San Juan), and 15
Sauvignon Blanc wine (from Mendoza, San Juan, and Rio Negro).
Wines samples were selected from the 2011 to 2013 vintages.
The alcoholic content ranged from 12.2% to 13.8% vol/vol ethanol.
All were purchased from a local supermarket.

2.2. Apparatus

All spectrofluorimetric measures were acquired on a Cary
Eclipse Fluorescence Spectrophotometer (Agilent Technologies,
Waldbronn, Germany) using a 1x1 cm quartz fluorescence cell,
xenon flash lamp and CaryEcplise software package to control
the instrument, data acquisition and data analysis. Excitation—

emission matrices were saved in ASCII format, and transferred to
a PC for subsequent manipulation.

2.3. Experimental procedure

Prior to the measurements, samples were equilibrated at room
temperature. Immediately after opening the bottle, 10 mL of each
white wine sample was filtered with 0.45 pm Nylon filter. Each
sample was prepared in triplicate and measure using the fluores-
cence spectrophotometer.

2.4. Data modeling

All calculations carried out in this work were done in Matlab
environment (MATLAB, 2010). PARAFAC and N-PLS were
applied using the N-way Toolbox (Andersson & Bro, 2000) devel-
oped BrO and available in http://www.models.life.ku.dk/algo-
rithms. The Kennard-Stone (KS) Algorithm (Harrop Galvao
et al.,, 2005) and SPA-LDA (Carreiro Soares, Gomes, Rodrigues
Galvao Filho, Ugulino Araujo, & Harrop Galvao, 2013) were writ-
ten by the authors. U-SIMCA and U-PLS-DA calculations were
conducted in graphical interface classification-toolbox 3.1
available in http://michem.disat.unimib.it/chm/download/soft-
wares.htm.

2.5. Chemometric tools

The chemometric algorithms applied in the present work, and
their corresponding references are listed and briefly at the
following:

(a) SIMCA is a method of pattern recognition widespread and
used to solve classification problems in chemistry (Wold,
1976). Briefly, the SIMCA method assumes the measurement
values for groups of similar samples have a uniform dis-
tribution and malleable, and this modeling is based on
Principal Component Analysis (PCA) (Bro & Smilde, 2014;
Forina, Oliveri, Lanteri, & Casale, 2008).

(b) U- and N-PLS-DA was originally proposed for multivariate
calibration, and then used in classification problems. Their
mathematical foundations have been described in the litera-
ture (Indahl, 2014). In essence both U-PLS and N-PLS for dis-
criminant analysis (Barker & Rayens, 2003; Ouertani,
Mazerolles, Boccard, Rudaz, & Hanafi, 2014) are equal for
calibration purposes.

(c) The SPA-LDA algorithm is aimed at selecting a subset of
variables with small collinearity and suitable discriminating
power for use in classification problems involving Q > 2 dif-
ferent classes. For this purpose, it is assumed that a training
set of N objects with known class labels is available to guide
the variable selection process. In the case of spectroscopic
data, for example, each object consists of a spectrum
recorded over K wavenumbers (or wavelengths) (Carreiro
Soares et al., 2013).

(d) Validation of classifiers: as in calibration, in classification the
performance of the model for the training sample set or an
independent test set can be accessed using some figures of
merit. In that way, for a classification model, the most com-
mon figures of merit are accuracy (AC), sensitivity (S) and
specificity (SP) (Lavine, 2009, chap. 3). With the purpose of
illustration, consider a two-class classification problem (A;
positive class and A, negative class), in which a; and a, are
the quantities of objects A; assigned to A; and quantities of
objects A, assigned to A,, respectively. On the other hand
b, are objects de A; assigned to A, and b, are objects de A,
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assigned to A;. In this way, it can be defined the figures of
merit for a classifier mathematically as shown below
(Lavine, 2009, chap. 3).

a; +ax
AC=—— — 1
a; +by +a, + b ()
5:(11/01+b1 (2)
SP=a,/a; + b, 3)
3. Results

3.1. EEM for white wine samples and general considerations

The data set comprises forty-one excitation-emission matrices
recorded in the excitation range of 245 at 341 nm with resolution
of 2 nm and emission range of 375 at 500 nm with resolution of
5nm. Then, the data were arranged in a cube structure with
dimensions of 41 x 49 x 26. The number of samples per class
was fourteen for Chardonnay (C), fifteen for Sauvignon blanc (S)
and twelve for Torrontés (T). Fig. 1 shows typical emission and
excitation spectra and EEM landscapes for each wine class.

Fig. 1a shows the emission (Aex at 340 nm) and excitation spec-
tra (hex at 445 nm) for each wine class. The both excitation and
emission spectra are very similar and overlapped. Excitation pro-
files show a maximum around 340 nm. The excitation spectrum
for Sauvignon blanc (S) has a shoulder in 260 nm; and as can be
seen in Fig. 1a, the emission profiles are smooth curves with a
maximum around 445 nm, in all cases. In addition, the EEM land-
scapes (Fig. 1b-d), show similar profiles, obtained for all varieties
of white wine involved in this work. A preliminary assessment of
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the discriminatory power of the EEM matrices was conducted by

two approaches. At first the tensor X (41 x 49 x 26) was unfolded
into a two-dimensional array X (41 x 1274), followed of a bilinear
decomposition by PCA. Then, the three-way array was decomposed
using PARAFAC employing non-negativity on the three modes.

In Fig. 2a, the eigenvalues of the X and the explained variance
are plotted as a function of the number of principal components.
Inspection of this graph suggests that three factors, with 98%
cumulative variance, are suitable to describe the unfolded EEM
data. In Fig. 2b, the loadings corresponding to the first three factors
are displayed. The blue solid line corresponds to the first factor,
and shows a profile that is similar to the emission spectra, with
no negative parts. The second factor (green dotted line) presents
a high importance in the first wavelengths; fact that can certainly
be associated with the shoulder of the wine samples Sauvignon
blanc (S) in 260 nm. Finally, the third factor (diamond red line)
with only 1% of variance displays negative and positive con-
tributions associated with small information, orthogonal to the
main source of radiation captured by the first component.
Finally, the bidimensional score plot with 97% of explained vari-
ance (Fig. 2c) shows that it is possible to see a reasonable discrim-
ination ability of the wines C and S. On the other side, the T
samples exhibit a large scattering and overlapping with C and S
samples.

Fig. 3a shows the curves for the CORE consistency test values
and the explained variance against the number of PARAFAC factors.
As noted for PCA for unfolded data, in PARAFAC three factors also
appear to be the best fit, the value of CORE was 71% and the vari-
ance explained 99.5%. These values suggest that three factors
describe the variance of the data.

As regards the retrieved profiles by PARAFAC in both modes
(excitation and emission), which are displayed in Fig. 3b, they
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Fig. 1. (a) Emission (rex at 340 nm) and excitation spectra (Aex at 445 nm) for each wine class; and typical surface EEM for samples of class (b) Chardonay, (c) Sauvignon

blanc, and (d) Torrontés.
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Fig. 2. Results of the exploratory analysis with PCA. (a) Eigenvalues of the X and the Factor 1

explained variance plotted vs. the number of principal components. (b) Loadings
corresponding to the first three PCA factors. (c) Bidimensional score plot.

are smooth curves with excitation maximum in 291, 317 and
341 nm, respectively. In the emission mode, the maxima are
located around 380, 440 and 445 nm. The excitation and emission
profiles of factor 1 match with stilbenes compounds such as t-pi-
ceid and t-astringin (Vitrac, Monti, Vercauteren, Deffieux, &
Meérillon, 2002). Some phenolic acids like gentisic acid, present
fluorescent proprieties, that could be related with factor 2. Lastly,
the excitation and emission profiles calculated for the factor 3 have
not been reported exactly, but some fluorophores as trans-stil-
benes are close to this factor. However, it is probable that each

Fig. 3. Results of the exploratory analysis with PARAFAC. (a) Curves for the CORE
consistency test values and the explained variance against the number of PARAFAC
factors s. (b) Profiles retrieved by PARAFAC analysis in both modes (excitation and
emission). (c) Bidimensional score plot.

PARAFAC factor correspond to a related fluorescent molecule
group, and not necessarily to a single fluorescent molecule
(Airado-Rodriguez et al., 2011).

The bidimensional score plot for PARAFAC (Fig. 3c) shows a
strong overlapping between all the three classes. The class C proves
to be the most cohesive group while the other classes (S and T)
show a pattern of scattering.



218 S.M. Azcarate et al./Food Chemistry 184 (2015) 214-219

Table 1
Confusion matrix obtained by full cross-validation.

Predicted
Models
SIMCA N-PLS-DA U-PLS-DA SPA-LDA
Actual Class C Class S Class T Class C Class S Class T Class C Class S Class T Class C Class S Class T
Class C (7)*

Class S (7)*

Class T (7)*

Diagonal green contain the correct assignments.
*Number of samples per class.

Table 2
Confusion matrix obtained for test set.

Predicted
Models
SIMCA N-PLS-DA U-PLS-DA SPA-LDA
Actual Class C Class S Class T Class C Class S Class T Class C Class S Class T Class C Class S Class T
Class C (7)*

Class S (8)*

Class T (5)*

Diagonal green contain the correct assignments.
*Number of samples per class.

0.5

35 0 05 1 15
DF1

Fig. 4. Discriminant function plot.

In order to build classification models, the data set was parti-
tioned into two groups of samples employing the Kennard-Stone
algorithm. The first group or set of training contained twenty-
one samples, seven of each class of wine. These samples were used

for data modeling and internal validation with the full cross-val-
idation procedure. The second sample group constitutes an
independent samples set to evaluate the discriminative power of
the models.

3.2. Wine classification

In the development of models for classification samples of white
wine according to the grape variety, three approaches, from the
point of view of the modeling data, were used: (a) modeling full
unfolded data using U-SIMCA and U-PLS-DA; (b) three way data by
N-PLS-DA; and (c¢) hard modeling employing LDA coupled with
SPA for selection of a small subset of variables in unfolded data.

3.2.1. Development of classification models and validation

Initially the optimum number of factors/variables using full
cross-validation was determined for all models. The optimal num-
ber of factors was chosen based on the lower error rate, except for
SPA-LDA, which employed the G function as commented above. In
all cases the number of PC which minimizes the error rate of cross-
validation was one. For N- and U-PLS-DA, an equal number of fac-
tors have been selected, i.e. nine in both cases. Applying SPA-LDA,
only six variables were selected. In Table 1, the confusion matrix
built for cross-validation is shown.
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The strong overlapping among the classes observed in the
exploratory analysis of data by PCA and PARAFAC, possibly led to
SIMCA models that presented a poor outcome in terms of accuracy
(AC = 38%). Alternatively, if a larger number of PC is used, the error
rate for class 3 increases damaging the final accuracy of the model.
The modeling of the data with N- and U-PLS-DA showed a signifi-
cant improvement, both employing nine factors. When compared
to the SIMCA, accuracy of 76% and 90% for full cross-validation
were obtained respectively. Comparing the two PLS approaches,
U-PLS showed better results that N-PLS. Finally, the LDA model
based on only six variables selected by SPA achieved performance
equal to that obtained by U-PLS-DA. In addition, the LDA model is
very simple from a mathematical view point, where only two lin-
ear combinations of the six selected variables were employed,
called discriminates functions (DF). Interestingly, most of the vari-
ables selected by SPA correspond to the emission intensities
recorded at excitation wavelengths higher than 300 nm.

3.2.2. Predicting a set of independent samples

The validated models were then used to predict the class
corresponding to twenty wine samples belonging to the test set.
The results obtained for the confusion matrix are shown in Table 2.

As in cross-validation, the SIMCA models showed a lower accu-
racy (50%); although all samples of class C were correctly assigned,
the model does not distinguish correctly samples S and T. N-PLS-
DA showed higher accuracy (65%) when compared to the SIMCA;
however, miss classifications occurred in all classes. The best per-
formances were again obtained for U-PLS-DA and SPA LDA, with
accuracies of 76% and 80%, respectively.

For the test set, SPA LDA showed the best approach for samples
corresponding to classes C and T, which were correctly classified. A
better visualization of the discrimination achieved by LDA, using
the subset of variables selected by SPA, can be attained by visual
inspection of Fig. 3, which shows the two-dimensional plot of the
discriminant functions obtained in the LDA modeling. The black
lines represent the borders of the classes and a pattern of sep-
aration among classes is observed (see Fig. 4).

4. Conclusions

The modeling of EEM matrices for classification of wines
according to grape variety was presented. U-PLS-DA and SPA-
LDA have shown to be the most effective tools to achieve the objec-
tive of this work, which accuracies of ca. 90% achieved for both
models with the cross-validation set, and 76% and 80% for the set
of test samples, respectively. In addition, the LDA model based
on a small subset of variables selected by SPA generated simple
and parsimonious models. On the other hand, it is necessary to
take in account that the analyzed wines were not 100% mono-var-
ietals, because a wine is considered mono-varietal when the grape
purity is up 85%; this fact could have affected the results obtained
by the models (especially N-PLS-DA and SIMCA models).

This methodology, which combined the use of the high sensitiv-
ity of fluorescence with the high accuracy of the models U-PLS-DA
and SPA-LDA, can be a useful tool to assist the industry of wine
producing, as well as in government oversight institutions, to
detect the type of grape used in a commercially available wine,
or to avoid frauds in the mono-varietal white wines market.
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