Optical Materials 35 (2013) 1636-1641

Contents lists available at SciVerse ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Optical properties and Judd–Ofelt parameters of Dy³⁺ doped K₂GdF₅ single crystal

Phan Van Do^a, Vu Phi Tuyen^b, Vu Xuan Quang^c, Nguyen Trong Thanh^b, Vu Thi Thai Ha^b, Ho Van Tuyen^c, Nicholas M. Khaidukov^d, Julián Marcazzó^e, Yong-Ill Lee^f, Bui The Huy^{f,*}

^a Water Resources University, 175 Tay Son Street, Hanoi, Viet Nam

^b Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Viet Nam

^c Duy Tan University, K7/25 Quang Trung, DaNang, Viet Nam

^d Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia

e IFAS, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000 Tandil, Argentina

^fDepartment of Chemistry, Changwon National University, Changwon 641 773, South Korea

ARTICLE INFO

Article history: Received 20 February 2013 Received in revised form 27 March 2013 Accepted 12 April 2013 Available online 18 May 2013

Keywords: Judd–Ofelt Rare earth alloys and compounds Optical properties Crystal and ligand fields

ABSTRACT

Dy³⁺-doped K₂GdF₅ single crystals with 10.0 mol% have been prepared by hydrothermal condition. The spectra are analyzed in term of the Judd–Ofelt theory, the intensity parameters (Ω_{λ} , $\lambda = 2$, 4, 6) have been evaluated for Dy³⁺-doped K₂GdF₅ sample. The electric (S_{ed}), magnetic (S_{md}) dipole line strength, radiative (A), and total radiative (A_T) transition probabilities, lifetime (τ_R), branching ratios (β_R) for the excited levels of Dy³⁺ doped K₂GdF₅ crystals were investigated by using the intensity parameters. In addition, the stimulated emission cross-sections ($\sigma_{\lambda p}$) and integrated emission cross-section (Σ_{if}) have been predicted for the transitions from excited level, ${}^4F_{9/2}$, to the ${}^6H_{15/2}$, ${}^6H_{13/2}$ and ${}^6H_{11/2}$ levels. The energy transfer occurs from Gd³⁺ to Dy³⁺, resulting in the additional intense excitation UV-narrow bands for the luminescence of the Dy³⁺ ions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Rare-earth elements are of interest in several high-tech and environmental application areas. Glasses have been known as a convenient host for rare earths and have been widely used. The rare earths (RE) doped glasses provide basically scientific information, such as energy level structure, radiative properties, stimulated emission cross-sections, etc. These information help to develop new optical materials and improve the existing devices like lasers, light converters, sensors, high density memories, and optical fibers and amplifiers [1–5].

In recent years, one of the most interesting fields of research is focused on the development of optical devices based on RE ions doped AF-A'F-LnF₃ systems (A, A'-alkali element, Ln-rare earth (RE) element), such as K₂YF₅ and K₂GdF₅ crystals. They are the materials of great promise for applications in optical area such as optical amplifiers, solid-state lasers [6] and especially they are a high energy dosimeter materials for great promise [7,8]. There have been many reports on spectrum properties of these materials such as the K₂YF₅:Nd³⁺, K₂YF₅:Tb³⁺, K₂YF₅:Tm³⁺, K₂YF₅:Sm³⁺ crystals [6–13]. The authors have investigated the optical properties of these materials by using optically stimulated luminescence (OSL) [10], thermoluminescence [11], frequency up-conversion

fluorescence [12], site-selective laser-excitation spectroscopy [13]. It is know that Dy^{3+} is one of the most abundant rare earth elements, which is used also extensively in optical devices. Most studies are limited its spectra in various matrices [14–18] but Dy^{3+} doped in K₂LnF₅ crystal have received relatively less attention than the other lanthanide ions despite many features of interest.

In the work presented here we have investigated the optical properties of Dy^{3+} doped K_2GdF_5 crystal and the energy transfer from Gd^{3+} to Dy^{3+} ions. On the other hand, we have also used the Judd–Ofelt (JO) theory to determine intensity parameters Ω_{λ} ($\lambda = 2, 4, 6$) by analyzing the absorption spectrum of $K_2GdF_5:Dy^{3+}$ crystal, and calculated the radiative transition probabilities, branching ratios, radiative lifetimes of ${}^4H_{15/2}$ excited state, stimulated emission cross-section for selected and briefly discussed the application potential of $K_2GdF_5:Dy^{3+}$ on the efficient laser, white fluorescence lamp.

2. Experiments

The K₂GdF₅ crystals doped with 10 mol% of Dy³⁺ ions were obtained by hydrothermal synthesis at the Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia [8]. In a typical experiment, K₂GdF₅:Dy³⁺single crystal was grown from the mixture of Gd, Dy₂O₃ and KF at a temperature of 750 K, a pressure of 100–150 MPa. The temperature gradient along the reactor body was 3 K cm⁻¹. A proper choice of reaction conditions have allowed

^{*} Corresponding author. Tel.: +82 55 213 3436; fax: +82 55 213 3439. *E-mail address*: buithehuy.nt@gmail.com (B.T. Huy).

^{0925-3467/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.optmat.2013.04.014

to obtain K₂GdF₅ single crystal. The XRD pattern of K₂GdF₅:Dv³⁺ have shown that the fluoride K₂GdF₅ crystallizes in orthorhombic system, space group Pnma, $a = 10.814 \text{ A}^\circ$, $b = 6.623 \text{ A}^\circ$, $c = 7.389 \text{ A}^\circ$. The resulted K₂GdF₅:Dy³⁺single crystals were polished for the optical measurements. The optical absorption spectrum was performed using Jascco V670 spectrometer by wavelength scanning from 300 nm to 2000 nm. The photoluminescence (PL) and excitation spectra were recorded by Fluorolog-3 spectrophotometer, model FL3-22, Horiba Jobin Yvon. For the measurement of fluorescent lifetime, a laser excitation was provided by the third harmonic of 355 nm of a pulsed Nd:YAG laser, model GCR-230, Spectra Physics. Pulse duration and energy were approximately 5 ns and 0.35 J, respectively. The emission from the sample was collected by quartz lens and detected into optical system for fluorescent lifetime measurement. The R928 photomultiplier. Hamamatsu and MSO2000 oscilloscope. Tektronix were used for this measurement. The PMT signal was averaged on a digital oscilloscope and processed with a computer. All the measurements were performed at room temperature.

3. Judd-Ofelt theoretical background

The Judd–Ofelt (JO) theory was shown to be useful to characterize radiative transitions for RE-doped solids and to estimate the intensities of the transitions for rare-earth ions [9,15–18]. This theory defines a set of three intensity parameters, Ω_{λ} ($\lambda = 2, 4, 6$), that are sensitive to the environment of the rare-earth ions. The JO parameters are used to predict the radiative properties of excited states of Ln³⁺ ion such as transition probabilities (A_R), radiative lifetime (ι_R), branching ratios (β_R), and stimulated emission cross-sections ($\sigma_{\lambda p}$). The details of this theory were shown in previous reports. The Judd–Ofelt analysis is an effective tool to study the compositional dependence of the spectroscopic parameters of the Dy³⁺ ions and to design the desired phosphors.

According to the JO theory [19], the electric dipole oscillator strength of a transition from the ground state to an excited state is given by

$$f_{cal} = \frac{8\pi^2 mcv}{3h(2J+1)} \times \frac{(n^2+2)^2}{9n} \sum_{\lambda=2,4,6} \Omega_{\lambda} \langle \Psi J \| U^{\lambda} \| \Psi' J' \rangle^2 \tag{1}$$

where *n* is the refractive index of the material, *J* is the total angular momentum of the ground state, Ω_{λ} are the JO intensity parameters and $||U^{\lambda}||^2$ are the squared doubly reduced matrix of the unit tensor operator of the rank $\lambda = 2, 4, 6$ are calculated from intermediate coupling approximation for a transition $|\psi J\rangle \rightarrow |\psi' J'\rangle$.

The oscillator strengths, f_{exp} , of the absorption bands were determined experimentally using the following formula [20]

$$f_{\rm exp} = 4.318 \times 10^{-9} \int \alpha(\nu) d\nu \tag{2}$$

where α is molar extinction coefficient at energy v (cm⁻¹). The $\alpha(v)$ values can be calculated from absorbance *A* by using Lambert-Beer's law

$$A = \alpha(v)cd \tag{3}$$

where *c* is concentration [dim: L^{-3} ; units: moll⁻¹], *d* is the optical path length [dim: L; units: cm].

The oscillator strength of the various observed transitions are evaluated through Eqs. (1) and (2). A least squares fitting approach is then used for Eq. (2) to determine Ω_{λ} parameters which give the best fit between experimental and calculate oscillator strength.

4. Results and discussion

4.1. Absorption and emission spectra

Absorption spectra of Dy^{3+} -doped K_2GdF_5 crystal in two bands of wavelength 300–400 nm and 700–1400 nm were showed in Fig. 1. There are 12 observed absorption peaks at 310, 322, 346, 361, 380, 388 nm in ultra-violet band and 790, 880, 1057, 1089, 1255, 1301 nm in near-infrared band, which are attributed to transitions from ${}^{6}H_{15/2}$ ground state to ${}^{4}L_{19/2}$, ${}^{6}P_{7/2}$, ${}^{6}P_{5/2}$, ${}^{4}I_{13/2}$, ${}^{4}F_{7/2}$, ${}^{6}F_{5/2}$, ${}^{6}F_{7/2}$, ${}^{6}H_{7/2}$, ${}^{6}F_{9/2}$, ${}^{6}H_{1/2}$, ${}^{6}H_{9/2}$ higher excited states in order of increasing wavelength, respectively, of Dy^{3+} ions. The energy of these absorption transitions of Dy^{3+} ion in K_2GdF_5 host are also compared with Dy^{3+} -diluted acid solution (aqua-ion) system [21] and shown in Table 1.

As shown in Fig. 2, which illustrates the emission spectrum using the 365 nm excitation wavelength of xenon lamp source, three emission bands at 485, 575 and 667 nm which are attributed to transitions from ${}^{4}F_{9/2}$ to ${}^{6}H_{15/2}$, ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ states, respectively, of Dy³⁺ions. But among of them, the yellow (Y) band (575 nm) corresponds to the hypersensitive transition ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, and the blue (B) band (485 nm) corresponds to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transition are the dominant bands in the emission spectrum. It is worth pointing out that, the intensity of the Y-band depends much more on the Ω_{2} and Ω_{6} intensity parameters than on the Ω_{4} one, because the values of the reduced matrix elements of rank 2 and rank 6 for this transition are 0.0512 and 0.0573, respectively, whereas that of rank 4 is only 0.0172. On the other hand, the intensity of the B-band depends practically only the

Fig. 1. The absorption spectra of K₂GdF₅:Dy³⁺ crystal (a) in the range of ultra-violet light and (b) in the range of near infrared.

Table 1

Energy transitions	(v), bonding	parameters (δ)	, the ex	perimental (f _{evn}) an	d calculated ((f_{cal})	oscillator	strengths	for K ₂ GdF ₅ :D	v^{3+}	crystal.
Briefgy transitions	(,, bounding	parameters (0)	,	permentan	$(e_{A}D) = a_{A}$	a carcanacea p	(/car)	obernator	ourengeno	101 112 0 0 1 1 1 0		Ji y b c c c c c c c c c c c c c c c c c c

Transition ${}^{4}\text{H}_{15/2} \rightarrow$	v_{exp} (cm ⁻¹)	$v_{\rm aquo}~({\rm cm}^{-1})$	$f_{ m exp}~(imes 10^{-6})$	$f_{\rm cal}~(imes 10^{-6})$
⁶ H _{9/2}	7686	7700	1.44	0.54
⁶ F _{11/2}	7974	7700	2.70	4.03
⁶ F _{9/2}	9199	9100	1.34	3.08
⁶ H _{7/2}	9451	9100	0.66	0.14
⁶ F _{7/2}	11,350	11,000	1.75	3.02
⁶ F _{5/2}	12,642	12,400	1.10	1.51
⁴ F _{7/2}	25,680	25,800	0.26	0.26
⁴ I _{13/2}	26,125	25,800	0.67	0.61
⁶ P _{5/2}	27,700	27,400	1.06	0.67
⁶ P _{7/2}	28,830	28,550	2.83	2.38
⁶ P _{3/2}	31,055	30,892	1.01	1.18
⁴ L _{19/2}	32,154	32,187	0.45	0.17
	$ar{eta}=1.014$, $\delta = -1.38$	rms = 0.	$94 imes 10^{-6}$

Fig. 2. The emission spectrum of K₂GdF₅:Dy³⁺crystal.

 $||U^6||^2 = 0.0303$, because $||U^2||^2 = 0$ and $||U^4||^2 = 0.0049$ (see Table 5 in Ref. [14]). Therefore the intensity ratio of yellow emission–blue emission (Y/B) should increase when the Ω_2 value increase [14,22], consequently it is influenced by site asymmetries and electro-negativities of the ligand ions [23,24].

The yellow–blue (Y/B) intensity ratio is especially interested for lighting technology because the line linking the yellow and blue wavelengths in the CIE 1931 chromaticity diagram usually passes through the white light region. Therefore, the chromaticity coordinates of the phosphors containing Dy³⁺ can be adjusted to the white light zone by adjusting to a suitable Y/B ratio [25,26]. In our experiment, under 365 nm UV excitation, yellow and blue emission bands are observed in the emission spectrum, which presents the chromaticity coordinates (x = 0.275, y = 0.292) and locates in the white light region of the CIE 1931 chromaticity diagram.

It is interesting to note that, in our sample, the calculated Y/B intensity ratio is roughly 1.9 times larger than the corresponding obtained our experimental values (Table 4). This large discrepancy is observed also in many other fluorides compounds [22]. It is evident for example that, for the materials with low Ω_2 parameter, the Judd–Ofelt approach could quantatively overestimate the relative intensity of the yellow emission with respect to that of the blue one [22].

On the basis of 30 energy levels recorded in absorption, emission and excitation spectra some considerations have been used for the experimental energy level assignment: first of all, these spectra are characterized by a strong inhomogeneous broadening of the disordered structure therefore some discrepancy was observed between the absorption and emission lines. Then, the rare earth ion being located in a low symmetry site C_{2v} , some levels should be split into many sub-levels which have many different barycenters. Finally, according to the energy diagram of Dy^{3+} ions [20], the transitions are assigned. The wavelengths corresponding to the transitions are listed in Table 3.

4.2. Energy transfer between Gd³⁺ and Dy³⁺ions

The UV excitation spectra of the Dy^{3+} emission at the wavelengths 575 nm and 485 nm of the $K_2GdF_5:Dy^{3+}$ crystals are shown in Fig. 3. Two narrow lines peaking at 254 nm and 273 nm are observed in the UV-side, which correspond to the transitions from the ground state ${}^{8}S_{7/2}$ of Gd³⁺ ion to its excited states ${}^{6}D_{J}$ (J = 7/2, 9/2) and ${}^{6}I_{11/2}$ respectively [27]. These lines are not observed in the excitation and absorption spectra of the Dy^{3+} -doped samples without Gd³⁺ component [28,29]. This implies that energy transfer from Gd³⁺ to Dy^{3+} ions occurred in this crystal. Consequently, the luminescence of Dy^{3+} ions in K_2GdF_5 could be strongly excited by the additional light with 254 nm and 273 nm wavelengths.

4.3. Bonding characteristic, J-O parameters

The bonding parameter (δ) is defined as $\delta = [(1 - \bar{\beta})/\bar{\beta}] \times 100$ [15,16], where $\bar{\beta} = (\sum \beta)/n$ and β (nephelauxetic ratio) = v_c/v_a , v_c and v_a are energies of the corresponding transitions in the complex and aqua-ion [11], respectively, and n is refers to the number of levels that are used to compute $\bar{\beta}$ values. The bonding parameter depends on the environmental field; δ can be received the positive or negative value indicating covalent or ionic bonding. In our sample, the values of $\bar{\beta}$ and δ bonding parameter are 1.014, -1.38, respectively. Thus, in this case the bonding of Dy³⁺ ions with the local host is ionic bonding.

The experimental (f_{exp}) oscillator strengthss of twelve absorption spectrum of the K₂GdF₅:Dy³⁺ crystal, as shown in table 1. All these absorption bands have been analyzed using JO theory and were least squared fitted to yield the best fit values for the JO parameters Ω_2 , Ω_4 and Ω_6 . The reduced matrix elements were taken from Jayasankar et al. [14]. The accuracy of the fit is given by the rms deviation between the experimental (f_{exp}) and calculated (f_{cal}) oscillator strengths. In our case, the best-fitted JO parameters are $\Omega_2 = 2.51 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 0.94 \times 10^{-20} \text{ cm}^2$ and $\Omega_6 = 2.12 \times 10^{-20} \text{ cm}^2$ with the rms deviation of 0.94×10^{-6} . In comparison to other host lattices, as presented in Table 2, the Ω_2 value of our crystal is smaller than that of the different hosts. According to the JO theory, the Ω_{λ} parameters are determined by formula

Table 2				
The JO parameters	for Dy3+	doped	various	hosts.

Host matrix	$\Omega_2 (imes 10^{-20}{ m cm}^2)$	$\Omega_4 (imes 10^{-20}{ m cm}^2)$	$\Omega_{6}(imes 10^{-20}{ m cm}^{2})$	Refs.
K ₂ GdF ₅ :Dy ³⁺	2.51	0.94	2.12	Present
$K_2SO_4 - ZnSO_4 - B_2O_3$	52.44	5.80	6.81	[14]
$ZnSO_4-B_2O_3$	34.48	3.06	9.12	[14]
Li ₂ SO ₄ -ZnSO ₄ -B ₂ O ₃	21.01	8.13	7.54	[14]
Na ₂ SO ₄ -ZnSO ₄ -B ₂ O ₃	16.82	9.45	6.50	[14]
GeO ₂ -B ₂ O ₃ -Z _n O-LaF ₃	15.73	2.46	5.49	[17]
PbO ₅ -K ₂ O-BaO-AlO ₃ -AlF ₃	12.3	2.67	2.30	[15]
SiO ₂ -Al ₂ O ₃ -LiF-GdF ₃	4.53	0.66	2.40	[17]
PbO-PbF ₂	2.13	2.10	1.0	[16]
KY ₃ F ₁₀	1.55	1.81	1.63	[22]
LiLuF ₁₀	2.04	0.91	1.09	[22]
BaY ₂ F ₈	1.52	2.33	3.67	[33]
LiYF ₄	2.01	1.34	2.39	[35]

Table 3

Transition energies (ν), radiative transition probabilities (S_{ed} , S_{md} , A and A_T), radiative lifetime (ι_R) and branching ratios (β_R) for excited levels.

SLJ	S'L'J'	v (cm ⁻¹)	$S_{\rm ed}~(\times 10^{-40}~{ m cm}^2)$	$S_{\rm md}~(\times 10^{-40}~{\rm cm}^2)$	A (s ⁻¹)	$\beta_{\rm R}$ (%)
⁴ F _{9/2}	⁶ F _{1/2}	7291	0.01	0	0.03	0
	⁶ F _{3/2}	7902	0.01	0	0.08	0.01
	⁶ F _{5/2}	8556	0.41	0	2.85	0.29
	⁶ F _{7/2}	9946	0.26	0.40	3.39	0.48
	⁶ H _{5/2}	10,900	0.14	0	1.91	0.57
	⁶ H _{7/2}	11,963	0.58	0.18	11.1	1.84
	⁶ F _{9/2}	12,066	0.19	0.16	3.98	0.67
	⁶ F _{11/2}	13,258	0.41	0.02	10.40	1.75
	⁶ H _{9/2}	13,398	0.35	1.65	14.20	2.39
	⁶ H _{11/2}	15,209	0.77	0.31	30.80	5.17
	⁶ H _{13/2}	17,628	6.13	0	358.00	60.00
	⁶ H _{15/2}	21,182	1.59	0	160.25	26.80
			$A_{\rm T}({}^{4}{\rm F}_{9/2}) = 596 {\rm s}^{-1}; \ \iota_{\rm R}({}^{4}{\rm F}_{9/2}) =$	1.68 ms		
⁶ F _{5/2}	⁶ F _{7/2}	1390	3.05	20.60	0.29	0.03
	⁶ H _{5/2}	2344	7.98	0.01	1.83	0.16
	⁶ H _{7/2}	3407	33.20	0	21.30	2.15
	⁶ F _{9/2}	3510	2.72	0	1.88	0.19
	⁶ F _{11/2}	4702	5.64	0	10.50	1.08
	⁶ H _{9/2}	4842	23.50	0	44.60	4.59
	⁶ H _{11/2}	6653	11.70	0	60.40	6.22
	⁶ H _{13/2}	9072	18.60	0	238.00	24.50
	⁶ H _{15/2}	12,626	17.10	0	592.00	61.00
			$A_{\rm T}({}^4{ m F}_{5/2}) = 971 \ { m s}^{-1}; \ \iota_{\rm R}({}^4{ m F}_{5/2}) =$	1.03 ms		
${}^{6}F_{11/2}$	⁶ H _{9/2}	29	27.20	1.19	0	0
	⁶ H _{11/2}	1908	45.40	0.59	2.80	0.79
	⁶ H _{13/2}	4259	62.10	1.28	42.70	11.70
	⁶ H _{15/2}	7779	81.60	0	341.00	87.5
			$A_{\rm T}({}^{4}{\rm F}_{11/2}) = 387 {\rm ~s}^{-1}; \ \iota_{\rm R}({}^{4}{\rm F}_{11/2}) =$	= 2.59 ms		
⁶ H _{9/2}	⁶ H _{11/2}	1879	24.20	36.00	2.03	2.52
-1-	⁶ H _{13/2}	4230	25.10	0	20.20	27.20
	⁶ H _{15/2}	7750	10.20	0	50.6	70.20
	13/2		$A_{\rm T}({}^{4}{\rm H}_{9/2}) = 72.9 \ {\rm s}^{-1}; \ \iota_{\rm R}({}^{4}{\rm H}_{9/2}) =$	= 13.7 ms		
⁶ H _{11/2}	⁶ H _{13/2}	2351	23.80	32.80	3.22	4.40
	⁶ H _{15/2}	5871	38.20	0	68.70	95.6
			$A_{\rm T}({}^{4}{\rm H}_{11/2})=71.9 {\rm s}^{-1}; \ \iota_{\rm R}({}^{4}{\rm H}_{11/2})=$	= 13.9 ms		
⁶ H _{13/2}	⁶ H _{15/2}	3520	56.70	22.30	23.00	100
· ,	.,		$A_{\rm T}({}^{4}{\rm H}_{13/2}) = 23 {\rm ~s}^{-1}; \ \iota_{\rm R}({}^{4}{\rm H}_{13/2}) =$	= 43.4 ms		

Table 4

Emission peak positions (λ_p), effective line width ($\Delta\lambda_{eff}$), radiative transition probabilities (A), branching ratios (β_{exp}), stimulated emission cross-section $\sigma(\lambda_p)$ and integrated emission cross-section (Σ_{if}) for ${}^{4}F_{9/2} \rightarrow {}^{6}H_{J}$ transitions of Dy³⁺:K₂GdF₅ crystal.

${}^{4}F_{9/2} \rightarrow$	$\lambda_{\rm p} ({\rm nm})$	$\Delta\lambda_{\rm eff} ({\rm nm})$	A (s ⁻¹)	$\sigma(\lambda_{ m p})~(imes 10^{-22}~{ m cm}^2)$	$\Sigma_{ m if}$ (×10 ⁻¹⁸ cm)	$\beta_{\rm R}$ (%)	β _R (%)	
						Exp	Cal	
⁶ H _{11/2}	667	16.94	30.80	1.90	0.07	2.34	5.17	
⁶ H _{13/2}	577	15.84	358.00	13.6	1.04	53.23	60.00	
⁶ H _{15/2}	485	14.61	160.00	3.60	0.23	44.43	26.80	

Fig. 3. The excitation spectra of the Dy^{3+} :K₂GdF₅ crystal at the emission wavelengths 575 nm (a) and 485 nm (b).

$$\Omega_{\lambda} = (2\lambda + 1) \sum_{ns} |A_{sp}|^2 \Xi^2_{(s,\lambda)} (2s+1)^{-1}$$
(4)

where A_{sp} are the sets of odd-parity terms of the crystal field and where $\Xi_{(s,\lambda)}$ represents a complicated sum over all excited configurations of terms, containing factor like

$$rac{\langle 4f|r|nl
angle\langle nl|r^{s}|4f}{\Delta E(nl)}$$

where $\Delta E(nl)$ are the energy difference and $\langle 4f|r^k|nl\rangle$ are the radial integrals between the $4f^N$ and the excited $4f^{N-1}nl^1$ configurations. The most important contribution to the mixing of wavefunctions with odd-parity is the 5d orbital [30].

It is worth to point out that, the contribution of the radial intergrals to Ω_{λ} strongly increases with increasing λ value, since larger λ takes larger s ($s = \lambda \pm 1$) [24,27]. Therefore, the Ω_6 is more influenced by changes in the radial integrals $\langle 4f | r^s | 5d \rangle$ whereas the Ω_2 is more sensitive to the local environment of the RE ions and is often related with the asymmetry of the local crystal field and by changes of the energy difference between the $4f^N$ and $4f^{N-1}5d^1$ configurations [15,16,23,27].

It is well-known, the K₂LnF₅ phases with Ln = Y, Nd...Lu crystallize in the orthorhombic system [31]. The LnF₇ polyhedra form chains parallel to *c*-axis of structure. The small values of Ω_2 in this system indicate that the Dy³⁺ ions occupy ionic sites with small distortions from orthorhombic system. In our case, the F⁻¹ ions have high electronegative (\approx 4, in Pauling scale), therefore the Dy³⁺-F⁻¹ bond has the small covalence (δ < 0), so the $\Delta E = E(4f^N) - E(4f^{N-1}5d)$ is large. This also is a main reason to explain for the reduction of the Ω_2 values in the fluoride compounds.

4.4. Fluorescence properties

The radiative properties such as the electric (S_{ed}) and magnetic (S_{md}) dipole line strengths, the radiative transition rates (A_R), radiative lifetime (τ_R), branching ratios (β_R) were calculated by using JO parameters for six excited levels. The results were showed in Table 3.

From the emission spectrum of K₂GdF₅:Dy³⁺, the emission peak positions (λ_p), effective line width ($\Delta\lambda_{eff}$), calculated radiative transition probabilities (A), measured branching ratios (β_{exp}), stimulated emission cross-section $\sigma(\lambda_P)$ and integrated emission crosssection (Σ_{if}) were calculated for ⁴F_{9/2} \rightarrow ⁶H_J (J = 15/2, 13/2, 11/2) transitions. The results were displayed in table 4.

Fig. 4. Decay profile of the room temperature emission from the $^4F_{9/2}$ level of 10% $Dy^{3*}\text{-}doped\ K_2GdF_5\ crystal.$

Murthy et al. [32] reported that the luminescence branching ratio characterizes the possibility of attaining stimulated emission from any specific transition, so it is a critical parameter to the laser designer. In this work, the predicted branching ratio of ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition get a maximum value and be 60.0% where as the measured ratio is 53.2%. Thus there is a good agreement between experimental and calculated branching ratios.

The experimental luminescence decay is presented in Fig. 4. The measured and calculated lifetime of ${}^{4}F_{9/2}$ level is 1.04 ms and 1.68 ms, respectively. The comparison with other fluoride compounds indicates that, this difference is not so large as that was reported by Bigotta et al. [22] but is similar with the values published by Parisi et al. [33]. In any case, this discrepancy between the measured and calculated lifetime indicates that the nonradiative processes are not negligible and they reduce the quantum efficiency of the luminescence progress. The luminescence quantum efficiency of the fluorescent level is defined as the ratio of the measured lifetime to the calculated lifetime by JO theory, $\eta = \tau_{\rm mes}/\tau_{\rm R}$. In this case, the luminescence quantum efficiency is 61.9%. This relatively high value together with the slightly nonexponential decay profile in Fig. 4 indicates that the non-radiative processes are not too strong even at high-doping level of this material. This non-exponential character of the decay curve could be originated from the concentration quenching. Because of the low phonon energy of the fluoride compounds [30] and the large energy separation between the ${}^{4}F_{9/2}$ and ${}^{6}H_{13/2}$ manifolds (about 7300 cm⁻¹) the multiphonon relaxation between these manifolds is negligible. Therefore the main origin for the non-radiative processes may be attributed to the energy transfer between the activators. The similar behavior is observed also for Dy³⁺ in other host [34].

Besides, the integrated emission cross section, $\Sigma_{\rm if}$, the stimulated emission cross-section, $\sigma(\lambda_P)$, are important parameters that affects the potential laser performance and its value signifies rate of energy extraction from the lasing material [6,15–17]. When the integrated emission cross section is greater than 10^{-18} cm, laser emission is probable if the upper state displays a proper lifetime, that is, if it has high quantum efficiency. In our case, with the $^4F_{9/2} \rightarrow ^6H_{13/2}$ transition, the integrated emission cross-section is 1.04×10^{-18} cm.

It is found that ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition exhibits maximum $\sigma(\lambda_{\rm P})$ (13.6 × 10⁻²² cm²). The large values of branching ratio, integrated emission cross section, luminescence quantum efficiency and stimulated emission cross section suggest that the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition can give rise to lasing action.

5. Conclusions

In summary, this work investigates a detailed picture of the spectral characteristics of Dy³⁺ ions in K₂GdF₅ crystal. The experimental and calculated oscillator strengths of absorption transitions of K₂GdF₅:Dy³⁺ were investigated. The intensity parameters (Ω_{λ}) and predicted radiative lifetime (ι_R), branching ratios (β_R) were determined using JO theory The bonding of Dy³⁺ ions with the K₂GdF₅ local host is ionic bonding and the coordination structure surrounding the RE ion has high symmetry were confirmed by the negative value of bonding parameter δ and the small value of intensity parameter Ω_2 . The energy transfer effect was appeared between Gd³⁺ and Dy³⁺ in K₂GdF₅ host. This material is a promising material in the efficient laser, white fluorescence lamp.

Acknowledgments

The authors gratefully acknowledge support for this research from Vietnam's National Foundation for Science and Technology Development (NAFOSTED) with project code 103.06-2011.58 and from Basic Science Research Program (NRF2011-0010155) and Priority Research Centers Program through the National Research Foundation of Korea fund (NRF 2010-0029634).

References

- [1] A.J. Kenyon, Prog. Quant. Electron. 26 (2002) 225–284.
- [2] J. Fiebrandt, E. Lindner, S. Brückner, M. Becker, A. Schwuchow, M. Rothhardt, H. Bartelt, Opt. Commun. 285 (2012) 5157–5162.
- [3] M. Joseph, P. Manoravi, N. Sivakumar, R. Balasubramanian, Int. J. Mass Spectrom. 253 (2006) 98–103.
- [4] S. Dardona, A. Konjhodzic, D. Chhabria, O. Salihoglu, Z. Hasan, J. Lumin. 107 (2004) 182–186.
- [5] V. Venkatramu, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, G. Wortmann, Opt. Mater. 29 (2007) 1429–1439.
- [6] D. Wang, Y. Guo, Q. Wang, Z. Chang, J. Liu, J. Luo, J. Alloys Comp. 474 (2009) 23– 25.
- [7] N. Kristianpoller, D. Weiss, N. Khaidukov, V. Makhov, R. Chen, Radiat. Meas. 43 (2008) 245–248.

- [8] H.K. Hanh, N.M. Khaidukov, V.N. Makhov, V.X. Quang, N.T. Thanh, V.P. Tuyen, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010) 3344–3350.
- [9] P. Van Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, N.M. Khaidukov, Y.-I. Lee, B.T. Huy, J. Alloys Comp. 520 (2012) 262–265.
- [10] J. Marcazzó, E. Cruz-Zaragoza, V. Xuan Quang, N.M. Khaidukov, M. Santiago, J. Lumin. 131 (2011) 2711–2715.
- [11] J. Marcazzo, M. Santiago, E. Caselli, N. Nariyama, N.M. Khaidukov, Opt. Mater. 26 (2004) 65–70.
- [12] D. Wang, Y. Min, S. Xia, V.N. Makhov, N.M. Khaidukov, J.C. Krupa, J. Alloys Comp. 361 (2003) 294–298.
- [13] K.H. Jang, E.S. Kim, L. Shi, N.M. Khaidukov, H.J. Seo, Opt. Mater. 31 (2009) 1819–1821.
- [14] C.K. Jayasankar, E. Rukmini, Physica B 240 (1997) 273–288.
- [15] R. Praveena, R. Vijaya, C.K. Jayasankar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 70 (2008) 577-586.
- [16] P. Nachimuthu, R. Jagannathan, V. Nirmal Kumar, D. Narayana Rao, J. Non-Cryst. Solids 217 (1997) 215–223.
- [17] G. Lakshminarayana, J. Qiu, Physica B 404 (2009) 1169–1180.
- [18] B.T. Huy, Min-Ho Seo, Jae-Min Lim, Yong-Ill Lee, N.T. Thanh, V.X. Quang, T.T. Hoai, N.A. Hong, J. Korean Phys. Soc 59 (2011) 3300–3307.
- [19] B.R. Judd, Phys. Rev. 127 (1962) 750-761.
- [20] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511-520.
- [21] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4424-4442.
- [22] S. Bigotta, M. Tonelli, E. Cavalli, A. Belletti, J. Lumin. 130 (2010) 13–17. [23] R. Peacock, The intensities of lanthanide $f \leftrightarrow f$ transitions, in: Rare Earths,
- Springer, Berlin Heidelberg, 1975, pp. 83–122. [24] H. Ebendorff-Heidepriem, D. Ehrt, J. Non-Cryst. Solids 248 (1999) 247–252.
- [25] Q. Su, H. Liang, C. Li, H. He, Y. Lu, J. Li, Y. Tao, J. Lumin. 122–123 (2007) 927– 930.
- [26] Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, F. Zou, J. Alloys Comp. 192 (1993) 25– 27.
- [27] K. Binnemans, C. Görller-Walrand, J.L. Adam, Chem. Phys. Lett. 280 (1997) 333–338.
- [28] G. Lakshminarayana, H. Yang, J. Qiu, J. Solid State Chem. 182 (2009) 669-676.
- [29] P. Babu, K.H. Jang, E.S. Kim, L. Shi, R. Vijaya, V. Lavín, C.K. Jayasankar, H.J. Seo, J. Non-Cryst. Solids 356 (2010) 236-243.
- [30] R. Reisfeld, Spectra and energy transfer of rare earths in inorganic glasses, in: Rare Earths, Springer, Berlin Heidelberg, 1973, pp. 53–98.
- [31] H. Kharbache, R. Mahiou, P. Boutinaud, D. Boyer, D. Zakaria, P. Deren, Opt. Mater. 31 (2009) 558-561.
- [32] D.V.R. Murthy, T. Sasikala, B.C. Jamalaiah, A.M. Babu, J.S. Kumar, M. Jayasimhadri, L. Rama Moorthy, Opt. Commun. 284 (2011) 603–607.
- [33] P. Daniela, T. Alessandra, T. Mauro, C. Enrico, B. Enrico, B. Alessandro, J. Phys.: Condens. Matter 17 (2005) 2783.
- [34] Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, X. Lu, J. Li, Z. Zhu, Y. Wang, J. Alloys Comp. 438 (2007) 310–316.
- [35] M.G. Brik, T. Ishii, A.M. Tkachuk, S.E. Ivanova, I.K. Razumova, J. Alloys Comp. 374 (2004) 63–68.