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Abstract

We report the first comparative cytogenetic analysis of two species from electrogenic fish of genus Rhabdo-
lichops (Sternopygidae, Gymnotiformes): Rhabdolichops troscheli and Rhabdolichops cf eastwardi. R. tro-
scheli has 2n = 54 (fundamental number [FN] = 66), whereas R. cf. eastwardi has 2n = 74 (FN = 78). C-banding
revealed centromeric constitutive heterochromatin in both species. Ag-NORs mapped on pair 6 in R. troscheli
and pair 30 in R. cf eastwardi. Fluorescense in situ hybridization with 18S rDNA probes confirmed the Ag-NOR
staining results and revealed additional (presumably silent) ribosomal genes on pairs 12, 13, 21, 23, 26, and 27
in R. cf eastwardi. 5S rDNA was found on the centromeres of pair 7 in both species. Telomeric probes showed
only distal locations. Dispersed signal patterns were obtained using probes for retrotransposons Rex1 and Rex3.
Histone H1 and H3 genes were found together on pair 6 in R. cf eastwardi. The high diploid number found in
Rhabdolichops suggests that chromosome fission may have contributed to its chromosomal evolution, phylo-
genetic relationship of the Sternopygidae suggests that this increase in diploid number could be a synapo-
morphic characteristic of genus Rhabdolichops. Although both species are phylogenetically close related, their
karyotype structure has undergone divergent evolutionary directions. All in all, our results strongly suggest that
R. cf eastwardi experencied recent intense genome reorganization.
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Introduction

The electrogenic fish of the genus Rhabdolichops in-
habit the lowlands of South America, and are found in

the basins of the Amazon and Orinoco and the minor basins
of the Guianas.1 Rhabdolichops, Archolaemus, Distocyclus,
Eigenmannia, Japigny, and Sternopygus together comprise
the monophyletic family, Sternopygidae, whose members are
widely distributed in Neotropical regions.1,2 Ten species of
Rhabdolichops are currently recognized; most of them feed
on zooplankton, and they are commonly found in the benthic
regions of deep rivers.3–5

Phylogenetic analyses revealed Sternopygidae to be a
monophyletic group that comprises two clades with a sister

taxon relationship.2 The Sternopygus species form one clade,
while the other clade, which is known as the Eigenmanninae
subfamily, includes all remaining genera of this family.
Rhabdolichops appears in a basal phylogenetic position
among the Eigenmanninae genera, but the monophyly of
these genera is called into question by the positioning of
Rhabdolichops lundbergi and Rhabdolichops nigricans,
which are more closely related to Eigenmannia than to the
other Rhabdolichops species.2

Cytogenetics studies among Gymnotiformes are still in
early stages. The species of genera Gymnotus and Eigen-
mannia have been the most widely studied to date (for review
see Refs.6,7). The Gymnotiformes already studied show great
karyotypic diversity, with diploid numbers ranging from
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2n = 22/24 in Apteronotus albifrons8 to 2n = 54 in Gymnotus
inaequilabiatus,9 Gymnotus carapo,9 Gymnotus mamiraua,10

and Gymnotus paraguensis.11

In Sternopygidae, cytogenetic results have been pub-
lished only for Sternopygus macrurus, which has a con-
served 2n = 46 karyotype,12,13 and several chromosomally
diversified species of Eigenmannia, which reportedly have
2n = 28, 32, 32/31, and 38.7,14,15 Sex-chromosome systems
have been found in some species of Eigenmannia; they
range from female heterogametic systems (ZZ/ZW) to sin-
gle or multiple male heterogametic systems (XX/XY or
X1X1X2X2/X1X2Y).7,12,15–17

The major ribosomal genes (the 18S or 45S rDNAs) and
that encoding the 5S rDNA have been mapped in some Ei-
genmannia species, with the latter exhibiting multiple cen-
tromeric locations in most of the tested species.14 Interstitial
telomere sequences (ITSs) were found in a species of Ei-
genmannia with a low diploid number.14 To date, no cyto-
genetic information has been published for Archolaemus,
Distocyclus, Japigny, or Rhabdolichops.

In this study, we present the first conventional and mo-
lecular cytogenetic analysis of two species of Rhabdolichops
troscheli and Rhabdolichops cf eastwardi from the eastern
region of Amazon rainforest.

Materials and Methods

Samples

Four specimens of R. cf eastwardi (P-153/P-1540-1) and one
R. troscheli (P-1903-4) were collected from two localities in the
eastern Amazon rainforest (Fig. 1): one R. cf eastwardi and the
R. troscheli in the Abaetetuba municipality (Caripetuba River:
01�37¢23.49†S/048�55¢33†W) and three R. cf eastwardi in
the Barcarena Municipality (Arienga River: 1�36¢28.40"S/
48�48¢16.70"W). Samples were collected with seine nets in
agreement with Brazilian environmental protection legisla-
tion, under license 020/2005 (ICMBio Registration: 207419).

Specimens were kept alive with portable aeration and
transported to the laboratory. They were then anesthetized
with benzocaine hydrochloride solution and euthanized.
Representative samples have been deposited in the Ich-
thyology Collections of the Centro de Estudos Avançados da
Biodiversidade (CEABIO) of Universidade Federal do Pará
(Belém, Brazil).

Chromosome preparations

Mitotic chromosomes were obtained from cephalic kidney
cell suspensions.18 Conventional karyotyping was performed

FIG. 1. Geographic loca-
tions (stars) of the sampling
sites (A), and specimens of
Rhabdolichops cf eastwardi
(B) and Rhabdolichops tro-
scheli (C). Bar (B, C) = 1 cm.
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with Giemsa staining. Constitutive heterochromatin (CH)
was characterized by C-banding.19 Impregnation of NOR
(nucleolar organizer region) with silver nitrate (Ag-NOR
staining) was used to detect the nucleolar activity of ma-
jor ribosomal genes.20 DAPI/CMA3 (4¢,6-diamidino-2-
phenylindole and Chromomycin A3) fluorochrome staining
was used to identify AT- and GC-rich regions.21

For molecular characterizations of chromosomes, we per-
formed fluorescense in situ hybridization (FISH)22 with probes
for 18S rDNA, 5S rDNA, telomeric sequences (TTAGGG)n,
histone H1, histone H3, and the retrotransposable elements
Rex1 and Rex3. The probes were labeled with digoxigenin-11-
dUTP or biotin-16-dUTP and detected using avidin labeled
with Cy3 (cyanine 3) or FITC (fluorescein isothiocyanate) or
antidigoxigenin (labeled with FITC). Images were captured
using a Nikon H550S fluorescent photomicroscope equipped
with the Nis-Elements software. Karyotypes were built by
digital handling with Adobe Photoshop CS5. Chromosomes
were classified as described23: they were distributed accord-
ing to their arm ratios as submetacentric or subtelocentric/
acrocentric chromosomes and arranged by decreasing size in
each group.

Probe preparation

Cell suspensions of R. cf eastwardi and R. troscheli were
used for DNA purification with the DNAzol reagent (In-
vitrogen). The major ribosomal 18S rDNA genes were
amplified24 and labeled with digoxigenin-11-dUTP using
the DIG-Nick Translation Mix (Roche). The coding region
of the minor ribosomal 5S rDNA was amplified by poly-
merase chain reaction (PCR) using own design primers 5rF
(5¢-GCC ACA CCA CCC TGA ACA C-3¢) and 5rR (5¢-
GCC TAC GAC ACC TGG TAT TC-3¢). PCR was per-
formed in a final volume of 25 lL containing 100 ng of
genomic DNA, 1 · NH4-based polymerase reaction buffer,
200 lM of each dNTP (or for labeling PCR experiments,
200 lM dATP, 200 lM dCTP, 200 lM dGTP, 140 lM
dTTP, and 60 lM biotin-16-dUTP), 0.4 lM of each primer,

1.5 mM of MgCl2, and 2 U of BIOTAQ� DNA Polymerase
(BIOLINE).

The cycling conditions were as follows: 5 min at 95�C; 30
cycles of 1 min at 95�C, 30 s at 50�C, and 45 s at 72�C; and a
final extension step at 72�C for 5 min. A probe for the gen-
eral vertebrate telomeric sequence (TTAGGG)n was gener-
ated and PCR labeled25 using primers (TTAGGG)5 and
(CCCTAA)5. The coding domains of the reverse transcrip-
tase genes of the retrotransposons, Rex1 and Rex3, were PCR
amplified with primers RTX1-F1 (5¢-TTC TCC AGT GCC
TTC AAC ACC-3¢) and RTX1-R3 (5¢-TCC CTC AGC AGA
AAG AGT CTG CTC-3¢) for Rex1,26 and RTX3-F3 (5¢-CGG
TGA YAA AGG GCA GCC CTG-3¢) and RTX3-R3 (5¢-
TGG CAG ACN GGG GTG GTG GT-3¢) for Rex3.27

Histone H1 was amplified by PCR using own design prim-
ers H1f (5¢-AGA RGA GCG GCG TGT-3¢) and H1r (5¢-CYT
CTT CRC CTT CYT KG-3¢), and H3 were amplified with
degenerate primers H3F1 (5¢GGC NMG NAC NAA RCA
RAC) and H3R1 (5¢TGD ATR TCY TTN GGC ATD AT),28

respectively. All PCR products were confirmed on 1% aga-
rose gels and quantified using an Epoch� Multi-Volume
Spectrophotometer System (Bio Tek).

Results

Rhabdolichops troscheli

All the analyzed specimens exhibited karyotypes with a
diploid number (2n) of 54 chromosomes, a karyotypic for-
mula (KF) of 12 sm (submetacentrics) and 42 st/a (subtelo-
centrics/acrocentrics), and no sex chromosome system with a
fundamental number (FN) = 66 (Fig. 2A). Ag-NOR staining
was found pericentromerically on the short arm of pair 6
(Fig. 2A, square), which was consistent with the results of our
in situ hybridization experiments with the 18S rDNA probes
(Fig. 3A). The C-banding pattern corresponded to mainly
centromeric CH (Fig. 2B). The DAPI/CMA3 pattern indicated
the presence of AT-rich CH (Fig. 3A) and CG-rich NORs
(Fig. 3B). FISH with 5S rDNA probes showed a centromeric
signal on pair 7 (Fig. 3A, square).

FIG. 2. R. troscheli. (A)
Giemsa-stained karyotype and
the Ag-NOR signal (square)
on chromosome pair 6. (B)
Karyotype showing the C-
banding pattern. Bar =5 lm.
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The probe (TTAGGG)n detected the terminal sites in all
chromosome complements with different signal intensities,
and no ITSs were detected (Fig. 3C). Finally, FISH with the
Rex1 and Rex3 probes revealed the presence of these repet-
itive elements on some heterochromatic regions (Fig. 3D and
E, respectively).

Rhabdolichops cf eastwardi

All specimens of this species exhibited karyotypes of
2n = 74 chromosomes, a KF of 4 sm and 70 st/a (FN = 78)

(Fig. 4A), and no sex chromosome system. Ag-NOR posi-
tivity was detected distally on pair 30 (Fig. 4A, square). The
C-banding pattern indicated that CH was present at almost all
centromeric regions (Fig. 4B). Fluorochrome banding indi-
cated that most of the centromeric CH corresponded to AT-
rich (DAPI-positive) regions (Fig. 5A), although there were
three distal CG-rich (CMA3-positive) regions, which were
observed on pairs 23, 24, and 30 (Fig. 5B). In situ hybrid-
ization experiments revealed that an 18S rDNA signal coin-
cided with the distal Ag-NOR signal on pair 30 and also with
the telomeres of pairs 11, 12, 13, 21, 23, 24, 26, and 27

FIG. 3. R. troscheli. (A) DAPI-
counterstained karyotypes showing
FISH with 18S rDNA probes (red
mark on pair 6) and 5S rDNA (square
on pair 7). (B) CMA3-stained meta-
phase chromosomes exhibiting peri-
centric positivity on the short arm of
pair 6 (white arrows). (C) FISH with
telomeric probes shows signals only at
the chromosome tips. (D) FISH with
Rex1 probe shows a scattered signal
pattern. (E) FISH with Rex3 probe
shows a scattered signal pattern. Bar =
5 lm. FISH, fluorescense in situ hy-
bridization.

FIG. 4. Karyotype of R. cf
eastwardi. (A) Giemsa-stained
karyotype and the Ag-NOR
staining (square) on chromo-
some pair 30. (B) C-banding
pattern. Bar = 5 lm.
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(Fig. 5A). FISH with 5S rDNA probe mapped this sequence
in pericentromeric region of pair 7 (Fig. 5A, square).

The probe (TTAGGG)n detected the terminal sites in all
chromosome complement with different signal intensities,
and no ITS were detected (Fig. 5C). Probes for histones H1
and H3 revealed an interstitial signal on chromosome pair 6
(Fig. 5D and E, respectively). FISH with Rex1 and Rex3
probes shows the presence of these repetitive elements on
some heterochromatic regions (Fig. 5F and G, respectively).

Discussion

R. troscheli (2n = 54; FN = 66) shares the higher 2n already
described for Gymnotiformes such as G. inaequilabiatus,9

G. carapo,9 G. mamiraua,10 and G. paraguensis.11 However,
we herein report a new highest 2n for this family, which we
found in R. cf eastwardi (2n = 74; FN = 78). This expands the
karyotypic diversity known for this group of fish and suggests
more complex karyotypic evolution for Gymnontiformes.

Among the Sternopygidae, the karyotypes of the di-
versified species of Eigenmannia (2n = 28–38; FN = 42–50)
and a conserved S. macrurus (2n = 46; FN = 92) have rel-
atively low diploid numbers compared with R. troscheli
(2n = 54; FN = 66) and R. cf eastwardi (2n = 74; FN = 78).
The former group, however, have higher FNs. This is due
to the presence of more biarmed chromosomes, especially
in S. macrurus (2n = 46, FN = 92), which has only biarmed
chromosomes.12,13 The karyotypic formulae of the studied
Rhabdolichops species resemble those found in most spe-
cies of Eigenmannia, especially, those with higher diploid
numbers.7,13,14 However, they are quite different from the
published karyotypes of Sternopygus species, which only
have biarmed chromosomes.12,13

The high diploid number found in Rhabdolichops suggests
that chromosome fission may have contributed to the chro-
mosomal evolution of this genus. Given the absence of in-
terstitial telomeric signals in Rhabdolichops, we speculate
that pericentric inversions and/or short arm additions could
account for the increases in FN. Another possibility is that
centromeric repositioning could be acting to promote the
observed differences.29 The phylogenetic relationship of the

Sternopygidae2 suggests that increases in diploid number
could be a synapomorphic characteristic of genus Rhabdo-
lichops among the Sternopygidae.

A high degree of AT-rich heterochromatin, such as ob-
served in this study for Rhabdolichops, has been commonly
observed among Sternopygidae; for example, it was previ-
ously described in S. macrurus13 and for several Eigen-
mannia species.7,16,18

A single NOR is the most common situation among the
Sternopygidae, as confirmed by physical mapping of these
genes in species of Eigenmannia.7,13,16,18 Consistent with this,
we found only a single NOR in each of the studied species: on
pair 6 of R. troscheli (Figs. 2 and 3) and on pair 30 of R. cf
eastwardi (Figs. 4 and 5). The additional positive 18S rDNA
clusters observed through FISH mapping in R. cf eastwardi are
presumed not to reflect active NOR. Although a 5S rDNA
probe reportedly hybridized to multiple locations among Ei-
genmannia species,14 our 5S rDNA probe yielded only one
signal in each of the tested species of Rhabdolichops.

The presence of major and minor ribosomal genes at
multiple locations may reflect several kinds of chromosomal
rearrangement, while the distal locations of the signals for
18S rDNA (at the telomeres) and 5S rDNA (near the cen-
tromeres of acrocentric chromosomes) may suggest that Rabl
orientation-associated factors have been involved in the
spread of these ribosomal genes. In R. cf eastwardi, only
three of the nine 18S rDNA genes were found to be associated
with CMA3-positive CG-rich regions (chromosome pairs 23,
24, and 30) (Fig. 5A, B). This is a relevant result since it is
commonly accepted that 18S rDNA genes are associated to
GC-rich heterochromatin in fish. Our findings could indicate
that these six 18S rDNA sites are so recent that heterochro-
matin has not yet had time to accumulate.

Also, Gromich et al.30 found out by sequenced FISH/banding
in fishes that ‘‘not just some other regions besides NORs were
stained with CMA3 and Ag, but also the majority of the 28S
rDNA sites were not detected,’’ meaning that it is always im-
portant to check the classical and molecular cytogenetics data.

In recent years, sequence data and physical mapping
have shown that several retrotransposons can be used as
important markers for karyotypic comparisons.31,32 The Rex

FIG. 5. R. cf eastwardi. (A)
DAPI-counterstained karyo-
types showing FISH with 18S
rDNA probes (red marks on
pairs 11–13, 21, 23–24, 26–27,
and 30) and the 5S rDNA
(square on pair 7). (B) CMA3-
stained metaphase chromo-
somes exhibiting positive
bands on pairs 23–24, and 30
(white arrows). (C) FISH with
telomeric probes shows signals
only at the chromosome tips.
(D) FISH with histone H1
probe. (E) FISH with histone
H3 probe. (F) FISH with Rex1
probe shows a scattered signal
pattern. (G) FISH with Rex3
probe shows a scattered signal
pattern. Bar = 5 lm.
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retroelements are widespread among the genomes of differ-
ent fish lineages, and they have been mapped by in situ hy-
bridization in numerous fish.33,34 The distribution patterns
observed for the Rex retroelements have been found to vary
across different groups: they are compartmentalized in peri-
centromeric heterochromatic regions among Cichlidae, Pro-
chilodontidae, and Tetraodontidae35–37; they colocalize with
ribosomal genes in some Cichlidae, Erythrinidae, and Lor-
icariidae species38–40; they are associated with sexual het-
erochromatin in Channichthyidae41 and Anostomidae33; and
they are dispersed throughout the genome in many species of
Erythrinidae, Artedidraconidae, Bathydraconidae, Bovichti-
dae, Nototheniidae, and Loricariidae.32,39,41

The previous pattern was observed herein for the two
studied species of Rhabdolichops (Sternopygidae). This
pattern compartmentalized in pericentromeric heterochro-
matic regions is consistent with the idea that these transpo-
sons move and insert themselves along the genome.

Finally, we herein report the first mapping of two histone
(H1 and H3) genes in members of Sternopygidae. As in other
fish species, these genes appear to be clustered,42–46 and we
observed their signals in the interstitial region of pair 6 for
R. cf eastwardi (Fig. 5D, E), but were unable to physically
map these genes in R. troscheli.

Our comparison between the karyotypes of R. troscheli
and R. cf eastwardi show that, despite they can be found in
the same geographic region and share some traits (a single
active 18S rDNA site, a single 5S rDNA location, no ITSs,
most of CH rich in AT pb and centromerically located, a
heterochromatic pattern of Rex1 and Rex3 distribution), their
karyotypes are quite different. R. troscheli has a more con-
served karyotype when compared to other Gymnotiformes,
while R. cf eastwardi shows a more divergent one, with
higher diploid number, additional CG-rich distal CH, ap-
parently new NOR sites. This is even more evident if we take
into account that R. troscheli and R. cf eastwardi are phylo-
genetically close species.47 All in all, our results strongly
suggest that R. cf eastwardi experencied recent intense ge-
nome reorganization.

In the future, extending these observations to other Rhab-
dolichops species could help us identify the chromosomal
rearrangements involved in the chromosomal evolution of
this genus, potentially improving our understanding of the
phylogenetic relationship among Rhabdolichops species.
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