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a b s t r a c t

The screened hydrogenic model (SHM) is one of the atomic models commonly used in plasma physics,
especially in the high energy density range. However, for low-ionization degrees, the radial hydrogenic
wavefunctions of the valence electrons are very different from those arising from Hartree Fock (HF)
calculations. In this work we used the time-honored concepts of screening and quantum defects to
calculate the atomic structure and spectra of not very highly ionized atoms. We showed that, although
for neutral and few ionized atoms the screened hydrogenic radial wave functions are far from the HF
values, the combined use of the screening and the quantum defect parameters produces better calcu-
lations of the dipolar moments that using only the SHM.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The screened hydrogenic model (SHM) is one of the atomic
models commonly used in plasma physics, especially in the high-
energy density range. The non-relativistic framework of the SHM
was proposed by Layzer [1], whereas the relativistic generalization
was suggested by Layzer et al. [2]. The screening parameters for the
SHM have been calculated, over time, by many authors. In partic-
ular, in the last years, several works have appeared in this Journal,
both for non-relativistic and relativistic configurations ([3e6]). In
this work, we do not repeat the advantages of the SHM but we treat
a matter explicitly mentioned only by Mendoza et al. [6] although
well known for many practitioners of this approximation: for
neutrals and low-ionization degrees, the radial hydrogenic wave-
functions of the valence electrons are very different from Har-
treeeFock (HF) calculations.1 Although the author and the readers
of this journal are not, in general, interested in low ionization de-
grees, the failure of the SHM in this range leaves a bitter taste to the
atomic physicists.

Slater [7] noted that HF calculations can be qualitatively
expressed not as a hydrogenic function with effective charge Zeff,
but as a linear combination of Slater radial wavefunctions
Di Rocco).
scribed by the SHM.
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as can be viewed in the classical compilation of Clementi and Roetti
[8].2 In this work we used, for comparison, the quasi-relativistic
code with superposition of configurations by Cowan [9]. For
example, an approximate, highly qualitative representation of HF
P3s(r) can be given by

P3sðrÞzc1r exp ð � ðZ � s1sÞÞ þ c2r
2 exp ð � ðZ � s2sÞ=2Þ

þ c3r
3 exp ð � ðZ � s3sÞ=3Þ:

Indeed, radial orbitals obtained by the Cowan's code are
adjusted by expressions like Eq. (1) although the use of the double-
zeta basis set is clearly better, but not adapted for simple and rapid
calculations.

The mentioned bad behavior of the SHM for the valence elec-
trons has negative implications in the calculation of the transition
probabilities Aif (or the related weighted oscillator strengths gifif),
which need the calculation of integrals of the type
2 The so called single zeta functions are rudimentary. However, the orbital ex-
ponents of a single zeta function are of physical interest, since they provide a simple
and quantitative description of the electron's screening.
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PiðrÞrPf ðrÞ dr; (2)

so the behavior of P(r) at large r values is of great importance. In the
above equation, we indicate the set of initial and final quantum
numbers, respectively: i≡(ni,li,ji), and f≡(nf,lf,jf).

Therefore, it is interesting to extend, if possible, the usefulness
of the SHM. This goal can be achieved through the use of a
parameter, widely used in Atomic Spectroscopy, based on the
hydrogenic formula for the binding energy, E¼�Z2/n2. Here, we
translate the empirical uses [10] to our case, where the numbers are
calculated without resort to experimental energy levels. That
parameter is called the effective principal quantum number
n*¼n�d, where d is the quantum defect. If EnlJ is the theoretical en-
ergy level calculated with respect to the ground level j0〉, I is the
ionization energy, TnlJ¼ I�EnlJ is the negative binding energy (also
called a term), Zc¼ Z�Nþ1 is the net charge, and Ry is the atomic
unit for the energy, equivalent to 13.6058 eV, allows defining,

n� ¼ n� dl ¼ Zc

ffiffiffiffiffiffiffi
Ry
TnlJ

s
: (3)

We introduces n*, because n* is used tomake other type of semi-
empirical radial wavefunction, due originally to Bates and Dam-
gaard (see x 2). Due to the heuristic use of these types of method-
ologies, we propose to use the SHM with the following steps: 1)
calculate, using the SHM, the values of Etot(atom) and Etot(ion) and,
therefore, I¼ Etot(atom)�Etot(ion),3 ii) calculate, using the SHM, the
required level values EnlJ for the atom, iii) define, for each EnlJ of
interest, the effective principal quantum number n* according to
Eq. (3), iv) use the n* values to obtain the radial wavefunction, well
behaved to large values of r, as will be explained below.

We do not show the behavior of the wavefunctions, because this
has been discussed byMendoza et al., but we do show the behavior
of the integrand of Eq. (2). The comparison with several typical
cases for the ground configurations of neutrals indicates that,
whereas for some cases (Ar I, N I) the results are poor, for other
cases they are good (Kr I); for excited states the results are clearly
better. The general conclusion is that we can use the screening
parameters for the calculation of energy levels and the quantum
defects for the calculation of dipolarmoments; the results aremuch
better than those using only the SHM.

It should be clear that in the present paper we do not present
any new method to calculate the snl’s (however, see Section x 2.1),
but we analyze the behavior of the integrals of the type 2 using
different approachs. All our data about energy values were
computed with the published constants from Mendoza et al. [6]
with no use of empirical data.

2. Theory

2.1. A very short review about the SHM

Along the years, a number of rules have been proposed to
compute the screening parameters snl, some are empirical (based
on the experimental energy levels) whereas others have been ob-
tained from numerical fittings from Self-Consistent calculations. Z-
independent screening constants were given by different authors,
the newer were published in this Journal in the Refs. [3e6]. How-
ever, the snl are parameters, more than constants; this is mandatory
3 In general, we will calculate I¼ Etot(Anþ)�Etot(A(nþ1)k).
to account the contraction of the orbitals for succesive Z' s in the
isoelectronic sequences.Wewill leave this very important topic to a
future work (in progress [11]) and, for the purposes of the present
paper, we can consider the snl as constants. The more refined
approach [11] is based in a serie of papers by Kregar [12] and one of
us (HODR [13]) and can be generalized to the relativistic treatment
of complex atoms and ions.While it is true that the use of screening
constants is immediate, the use of screening parameters gives better
agreement with experimental energy values. In fact, some authors
have indicated the Z dependence of the screening parameters, s(Z)
[14] [15].

The formulation of the SHM is easier in the non-relativistic
approach; the required generalization is immediate and will be
presented elsewhere [11]. According with Layzer [1], the total non-
relativistic energy can be written as the expansion

EðN; ZÞ ¼ Z2E0 þ ZE1 � E2 þ Z�1E3… (4)

where, exactly, using the Hartree as the energy unit (1Ht≡27.21 eV)

E0
Ht

¼ 〈J0jH0jJ0〉 ¼ �1
2

XN
i¼1

1
n2i

(5)

and

E1
Ht

¼ 〈J0jH1jJ0〉 ¼
1
2

X
i

wiðwi � 1Þfiig þ
X
i;j

wiwjfijg; (6)

where wi is the number of electrons in the shell i. E1 is given by the
sum of the average Coulomb energy for electron pairs {ij} evaluated
with hydrogenic wavefunctions with Z¼ 1. For equivalent and non-
equivalent orbitals, respectively,

fiig ¼ F0ðiiÞ �
X

fkF
kðiiÞ and fijg ¼ F0ðijÞ �

X
gkG

kðijÞ
(7)

being Fk(ab) and Gk(ab) the Slater integrals and fk and gk appropriate
coefficients [9].

If we restrict the expansion (4) up to E2, the total energy can be
written as

E
Ht

¼ �
X
n;l

wnlðZ � snlÞ2
2n2

(8)

where wnl is (changing mildly the notation) the number of elec-
trons in the (n,l) shell and snl is the corresponding screening
parameter. Comparing Eqs. (4) and (8), we find that the snl’s satisfy

E1
Ht

¼
X
n;l

wnl

n2
snl and

E2
Ht

¼
X
n;l

wnl

2n2
s2nl: (9)

We see that E1 can be calculated by two ways: in term of the
Slater integrals with Z¼ 1 or in terms of the snl’s. If we are capable of
select a good method for the snl’s calculations, the two values must
be nearly equal, specially for highly ionized atoms. Once the
screening constants are obtained application of the model is
particularly simple, with no further reference to wavefunctions.

The screening parameters are calculated in term of external and
internal screening parameters, gij and fji, respectively; when i¼ j,
fii¼ gii≡kii. The, taking into account all this, the effective charges are
given by
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X
j> i

wjgij þ ðwi � 1Þkii

3
5: (10)

For the purposes of our present paper, the values for gij and fji are
taken from the Ref. [6].
Table 1
Energy levels of the Ar isoelectronic sequence; Z is the atomic number, I is the
ionization potential in eV, Eth(nl), etc. are the average configuration energies for
configurations, both theoretical and experimental.

Z I(th) I(ex) Eth(4s) Eex(4s) Eth(4p) Eex(4p)

18 17.30 15.76 13.20 11.68 13.00 13.30
19 34.40 31.63 21.70 20.39 23.00 23.43
20 54.70 50.91 31.60 30.39 34.50 34.91
21 77.90 73.67 42.80 41.55 47.20 47.68
22 104.10 99.30 55.20 54.45 61.20 61.78
2.2. The quantum defect model

With the values of Zc and n*, we can use the Bates-Damgaard
approximation (BDA) [16] or the extension made by Kostelecky
and Nieto (KN) [17]. It must be clear that, whereas for the experi-
mental spectroscopists, n* is calculated using the known energy
levels, in our case n* is calculated through the SHM as explained in x
1, after Eq. (3).

Starting from the Schr€oedinger equation for a highly excited
electron, we can approximate the terms �Z/rþV(r) by �Zc/r; the
approximate solution, satisfying the condition Pnl(∞)¼0 is given by
the asymptotic expansion of Whittaker functions, which can be
written as [16]

PBDnl ðrÞ ¼ Nnl

�
2Zcr
n�

�n�

exp
�
� Zcr

n�

� Xintðn�Þ

k¼0

ak
rk
; (11)

valid when n*>lþ1/2; in Eq. (11), Nnl is an appropriate normaliza-
tion coefficient and the a0ks are calculated as follows [18]:

a0 ¼ 1;
a1 ¼ n�½lðlþ 1Þ � n�ðn� � 1Þ�=2;
ak ¼ ak�1fn�½lðlþ 1Þ � ðn� � kÞðn� � kþ 1Þ�=2kg:

This procedure produces the best results when the maximum of
both functions, Pnl(r) and Pn0l0 ðrÞ are outside of the core [16]. Any-
way, this constitutes a significant improvement with respect to the
Pnl(r) calculated through the SHM, al least for the calculation of the
DMs for low ionization stages. Furthermore, there are others ap-
plications: the use of the effective principal quantum numbers n*

allows calculating Born and Born-Coulomb cross sections s(E) [16].
Also, the effective principal quantum numbers n* have beenwidely
used in Plasma Spectroscopy to calculate line widths (w) and shifts
(d) [19], becausew and d are related to s(E), when averaged over the
electron energy distribution.

An extension of the BDAwas made by Kostelecky and Nieto [17],
who proposed the differential equation (in our notation)

 
� d2

dr2
� 2Zc

r
þ lðlþ 1Þ

r2
þ Veff þ

�
Zc
n�

�2
!
PnlðrÞ ¼ 0; (12)

making

lðlþ 1Þ
r2

þ Veff ¼
lðlþ 1Þ

r2
; (13)

this is equivalent to saying that Veff¼b/r2. Anyway, because b is
unknown, the solution for Eq. (13) can be written as

l ¼ l� dl þ Il (14)

being Il an integer and dl ¼ n� Zc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ry=Tnlj

q
(see Eq. (3)). The

analytical solutions, written originally in Ref. [17] in terms of
associated Laguerre polynomials LanðxÞ, can be changed to the
Kummer functions M(a,b;x), because there are different (but
equivalent) definitions of LanðxÞ whereas the M(a,b;x) is always
defined as
Mða; b; xÞ ¼ 1þ a
b

x
1!

þ aðaþ 1Þ
bðbþ 1Þ

x2

2!
þ… (15)

Then, the solution of Eq. (12) is

PKNnl ðrÞ¼Nnl

�
2Zcr
n�

�lþ1
exp

�
�Zcr

n�

�
M
�
�n�þlþ1;2ðlþ1Þ;2Zcr

n�

�
(16)

with Nnl being an appropriate normalization constant. The super-
script KN indicates the authors of the criterion (Kostelecky and
Nieto), to distinguish it from the very related Bates-Damgaard (BD)
method. Effectively, the KNmethod may be viewed as an extension
of the BD one, which uses integer l but noninteger n*.

In Ref. [17], the authors showed that Il,min¼ int(dl�l�1/2) and
Il,max¼ int(nmin�l�1) from which lmin and lmax are deduced ac-
cording to the Eq. (14). It is verified that the functions Pnlj(r) with
lmax start from the origin.
3. Results for the energies and the dipolar moments integrals

In this work we compared, for diverse test cases, the SHM with
Kostelecky-Nieto and of Bates-Damgaard approximations. The
process consists in calculating Etot(Anþ), Etot(A(nþ1)þ) and the values
of the EnlJ of interest using the SHM with the snl values provided in
Ref. [6]. Once calculated the energies (Etot(Anþ),…,EnlJ), the n* values
are calculated as explained in x 1. After that, the a0ks; dl, etc. are
calculated and the functions PBDnl ðrÞ and PKNnl ðrÞ are constructed. For
comparison, the HF orbitals PHFnl ðrÞ were obtained using the set of
programs of Cowan [9]. The test cases are: 1) atoms with one
valence orbital (type Na), 2) atoms with half-filled shell (type N), 3)
atoms with filled shell (type Kr). With regard to the quality of the
BD (or KN) wavefunctions, it is known that for neutral atoms, the
polarization effects are very important and clearly, the HF calcu-
lations will give better results than BD and/or KN approaches [16].
The exceptions are the alkali-like elements, where the BD and KN
approaches give very good results. Furthermore, for excited states
of any atom, the BD/NK approaches give good results.
3.1. Energies

Once the screening constants are obtained, the total energies are
calculated using the Eq. (8) or the corresponding relativistic
counterparty. In this work, we do not present any new method to
estimate snl parameters; a work about that topic is in progress [11].
Therefore, all present calculations are based in the values provided
in Refs. [6], because our purpose is to study the behavior of the
dipolar moment integrals and not the energies. However, for the
sake of completeness, we show, in Table 1, the ionization energies
and the excitation energies of the 4s and 4p configurations of the
isoelectronic sequence of the Ar. The agreement with the empirical
values is in the order of ~1 eV; however, wavefunctions and dipolar



Table 3
The radial dipolar integrals

R
Pf rPidr evaluated through i) the HartreeeFock method

(HF), ii) the hydrogenic functions (Hyd) and iii) the method of the quantum defect
(KN). Also, the ratios Int(Hyd)/Int(HF) and Int(KN)/Int(HF) are shown.

Ion Int(HF) Int(Hyd) Int(KN) IntðHydÞ
IntðHFÞ

IntðKNÞ
IntðHFÞ

Mg II �2.99 �2.54 �3.14 0.85 1.05
Ar I 0.55 �0.20 1.09 �0.37 2.00
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moment integrals are less satisfactory. This fact shows that good
calculations for the energies do not imply necessarily good wave-
functions. Worse is the case for N�like elements: the SHM gives
bad values for the energies and the same applies for the DM in-
tegrals (see Table 2). All experimental levels were obtained from
the web page of the National Institute of Standards and Technology
[20].
K II 0.65 �0.14 0.65 �0.22 1.00
Kr I (4p-5s) 0.93 0.53 1.01 0.57 1.09
Kr I (5s-5p) �5.90 �2.57 �5.47 0.44 0.93
N I (2p-3s) 0.73 �0.14 1.84 �0.19 2.51
N I (3s-3p) 5.65 1.56 4.18 0.28 0.74
Ne IV (3s-3p) �2.30 �2.36 �2.00 1.03 0.87
3.1.1. A caution about the method of the quantum defects; the
relation with our work

The methods of BD and/or KN give good values when the ioni-
zation potential I¼ Etot(Anþ) � Etot(A(nþ1)þ) is clearly identified. This
is not so when we consider energy levels above I (autoinizing
levels). For example, in collisions of Xeqþ(q¼ 44�48) ions inter-
acting with Cu surfaces, X�ray spectra arise from radiative transi-
tions of the type F0F1 4 2p�14dF0F1, with F0¼1s22s22p6,
F1 ¼ 3sk4…5pk12 : For the case of Xe34þ, the binding energy of the
configuration (1s22s22p63s23p63d2) is Etot z �179081 eV; for the
configuration (1s22s22p53s23p63d24d), also of Xe34þ,
Etot z �173684 eV, whereas the energy of Xe35þ configuration
(1s22s22p53s23p63d1), is z�176875 eV. Therefore, the configura-
tion (…4d) is above the ionization potential [21]. Clearly, it is not
possible to apply the BD/KN methods to these types of states.
However, these very complex configurations, belonging to highly
ionized atoms, can be very well treated with the SHM; our present
work is intended to treat neutral or lowly ionized atoms.
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3.2. Dipolar moments

One issue to consider is that, even for the lest satisfactory cases
for the behavior of the wavefunctions, the behavior of the dipolar
moment integrals (2) is more important in the applications,
because the Pnl(r) are intermediate steps in the calculation of the
atomic observables.

Table 3 shows, for some typical cases, the radial dipolar integralsR
Pf rPidr evaluated through i) the HF method [9], ii) the hydrogenic

functions [6] and iii) the method of the quantum defect [17]. When
working with analytical radial functions, both approachs, numeri-
cal and/or analytical, are possible. With respect to the SHM, one of
us (HODR) published a work [22] cited by Upcraft [4] where the
effective charges of the upper (Zu) and lower levels (Zl) were
explicitly different. With respect to the Quantum Defect method,
explicit analytic expressions are in the classic work by Oertel and
Shomo [23].

The treated cases were: a) atoms with one valence orbital
(i.e.:MgII), b) atoms with half-filled shells for the ground configu-
ration (ie.:NI and NeIV) c) atoms with filled shell for the ground
configuration (i.e.:ArI and KrI). The analysis of the above values
shows that, in general, the KN numbers are much better that the
hydrogenic ones, both in absolute values and in the signs. In the
case of the N�like ion Ne3þ, the results tend to come near as can be
expected. From the extensive calculations we have selected two
figures, in order to illustrate our method, presenting the product
Pf(r)rPi(r) (not the radial wavefunctions itself).
Table 2
Energy levels of the N isoelectronic sequence; the symbols are as above.

Z I(th) I(ex) Eth(3s) Eex(3s) Eth(3p) Eex(3p)

7 11.55 14.53 7.15 10.50 7.61 12.00
8 35.11 35.11 19.39 23.20 21.08 28.67
9 59.53 62.70 35.42 39.77 38.34 45.19
10 93.71 97.12 55.21 60.00 59.37 70.78
A good case, transitions between excited states of KrI: for the
case of transitions between excited states of Kr I, for example
(4p55p)/(4p55s), the values for the definite integralZ

P
�
4p55s; r

�
rP
�
4p55p; r

�
dr

are, again, in accordance within 7e8% (see Fig. 1).
A bad case, atoms with half-filled shells: Fig. 2 shows the worst

case, the product

P
�
2p3; r

�
rP
�
2p23s; r

�

for neutral Nitrogen (N I); this was the least favorable situation
found in our calculations. However, looking at Table 3, we can say
that, whereas the KN approach gives a high discrepancy, the SHM
has no sense (a change of sign for the integral).
3.3. The possibility of radial cancellation

The problem of radial cancellation occurs when it meets������
Z∞
0

rPnlðrÞPn0l0 ðrÞdr
������≪
Z∞
0

rjPnlðrÞPn0l0 ðrÞjdr (17)
0 5 10 15 20
-1.2

r (a.u.)

Fig. 1. A good case, the product P(4p55s;r)rP(4p55p;r) for transitions between excited
states of KrI. From our extensive calculations and comparisons between the diverse
methods, we have chosen one good (KrI)and one bad case (NI).In the figures the circles
indicate the HF values as obtained with the set of programs due to Cowan [9], the
dashed lines are the hydrogenic values whereas the full line indicates our approach.
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Fig. 2. A bad case, the product P(2p3;r)rP(2p23s;r) for NI. As indicated in the text, even
the energy levels were miscalculated by the SHM (see also Table 2). From our extensive
calculations and comparisons between the diverse methods, we have chosen one good
(KrI)and one bad case (NI).In the figures the circles indicate the HF values as obtained
with the set of programs due to Cowan [9], the dashed lines are the hydrogenic values
whereas the full line indicates our approach.
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representing a destructive-interference effect in the radial portion
of the line strength [9]. The conditions for cancellation are very
sensitive to the effective quantum numbers of the participating
levels, as cited by Curtis [24]. A method for predicting regions of
likely cancellation in the space ðn�l0 ;n�l Þ was introduced by Curtis
and Ellis, based in a formulation by Burgess and Seaton [25]. Those
authors used the concept of an oscillator strength distribution in
energy which is analytic across the ionisation limit; the result is

�
n�l
	3fnl;n0l0 ¼ Acos2



p
�
n�l0 � n�l � c

	�
where A and c are slowly varying functions of the n*’s. The
cancellation occurs when cos[…]¼0 that is, when
ðn�l0 � n�l � cÞ ¼ kþ 1=2; where k is an integer [24]. Cancellations in
the isoelectronic sequences of Cu,K, etc. were examinated by Curtis
and collaborators; a clear presentation of this topic with adequate
references can be found in their monography [24].

4. Conclusions

The radial wavefunctions for the valence electrons obtained
with the SHM are far from the HF numerical values provided, for
example, by the codes of Cowan or similar, when neutral or few
times ionized atoms are considered. Clearly, up to now, there are no
easy ways to remedy that trend. However, the combined use of the
SHM jointly with the Quantum Defect Theory (mainly due to Bates
and Damgaard and to Kostelecky and Nieto) allows: 1) calculating
the level system of a given ion, 2) calculating the n* numbers and 3)

calculating the integrals
Z ∞

0
PiðrÞrPf ðrÞdr, related to the Aif transi-

tions probabilities. In general, the results of this combined
approach givesmuch better results that using only the SHM, both in
absolute values and in the signs. However, for the cases when EnlJ is
above I, the Quantum Defect Methods can not applied; however,
these cases are present in highly ionized atoms, when the SHM
works very well, both for energy levels as wavefunctions.
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