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We develop and apply the theory of lower and upper compensated convex transforms
introduced in [K. Zhang, Compensated convexity and its applications, Ann. Inst. H.
Poincaré Anal. Non Linéaire 25 (2008) 743–771] to define multiscale, parametrized, geo-
metric singularity extraction transforms of ridges, valleys and edges of function graphs
and sets in R

n. These transforms can be interpreted as “tight” opening and closing
operators, respectively, with quadratic structuring functions. We show that these geo-
metric morphological operators are invariant with respect to translation, and stable
under curvature perturbations, and establish precise locality and tight approximation
properties for compensated convex transforms applied to bounded functions and con-
tinuous functions. Furthermore, we establish multiscale and Hausdorff stable versions of
such transforms. Specifically, the stable ridge transforms can be used to extract exterior
corners of domains defined by their characteristic functions. Examples of explicitly calcu-
lated prototype mathematical models are given, as well as some numerical experiments
illustrating the application of these transforms to 2d and 3d objects.
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1. Introduction

In this paper we further develop the theory of compensated convex transforms intro-
duced in Ref. 48 and apply this theory to geometric singularity extraction problems
for singularities such as ridges, valleys, edges for general functions, images and geo-
metric objects given by their characteristic functions in the Euclidean space R

n.
These geometric singularity extraction problems arise, for example, from signal,
image and data processing, and computational geometry and computer-aided geo-
metric design.16,39 We are particularly interested in geometric objects defined by
their characteristic functions or by “point clouds” and consequently, in the deve-
lopment of singularity extraction methods that are Hausdorff stable, that is, stable
against dense random samples of the geometric object concerned.

In the present work, we will develop compensated convexity-based, Hausdorff
stable, multiscale global methods for extracting ridges, valleys, edges and exterior
corners for functions and domains. Parallel to these theoretical developments, we
have designed corresponding accurate and efficient numerical methods and schemes
that are able to extract geometric singularities in two- and three-dimensional func-
tions, images, shapes and data arrays. Here we focus on mathematical properties
and refer to a follow-up paper50 for numerical algorithms.

Let us first recall the notions of quadratic compensated convex transforms
defined in Ref. 48. We will consider functions f :Rn �→ R meeting one of the fol-
lowing conditions for x ∈ R

n

(L) : f(x) ≥ −A(1 + |x|2), (U) : f(x) ≤ A(1 + |x|2),
(B) : |f(x)| ≤ A(1 + |x|2),

(1.1)

for some constant A ≥ 0 and |x| the Euclidean norm of x ∈ R
n. Later we simply

refer to (L), (U) and (B) for these restrictions. Due to the locality property of
compensated convex transforms48 and our practical concerns for applications to
image and data processing, we in fact only need the function f to be bounded, as
data arrays have a finite number of entries and we can always extend a function
defined in a rectangular domain to the whole space by a constant value zero outside
the domain.

Suppose f : Rn �→ R satisfies (L). Then the quadratic lower compensated convex
transform48 (lower transform for short) for a given λ > A is defined by

Cl
λ(f)(x) = co[λ|·|2 + f ](x) − λ|x|2, x ∈ R

n, (1.2)

where co[g] is the convex envelope22,32 of a function g : Rn �→ R bounded below.
Suppose f : Rn �→ R satisfies (U). Then the quadratic upper compensated convex
transform48 (upper transform for short) for a given λ > A is defined by

Cu
λ (f)(x) = λ|x|2 − co[λ|·|2 − f ](x), x ∈ R

n. (1.3)

If f : Rn �→ R satisfies (B) in (1.1), then the two quadratic mixed compensated
convex transforms48 (mixed transforms for short) for given λ > A and τ > A are
defined respectively by Cu

τ (Cl
λ(f)) and Cl

τ (Cu
λ (f)).
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From definition (1.2), it also follows thata Cl
λ(f)(x) is the envelope of all the

quadratic functions with fixed quadratic term λ|x|2 that are less than or equal to f ,
that is,

Cl
λ(f)(x) = sup{−λ|x|2 + �(x) : −λ|y|2 + �(y) ≤ f(y)

for all y ∈ R
n and � affine}, (1.4)

whereas from (1.3) it follows that Cu
λ(f)(x) is the envelope of all the quadratic

functions with fixed quadratic term λ|x|2 that are greater than or equal to f ,
that is,

Cu
λ (f)(x) = inf{λ|x|2 + �(x) : f(y) ≤ λ|y|2 + �(y)

for all y ∈ R
n and � affine}. (1.5)

The compensated convex transforms as defined by (1.2) and (1.3) were intro-
duced for the purpose of tight approximation of functions defined in R

n and their
definition was motivated by the variational approach of material microstructure7,8

which led to an extensive study of the quasiconvex envelope (see Refs. 13 and 48
and references therein). The “tight” approximation property of lower and upper
transforms is pivotal in our current work, because it provides a new mathemati-
cal tool for detecting singularities of functions that we exploit to detect features
in images or data, remove noise from images, etc. It was established in Ref. 48,
among other properties, that Cl

λ(f) (respectively, Cu
λ (f)) is a “tight” approxi-

mation from below (respectively, from above) in the sense that if f is C1,1 in a
neighborhood of x0, then there is a finite Λ > 0, such that f(x0) = Cl

λ(f)(x0)
(respectively, f(x0) = Cu

λ (f)(x0)) whenever λ ≥ Λ. Furthermore, it was established
in Ref. 48 that given a compact set K ⊂ R

n the lower transform Cl
λ(dist2(·; K))

of the squared-distance function dist2(x; K) and the upper transform Cu
λ(f)(x) of

a convex function satisfying (U) for λ > A are both C1,1 functions. Some explicit
examples for compensated convex transforms have also been given in Ref. 49. The
proofs of these regularity results used some methods from Ref. 9.

Lower and upper compensated convex transforms can be considered as para-
metrized semiconvex and semiconcave envelopes, respectively, for a given function.
The notions of semiconvex and semiconcave functions go back at least to Reshet-
nyak31 and have since been studied by many authors in different contexts (see,
for example, Refs. 2, 3, 10, 27, 33 and 46). Let Ω ⊆ R

n be an open set; a func-
tion f : Ω �→ R ∪ {+∞} is semiconvex if there is a constant C ≥ 0 such that
f(x) = g(x) − C|x|2 with g a convex function. More general weight functions,
such as |x|σ(|x|), for example, are also used in the literature for defining more
general semiconvex functions.2,3,6,35,36 We do not discuss such generalized versions
here.

aWe are grateful to an anonymous referee of an earlier version of this manuscript for pointing out
this characterization of the compensated convex transforms.
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Compensated convex transforms can also be viewed as critical mixed Moreau
envelopes,b given that

Cl
λ(f)(x) = Mλ(Mλ(f))(x), Cu

λ(f)(x) = Mλ(Mλ(f))(x), (1.6)

where the Moreau lower and upper envelopes29,30 are defined, in our notation,
respectively, by

Mλ(f)(x) = inf{f(y) + λ|y − x|2, y ∈ R
n},

Mλ(f)(x) = sup{f(y) − λ|y − x|2, y ∈ R
n}, (1.7)

with f meeting condition (L) and (U), respectively. Moreau envelopes play impor-
tant roles in optimization, nonlinear analysis, optimal control and Hamilton–Jacobi
equations, both theoretically and computationally.12,10,22,34 The mixed Moreau
envelopes M τ (Mλ(f)) and Mτ (Mλ(f)), also known as Lasry–Lions regulariza-
tions,27 have also been extensively studied and used as approximation and smooth-
ing methods of not necessarily convex functions.5,10 In particular, in the partial
differential equation literature, the focus of the study of the mixed Moreau envelopes
has mainly been on the case τ > λ, given that, for this case, and under suitable
growth conditions, M τ (Mλ(f)) and Mτ (Mλ(f)) are both C1,1 functions5,10,27 but,
crucially, not “tight approximations” of f , in key contrast to our lower and upper
transforms Cl

λ(f)(x) and Cu
λ(f)(x).48 Generalized inf and sup convolutions have

also been considered, for instance in Refs. 10 and 34.
Moreau lower and upper envelopes have also been employed in mathematical

morphology in the 1990s,23,45 to define grayscale erosion and dilation morpho-
logical operators, whereas the critical mixed Moreau envelopes Mλ(Mλ(f)) and
Mλ(Mλ(f)) are grayscale opening and closing morphological operators.42 If we
denote by bλ(x) = −λ|x|2 the quadratic structuring function, introduced for the
first time in Refs. 23 and 44, then with the notation of Refs. 38 and 42, we havec

Mλ(f)(x) = inf
y∈Rn

{f(y) − bλ(y − x)} =: f 
 bλ,

Mλ(f)(x) = sup
y∈Rn

{f(y) + bλ(y − x)} =: f ⊕ bλ,
(1.8)

so that (1.6) can alternatively be written as

Cl
λ(f) = (f 
 bλ) ⊕ bλ and Cu

λ(f) = (f ⊕ bλ) 
 bλ. (1.9)

The application of Mλ(Mλ(f)) and Mλ(Mλ(f)) in mathematical morphology, how-
ever, has not met with corresponding success, nor have its properties been fully
explored. This is in contrast with the role, recognized since its Introduction, that is
played by paraboloid structuring functions in defining morphological scale-spaces

bWe are grateful to an anonymous referee of an earlier version of this manuscript to point out this
identity.
cIn convex analysis, the infimal convolution of f with g is denoted as f �g and is defined as
(f �g)(x) = infy{f(y) + g(x − y)}.32 This is closely related to the erosion of f by g, given that
(f �g)(x) = f(x) � (−g(−x)).
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in image analysis.23,44 For this and related topics concerning the morphological
scale-space representation produced by quadratic structuring functions, we refer to
the pioneering works.23,44 Here, we would like only to observe that via the iden-
tity (1.6), we now have a direct characterization of the quadratic structuring-based
opening and closing morphological operators, either in terms of the convex enve-
lope (see (1.2) and (1.3)) or in terms of envelope from below/above with parabolas
(see (1.4) and (1.5)). Such characterizations will allow us to derive various new geo-
metric and stability properties for the opening and closing morphological operators.

Given the interpretation (1.6) and the observation that lower and upper compen-
sated convex transforms are also parametrized 2λ-semiconvex and 2λ-semiconcave
envelopes of f , respectively, the compensated convex transforms become very useful
geometric (curvature-based) opening and closing morphological operators based on
one-sided curvature restrictions. For instance, we have that, in the viscosity sense,
the Hessians D2Cl

λ(f)(x) ≥ −2λ and D2Cu
λ (f)(x) ≤ 2λ. As far as we know, the

connections between these types of opening and closing morphological operators
and the compensated convex transforms were not known before the present work.

When we apply compensated convex transforms to extract singularities from
characteristic functions of compact geometric sets, our operations can be viewed
as the application of morphological operations devised for “grayscale images” to
“binary images”. A natural question would therefore be, what is the advantage of
adopting such an approach, given that we are applying more involved operations
for processing binary images, when in the current literature38,42 there are “binary”
set theoretic morphological operations that have been specifically designed for the
tasks under examination. Some reasons are the following:

(1) Since compensated convex transforms of characteristic functions are (Lipschitz)
continuous, applying a combination of transforms will produce a landscape of
various levels (heights) that can be designed to highlight a specific type of
singularity. We can then extract multiscale singularities by taking thresholds
at different levels. In fact, the graphs of functions obtained by combinations of
compensated convex transforms contain much more geometric information than
binary operations that produce simply a yes or no answer. Also, for “thin” geo-
metric structures, such as curves and surfaces, it is difficult to design “binary”
morphological operations to be Hausdorff stable.

(2) We will show that the upper transform E �→ Cu
λ (χE) is Hausdorff–Lipschitz

continuous, in the sense that for every x ∈ R
n

|Cu
λ (χE)(x) − Cu

λ (χF )(x)| ≤ 2
√

λdistH(E, F ),

for non-empty compact sets E, F ⊂ R
n, where distH(E, F ) is the Hausdorff

distance between two non-empty compact sets E and F . Thus we can define
transforms that are Hausdorff stable against sampling of geometric shapes. This
helps us to deal with surfaces given by sampled “point clouds” in R

3.
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(3) For many prototype geometric models, we can calculate our designed singularity
extraction operations explicitly. We can then exploit the Hausdorff stability
result mentioned above to prove that our methods also apply in more general
cases.

(4) Although compensated convex transforms are defined for functions in R
n, they

can be easily adapted to image pixel settings. In this paper, we will not explicitly
define our transforms on pixels, and rely on numerical schemes just for the
convex envelope.

We proceed now to introduce the singularity extraction operations discussed in this
paper using the notation and theory of compensated convex transforms.

The ridge, valley and edge transforms of scale λ for f : Rn �→ R are defined,
respectively, by the following operations:

Rλ(f)(x) = f(x) − Cl
λ(f)(x), Vλ(f)(x) = f(x) − Cu

λ (f)(x),

Eλ(f)(x) = Cu
λ (f)(x) − Cl

λ(f)(x),

for x ∈ R
n and λ > A, with f and λ meeting the corresponding conditions listed

in (1.1). Note that these are basic morphological operations42: Rλ(f) is the “top-
hat” transform, i.e. Rλ(f) = f − ((f 
 bλ) ⊕ bλ); −Vλ(f) is the “bottom-hat”
transform, i.e. −Vλ(f) = ((f ⊕ bλ) 
 bλ) − f , and Eλ(f) is the set-complementary
top-hat morphological operator, being the arithmetic difference between the clos-
ing and the opening of f , i.e. Eλ(f) = ((f ⊕ bλ) 
 bλ) − ((f 
 bλ) ⊕ bλ). Their
definition in terms of compensated convex transforms, and the exploitation of some
basic properties of these transforms, permits a relatively easy evaluation of some
of their geometric properties and of how they respond to the different types of sin-
gularities. Specifically, we will show that the transforms are invariant with respect
to translation, stable under curvature perturbation and enjoy precise locality and
tight approximation properties by giving explicit estimates.

We will then establish the key property that the upper compensated convex
transform of characteristic functions is Hausdorff–Lipschitz continuous as men-
tioned above. This central result underpins our definition of the stable ridge trans-
form for characteristic functions χE of a non-empty compact set E ⊂ R

n, namely

SRτ,λ(χE) := Cu
λ(χE) − Cl

τ (Cu
λ (χE)),

which is the top-hat transform of the closing operator Cu
λ (χE). Taking into account

the identities (1.9), we therefore have

SRτ,λ(χE) = (f ⊕ bλ) 
 bλ − (((f ⊕ bλ) 
 bλ) 
 bτ ) ⊕ bτ .

The Hausdorff–Lipschitz continuity property of the upper transform enables us to
prove that this transform is Hausdorff–Lipschitz stable, and we then verify that
this operator is able to extract the boundary and exterior corners of a domain. We
show that the stable ridge transform at a regular point x0 ∈ ∂K has the fixed value

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

A
nt

on
io

 O
rl

an
do

 o
n 

11
/3

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 14, 2014 13:58 WSPC/103-M3AS 1550018

Compensated convexity and geometric singularities 7

SRλ,τ (χK)(x0) = (
√

λ + τ−√
τ )2/λ, whereas for a prototype example of an exterior

corner x0, the value of SRλ,τ (χK)(x0) is greater than the one attained at all regular
points. By using the prototype example as a tool, we therefore establish sufficient
conditions for the extraction of exterior corners for a domain. This provides a filter
for extracting exterior corners defined by

{x ∈ R
n : SRλ,τ (χK)(x) > (

√
λ + τ −√

τ )2/λ}.
In current image processing practice, numerous methods for extraction of ridges,

valleys and edges have been proposed.18,28,37 Examples include techniques that rely
on the search for local maximum and minimum along one direction such as the ones
proposed in Refs. 20 and 15; methods that use an approximation of the gradient
or of the Hessian of the underlying function, such as the Sobel41 and the Canny
edge detectors,11 or the Harris corner detector21; procedures that are integral-based
edge and corner filters such as the Yaroslavsky filter,47 the SUSAN filter40 and the
bilateral filter43; or based on the successive application of different morphological
operators such as the morphological corner detector introduced in Ref. 26 which
performs the dilation of an image using a given structuring element followed by
an erosion using another structuring element. The effectiveness of these methods
is mainly justified on the basis of numerical experiments, and to our knowledge,
at present none of the existing techniques has been proved to be Hausdorff stable.
On the other hand, Hausdorff stability is particularly important when one needs
to extract features of “point clouds” representing sampled domains. If a geometric
shape is densely sampled, from the human vision point of view, one can still iden-
tify geometric features of the sample and sketch its boundary. However, from the
mathematical and computing science perspective, the identification of such features
poses a great challenge. So the development of Hausdorff stable approaches to ridge,
valley and edge detection is highly desirable.

To illustrate the application of our stable ridge transform, consider the scaled
image of the “tent” function f(x, y) = max{0, 1 − max{|x|, |y|}}, with |x| ≤ 1 and
|y| ≤ 1, and its sparse sampling — see Figs. 1(a) and 1(b) respectively. Due to
the Hausdorff stability of the stable ridge transform, we are able to recover an
approximation of the ridges from the sampled image — cf. Figs. 1(c) and 1(d).

(a) (b) (c) (d)

Fig. 1. (a) Image of f(x, y); (b) sampled image of f(x, y) by random salt and pepper noise;
(c) ridges of f(x, y); (d) ridges from sampled image.
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The plan of the paper is as follows. In Sec. 2 we present our notation, recall
some known results of convex analysis, and state basic properties of compensated
convex transforms. In Sec. 3 we describe further properties of the compensated
convex transforms, such as the expansion theorem and locality and density results.
Such properties are fundamental for the design and understanding of the behavior
of the ridge, valley and edge transforms, which are introduced and analyzed in
Sec. 4. Section 5 presents the stable ridge transform and contains the main result
on its Hausdorff stability. The behavior of this operator is then verified on some
prototype examples in Sec. 6. We conclude the paper with Sec. 7 that details the
proofs of the main results.

2. Notation and Preliminaries

We first collect together some results and definitions from convex analysis for func-
tions f taking finite values, i.e. for f : Rn �→ R, and refer to Refs. 22 and 32 for
further references and proofs. We then list some basic properties of compensated
convex transforms, some of which can be established with the help of the char-
acterization (1.6). This section is concluded with the definition of some types of
regularity of a domain and its boundary points.

Proposition 2.1. Let f : Rn �→ R be coercive in the sense that f(x)/|x| → ∞ as
|x| → ∞, and x0 ∈ R

n. Then we have the following properties :

(i) The value co[f ](x0) of the convex envelope of f at x0 ∈ R
n is given by

co[f ](x0) = inf
i=1,...,n+1

{
n+1∑
i=1

λif(xi) :
n+1∑
i=1

λi = 1,

n+1∑
i=1

λixi = x0,

λi ≥ 0, xi ∈ R
n

}
. (2.1)

If, in addition, f is lower semicontinuous, the infimum is reached by some
(λ∗

i , x
∗
i ) for i = 1, 2, . . . , n + 1 with (x∗

i , f(x∗
i ))’s lying in the intersection of a

supporting plane of the epigraph of f, epi(f) and epi(f).
(ii) The value co[f ](x0), for f taking only finite values, can also be obtained as

follows :

co[f ](x0) = sup{�(x0) : � affine and �(y) ≤ f(y) for all y ∈ R
n}, (2.2)

with the sup attained by an affine function �∗ ∈ Aff(Rn).

We will also introduce the following local version of convex envelope at a point.

Definition 2.2. Let r > 0 and x0 ∈ R
n. Denote by B(x0; r) the open ball of

center x0 and radius r and by B̄(x0; r) the corresponding closed ball. Suppose
f : B̄(x0; r) �→ R is a bounded function in B̄(x0; r). Then the value coB̄(x0;r)[f ](x0)
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of the local convex envelope of f at x0 in B̄(x0; r) is defined by

coB̄(x0;r)[f ](x0) = inf
i=1,...,n+1

{
n+1∑
i=1

λif(xi) :
n+1∑
i=1

λi = 1,

n+1∑
i=1

λixi = x0,

λi ≥ 0, |xi − x0| ≤ r, xi ∈ R
n

}
.

The difference between the local convex envelope defined here and the global
convex envelope in Proposition 2.1 is that we only allow the infimum of convex
combinations to be taken locally in B̄(x0; r). We need this notion for deriving the
locality and density estimates for compensated convex transforms later in Sec. 3.

The next result will enable us to extend some of our prototype examples to
higher-dimensional spaces through rotation. A proof of this result can be easily
obtained by using the characterization of the convex envelope as the biconjugate
f∗∗ (i.e. the convex conjugate of the convex conjugate) of the function f .

Proposition 2.3. (Partial rotation invariance property) Let f(x, y) be a bounded
function for (x, y) ∈ R

2 such that f is even in y ∈ R, that is, for all (x, y) ∈ R
2,

f(x, y) = f(x,−y). Let F : R × R
n �→ R be defined by F (x, z) = f(x, |z|) for x ∈ R

and z ∈ R
n. Then

coRn+1 [F ](x, z) = coR2 [f ](x, |z|),
where coRn+1 [F ] and coR2 [f ] are the convex envelopes of F and f in R

n+1 and R
2,

respectively.

The following proposition is an estimate of the Lipschitz constant for a convex
function22,25 that will be used in the proof of Theorem 3.13.

Proposition 2.4. Suppose g is a bounded convex function in B̄(x0; 2r). Then

Lip(g, B(x0; r)) ≤ osc(g, B(x0; 2r))
r

,

where Lip(g, B(x0; r)) is the Lipschitz constant of g in B(x0; r) and osc(g, B(x0; r))
is the oscillation of g in B(x0; r) defined by

osc(g, B(x0; r)) = max
B(x0;r)

g − min
B(x0;r)

g.

Definition 2.5. Given a non-empty subset E of R
n and δ > 0, we define the

δ-neighborhood Eδ of E by

Eδ = {x ∈ R
n : dist(x; E) < δ},

where dist(x; E) = inf{|x − y|, y ∈ E}.
Note that Eδ is an open subset of R

n.

Definition 2.6. Let E and F be non-empty subsets of R
n. The Hausdorff distance

between E and F is defined in Ref. 4 by

distH(E, F ) = inf{δ > 0 :F ⊂ Eδ and E ⊂ F δ}. (2.3)
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For a non-empty subset E of R
n, its characteristic function χE is lower (respec-

tively, upper) semicontinuous if and only if E is an open (respectively, closed) set.
Furthermore, we can easily check that χ

E
= χ

Rn\(Rn\E)
(see Ref. 24 at p. 211),

where f is the lower semicontinuous envelope of f .
We now list some properties of the quadratic compensated convex transforms

and their relation to Moreau envelopes. This relation can be exploited to state
certain convergence and regularity results for compensated convex transforms, e.g.
the approximation results in Theorem 2.12 below. The following ordering properties
can be found in Ref. 48 and are easy to prove:

Mλ(f)(x) ≤ Cl
λ(f)(x) ≤ f(x) ≤ Cu

λ (f)(x) ≤ Mλ(f)(x) (for x ∈ R
n), (2.4)

and for f ≤ g in R
n,

Cl
λ(f)(x) ≤ Cl

λ(g)(x) and Cu
λ (f)(x) ≤ Cu

λ (g)(x) (for x ∈ R
n). (2.5)

The following result is a special case of Theorem 3.5.8 at p. 72 of Ref. 10.

Proposition 2.7. Suppose f : Rn �→ R is a Lipschitz function. Then:

lim
λ→∞

Mλ(f)(x) = lim
λ→∞

Mλ(f)(x) = f(x),

lim
λ,τ→∞

M τ (Mλ(f))(x) = lim
λ,τ→∞

Mτ (Mλ(f))(x) = f(x),

uniformly in R
n.

For completeness, we also recall the following properties, which can be derived
directly from corresponding ones of the convex envelope and using the definition of
the compensated convex transforms.

Proposition 2.8. Let f :Rn �→ R be non-negative and meeting condition (L) in
(1.1). Then, for any λ > A,

Cl
λ(f)(x) ≥ 0 (for x ∈ R

n). (2.6)

Proposition 2.9. Let f, g be two real-valued functions defined in R
n and meeting

the conditions (1.1) with corresponding positive constants Af and Ag. Then for λ,

µ ≥ max{AfAg} and x ∈ R
n,

Cl
λ+µ(f + g)(x) ≥ Cl

λ(f)(x) + Cl
µ(g)(x) and

Cu
λ+µ(f + g)(x) ≤ Cu

λ (f)(x) + Cu
µ(g)(x).

(2.7)

Proposition 2.10. (Translation invariance property) For any f : Rn �→ R bounded
below and for any affine function � : Rn �→ R, co[f + �] = co[f ] + �. Consequently,
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both Cu
λ (f) and Cl

λ(f) are translation-invariant against the weight function, that is :

Cl
λ(f)(x) = co[λ|(·) − x0|2 + f ](x) − λ|x − x0|2,

Cu
λ (f)(x) = λ|x − x0|2 − co[λ|(·) − x0|2 − f ](x),

for all x ∈ R
n and for every fixed x0. Hence, at x0,

Cl
λ(f)(x0) = co[λ|(·) − x0|2 + f ](x0),

Cu
λ (f)(x0) = − co[λ|(·) − x0|2 − f ](x0).

(2.8)

Next we state some results on the rate of approximation of the lower and
upper transforms under weaker regularity assumptions than those given in Theo-
rem 2.3(iv) of Ref. 48, where f was required to be locally of class C1,1. We give
first the following definitions.

Definition 2.11. Suppose f : Rn �→ R and let x0 ∈ R
n.

(i) We say that f is locally Cα at x0 for some 0 < α ≤ 1 if there are constants
δ > 0 and L > 0 such that when 0 < α ≤ 1,

|f(x) − f(x0)| ≤ L|x − x0|α whenever |x − x0| ≤ δ. (2.9)

(ii) We say that f is locally Cα at x0 for some 1 < α < 2 if f is differentiable in
the closed ball B̄(x0; δ) and there are constants δ > 0, L > 0 such that

|Df (x) − Df (x0)| ≤ L|x − x0|α−1 whenever |x − x0| ≤ δ. (2.10)

(iii) For α = 1, we say that f is locally Lipschitz at x0 if

|f(x) − f(x0)| ≤ L|x − x0| whenever |x − x0| ≤ δ. (2.11)

We then have the following estimates that are stated here only for the lower
transforms; similar results hold for upper transforms. Note that some of these esti-
mates can be established by exploiting the connections between our lower and
upper transforms and Moreau envelopes and developing ideas from Lemma 3.5.2,
Theorem 3.5.3, Lemma 3.5.7 and Theorem 3.5.8 of Ref. 10. See Sec. 7 for more
details.

Theorem 2.12. (i) Suppose f : Rn �→ R is lower semicontinuous, f maps bounded
sets to bounded sets and satisfies condition (L). If at some x0 ∈ R

n, f is locally
Cα at x0 for 0 < α < 2, then for λ > 0 sufficiently large and L of Definition 2.11,

Cl
λ(f)(x0) ≤ f(x0) ≤ Cl

λ(f)(x0) + L2/(2−α)
( α

2λ

)α/(2−α) (
1 − α

2

)
. (2.12)

(ii) Suppose f : Rn �→ R is lower semicontinuous, f maps bounded sets to bounded
sets and satisfies condition (L). If at some x0 ∈ R

n, f is differentiable, then for
any ε > 0, there is a Λ > 0, such that when λ ≥ Λ,

Cl
λ(f)(x0) ≤ f(x0) ≤ Cl

λ(f)(x0) +
ε2

4λ
. (2.13)
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(iii) Suppose f : Rn �→ R is a globally Lipschitz function with Lipschitz constant
L > 0. Then for every λ > 0 and for every x ∈ R

n,

Cl
λ(f)(x) ≤ f(x) ≤ Cl

λ(f)(x) +
L2

4λ
. (2.14)

These results can be generalized for f bounded and uniformly continuous in R
n

using the modulus of continuity. We recall from Ref. 14 the definition of modulus
of continuity of a function along with some of its properties.

Definition 2.13. Let f :Rn �→ R be a bounded and uniformly continuous function
in R

n. Then,

ωf : t ∈ [0,∞) �→ ωf (t) = sup{|f(x) − f(y)| : x, y ∈ R
n and |x − y| ≤ t} (2.15)

is called the modulus of continuity of f .

Proposition 2.14. Let f : Rn �→ R be a bounded and uniformly continuous func-
tion in R

n. Then the modulus of continuity ωf of f satisfies the following properties :

(i) ωf (t) → ω(0) = 0, as t → 0;
(ii) ωf is non-negative and non-decreasing continuous function on [0,∞);

(iii) ωf is subadditive: ωf (t1 + t2) ≤ ωf (t1) + ωf(t2) for all t1, t2 ≥ 0.

(2.16)

A function ω defined on [0,∞) and satisfying (2.16) is called a modulus of
continuity. A modulus of continuity ω can be bounded from above by an affine
function (see Lemma 6.1 of Ref. 14), that is, there exist some constants a > 0 and
b ≥ 0 such that

ω(t) ≤ at + b (for all t ≥ 0). (2.17)

As a result, given ωf , one can define the least concave majorant of ωf , which we
denote by ωc

f , which is also a modulus of continuity with the property (see Ref. 14),

1
2
ωc

f (t) ≤ ωf (t) ≤ ωc
f (t) (for all t ∈ [0,∞)). (2.18)

The next theorem gives a complete picture of how compensated convex trans-
forms can approximate uniformly continuous functions.

Theorem 2.15. (Approximations for uniformly continuous functions) Let f :
R

n �→R be bounded and uniformly continuous and denote by ωc
f the least concave

majorant of the modulus of continuity ωf of f . Assume a > 0, b ≥ 0 are such that
ωc

f (t) ≤ at + b for t ∈ [0, +∞). Then for every λ > 0,

f(x) − ωc
f

(
a

λ
+

√
b

λ

)
≤ Cl

λ(f)(x) ≤ f(x) (for x ∈ R
n), and

f(x) ≤ Cu
λ (f)(x) ≤ f(x) + ωc

f

(
a

λ
+

√
b

λ

)
(for x ∈ R

n).
(2.19)
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We conclude this section with definitions of types of regularity of a domain and
its boundary points.

Definition 2.16. Let Ω ⊂ R
n be a bounded open set with |∂Ω| = 0 (i.e. ∂Ω has

zero n-dimensional measure), and x0 ∈ R
n.

(i) The set Ω satisfies the δ-exterior ball property with δ > 0 at a point x ∈ ∂Ω
if there is an open ball B(x0; δ) ⊂ Ω̄c such that x ∈ ∂B(x0; δ). We call x an
exterior δ-regular point of ∂Ω.

(ii) The set Ω satisfies the δ-interior ball property with δ > 0 at a point x ∈ ∂Ω
if there is an open ball B(x0; δ) ⊂ Ω such that x ∈ ∂B(x0; δ). We call x an
interior δ-regular point of ∂Ω.

(iii) If a point x ∈ ∂Ω satisfies both the δ-interior ball property and the δ-exterior
ball property, we call x a δ-regular point of ∂Ω. A non-empty domain Ω ⊂ R

n

is called a δ-regular domain (or for short, regular) if there exists a δ > 0
such that Ω is δ-regular at each point of its boundary.

Remark 2.17. These definitions of interior and exterior ball properties have been
used extensively in the study of elliptic partial differential equations.17 Notice that
it can happen that a boundary point of a domain can be both an exterior and
interior corner point.

3. Further Analytic and Geometric Properties
of Compensated Convex Transforms

For a locally bounded function f : Rn �→ R, let us consider the upper and the lower
semicontinuous closure f and f22,32 defined, respectively, by

f(x) = lim sup
y→x

f(y) and f(x) = lim inf
y→x

f(y).

Then f is upper semicontinuous (i.e. f(x) ≥ lim supy→x f(y)) and f is lower semi-
continuous (i.e. f(x) ≤ lim infy→x f(y)).22,32 Recall also that f is the pointwise
infimum of the upper semicontinuous functions that are greater than f , whereas
f is the pointwise supremum of the lower semicontinuous functions that are lower
than f . It was established in Ref. 48 that if f is lower semicontinuous (respec-
tively, upper semicontinuous) and satisfies condition (L) (respectively, condition
(U)) in (1.1), then

lim
λ→∞

Cl
λ(f)(x) = f(x)

(
respectively, lim

λ→∞
Cu

λ (f)(x) = f(x)
)

x ∈ R
n.

Next we characterize the limit of compensated convex transforms for λ → ∞
for more general functions.

Proposition 3.1. If f : Rn �→R satisfies condition (L) (respectively, Condition
(U)) in (1.1), then

Cl
λ(f)(x) = Cl

λ(f)(x) (respectively, Cu
λ (f)(x) = Cu

λ(f)(x)) x ∈ R
n. (3.1)
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Consequently,

lim
λ→∞

Cl
λ(f)(x) = f(x)

(
respectively, lim

λ→∞
Cu

λ(f)(x) = f(x)
)

x ∈ R
n. (3.2)

Note that the convergence result (3.2) follows from properties of Moreau enve-
lopes (see, for instance, Proposition 1.1 of Ref. 5) and the ordering property (2.4).

Theorem 3.2. (Closure and conversion properties) Let E be a subset of R
n, Ec the

complement of E in R
n, i.e. Ec = R

n\E and
o

E the interior of E. Assume λ > 0.
Then we have the following properties:

(i) Cu
λ (χE)(x) + Cl

λ(χEc)(x) = 1 for all x ∈ R
n.

(ii) For the upper transform,

Cu
λ(χE)(x) = Cu

λ(χĒ)(x) for all x ∈ R
n.

(iii) For the lower transform, if Ec = R
n, or equivalently,

o

E = ∅, then

Cl
λ(χE)(x) ≡ 0 for all x ∈ R

n.

Remark 3.3. Statement (iii) does not hold for the lower transform of a character-

istic function in general, though it holds if
o

E �= ∅. If
o

E = ∅ and E is dense in R
n,

for example, if E consists of all points with rational components, then Cl
λ(χE) ≡ 0.

However, since Ē = R
n, we have Cl

λ(χĒ) ≡ 1.

The following result characterizes the values of the upper transform of the char-
acteristic function of a non-empty subset E of R

n.

Theorem 3.4. (Expansion theorem) Let E ⊂ R
n be a non-empty set and let λ > 0

be fixed. Then for x ∈ R
n

Cu
λ(χE)(x)




= 1, if x ∈ Ē,

= 0, if x ∈ (E1/
√

λ)c,

∈ (0, 1), if x ∈ E1/
√

λ\Ē.

It is possible to have a better understanding on how Cu
λ(χΩ)(x) is defined “near”

the regular points of ∂Ω. For a bounded non-empty set E ⊂ R
n and a fixed λ > 0,

Theorem 3.4 states that the support of Cu
λ(χE) is the set E1/

√
λ. We now establish

an upper bound for Cu
λ(χE) that vanishes exactly at x, with x ∈ ∂E1/

√
λ. We also

show that the expansion operation Cu
λ (χE) of a domain Ω is smoothly attached to

the background.
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Proposition 3.5. Let E ⊂ R
n and λ > 0 be such that E1/

√
λ �= R

n. For all
x ∈ ∂E1/

√
λ:

(i) Cu
λ (χE) is bounded above by Cu

λ (χBc(x;1/
√

λ)) in R
n, where Bc(x; 1/

√
λ) is the

complement in R
n of the ball B(x; 1/

√
λ), i.e. for any x ∈ ∂E1/

√
λ,

Cu
λ(χE)(y) ≤ Cu

λ (χBc(x;1/
√

λ))(y) for all y ∈ R
n, (3.3)

and

Cu
λ (χBc(x;1/

√
λ))(x) = 0. (3.4)

(ii) Cu
λ (χE) is differentiable at x and the gradient of Cu

λ(χE) satisfies DCu
λ(χE)(x)=

0.

The following example gives a prototype for the behavior of the upper and lower
transforms near regular points.

Example 3.6. Let E = {(x, y) ∈ R
2, x ≤ 0}. According to Definition 2.16, every

point on ∂E is a δ-regular point for any δ > 0. Let f(x, y) = χE(x, y). Then for
(x, y) ∈ R

2

Cu
λ(f)(x, y) =




1, x ≤ 0, y ∈ R,

λ(x − 1/
√

λ)2, 0 ≤ x ≤ 1/
√

λ, y ∈ R,

0, x ≥ 1/
√

λ, y ∈ R,

Cl
λ(f)(x, y) =




1, x ≤ −1/
√

λ, y ∈ R,

1 − λ(x + 1/
√

λ)2, 1/
√

λ ≤ x ≤ 0, y ∈ R,

0, x ≥ 0, y ∈ R.

The following theorem extends Example 3.6 to general exterior and interior
δ-regular points.

Theorem 3.7. (Regular extension) Suppose λ > 0, x0 ∈ R
n and Ω ⊂ R

n is an
open set satisfying Ω̄ �= R

n.

(i) Suppose Ω satisfies the δ-exterior ball property at x ∈ ∂Ω with radius δ ≥ 1/
√

λ.
Let B(x0; δ) ⊂ (Ω̄)c be the open ball such that x ∈ ∂B(x0; δ). Let [x, x0] be the
line segment connecting x and x0 and x1 ∈ [x, x0] be such that |x1−x| = 1/

√
λ.

Then for y ∈ [x, x0]

Cu
λ (χΩ)(y) =

{
λ|y − x1|2, y ∈ [x, x1],

0, y ∈ [x1, x0].

(ii) Suppose Ω satisfies the δ-interior ball property at x ∈ ∂Ω with radius δ ≥ 1/
√

λ.
Let B(x0; δ) ⊂ Ω be the ball such that x ∈ ∂B(x0; δ). Let [x, x0] be the line
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segment connecting x and x0 and x1 ∈ [x, x0] be such that |x1 − x| = 1/
√

λ.
Then for y ∈ [x, x0]

Cl
λ(χΩ)(y) =

{
1 − λ|y − x|2, y ∈ [x, x1],

1, y ∈ [x1, x0].

The following theorem is a stability result for compensated convex transforms
under curvature perturbation. The result is a simpler version of the stability theo-
rems for ridge and valley transforms in the next section.

Theorem 3.8. Let f : Rn �→ R be a bounded function and λ0 > 0. Suppose the
smooth perturbation g ∈ C1,1(Rn) satisfies

|Dg(x) − Dg(y)| ≤ λ0|x − y| for all x, y ∈ R
n. (3.5)

Then for every λ > λ0/2 and x ∈ R
n,

g(x) + Cl

λ−λ0
2

(f)(x) ≤ Cl
λ(f + g)(x) ≤ g(x) + Cl

λ+
λ0
2

(f)(x),

g(x) + Cu

λ+
λ0
2

(f)(x) ≤ Cu
λ (f + g)(x) ≤ g(x) + Cu

λ−λ0
2

(f)(x).
(3.6)

The following lemma gives an estimate on the points needed to compute the
value of the convex envelope of fλ(x) = λ|x|2 − χE(x) at the point x0 = 0. The
lemma is a special case of the locality property stated in Theorem 3.10(i).

Lemma 3.9. Let λ > 0 and consider a closed subset E of R
n with E �= R

n.
Let fλ(x) = λ|x|2 − χE(x). By Proposition 2.1(i), there exist (τi, xi) ∈ R × R

n,

i = 1, . . . , n + 1, such that

co[fλ](0) =
n+1∑
i=1

τifλ(xi) with τi ≥ 0,

n+1∑
i=1

τi = 1, and
n+1∑
i=1

τixi = 0. (3.7)

Then,

|xi| ≤ A(λ) with A(λ) = (1 +
√

2)/
√

λ, (3.8)

and

−1 ≤ co[fλ](0) ≤ 0. (3.9)

Next we state a locality and density property for the upper and lower transforms
applied to general bounded functions. The proof of locality given here exploits
the characterization (1.6) of the transforms as critical mixed Moreau envelopes.
Without loss of generality, by Proposition 3.1, we can assume the functions to
be lower (respectively, upper) semicontinuous. For the locality properties of more
general functions, the reader is referred to Theorem 2.4 of Ref. 48. The density
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property can be viewed as a tight approximation property for general bounded
functions.

Theorem 3.10. (The locality and density properties for bounded functions)
Suppose f : Rn �→ R is bounded, satisfying |f(x)| ≤ M for some M > 0 and for all
x ∈ R

n. Let λ > 0 and x0 ∈ R
n.

(i) The following locality properties hold :

Cl
λ(f)(x0) = coB̄(x0;Rλ,M )[f + λ|(·) − x0|2](x0),

Cu
λ (f)(x0) = −coB̄(x0;Rλ,M )[λ|(·) − x0|2 − f ](x0),

with Rλ,M ≤ 2
√

2
√

M
λ , and coB̄(x0;Rλ,M)[g](x0) the value of the local con-

vex envelope of g at x0 in B̄(x0; Rλ,M ) defined according to Definition 2.2.
Consequently,

Cl
λ(f)(x0) = Cl

λ(fx0)(x0), Cu
λ (f)(x0) = Cu

λ (fx0)(x0),

where

fx0(x) := f(x)χB̄(x0;R(λ,M))(x), x ∈ R
n.

(ii) The following density properties hold :

(a) If

Cl
λ(f)(x0) < f(x0),

there are xi ∈ B̄(x0; Rλ,M ), with xi �= x0, and λi ≥ 0 for i = 1, . . . , n + 1,

satisfying
∑n+1

i=1 λi = 1 and
∑n+1

i=1 λixi = x0, such that

Cl
λ(f)(xi) = f(xi) for i = 1, . . . , n + 1.

(b) If

Cu
λ(f)(x0) > f(x0),

there are zi ∈ B̄(x0; Rλ,M ), with zi �= x0, and τi ≥ 0 for i = 1, . . . , n + 1,

satisfying
∑n+1

i=1 τi = 1 and
∑n+1

i=1 τizi = x0, such that

Cl
λ(f)(zi) = f(zi) for i = 1, . . . , n + 1.

If f is bounded and continuous, all statements in Theorem 3.10(ii) for f and f

hold also for f , given that for continuous functions one has: f = f = f . Using the
approximation properties stated in Theorem 2.12, it is possible to establish sharper
locality and density properties if f has more smoothness.

Remark 3.11. (a) Part (i) of Theorem 3.10 simply says that the value of the lower
(respectively, upper) transforms for a bounded function at a point is determined
by the values of the function in its Rλ,M -neighborhood. Therefore when λ > 0 is
large, the neighborhood will be very small. If f is globally Lipschitz, our result is a
special case of Lemma 3.5.7 at p. 72 of Ref. 10.
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(b) For the upper transform Cu
λ(χE) of the characteristic function of a set E ⊂ R

n,
Lemma 3.9 provides a slightly better estimate Rλ,M ≤ (1 +

√
2)/

√
λ. When n = 1,

a direct calculation of the supporting points xi shows that |xi| ≤ 1/
√

λ. This is also
the case for n > 1 if fλ(x) = λ|x|2 − χE(x) is differentiable at xi.

(c) Part (ii) of Theorem 3.10 says that the sets of points at which the compensated
convex transforms equal the original function satisfy a density property. Recall first
that, in general,

Cl
λ(f) ≤ f ≤ f ≤ f ≤ Cu

λ (f).

Suppose now f satisfies the assumptions of Theorem 3.10 and define the following
sets:

Tu(f, λ) = {x ∈ R
n : Cu

λ(f)(x) = f(x)} and

Tl(f, λ) = {x ∈ R
n : Cl

λ(f)(x) = f(x)}.
We can call Tu(f, λ) and Tl(f, λ) the upper and lower touching sets of the com-
pensated convex transforms. Then the closed Rλ,M -neighborhoods of Tu(f, λ) and
Tl(f, λ) both cover R

n.

(d) Our density property can be viewed as a convex covering density in the sense
that for any point x0, the point x0 is contained in both the local convex hulls
co[Tl(f, λ)∩B̄(x0; Rλ,M )] and co[Tu(f, λ)∩B̄(x0; Rλ,M )]. If we call Rλ,M the radius
of density for Tu(f, λ) and Tl(f, λ), Part (ii) also implies that the radius of density
shrinks to zero as λ → +∞.

(e) If f is bounded and continuous, Tl(f, λ) and Tu(f, λ) are exactly the sets of
points at which f are 2λ-semiconvex and 2λ-semiconcave, respectively, i.e. the
points x0 where

f(x) ≥ f(x0) + �(x) − λ|x − x0|2 for all x ∈ R
n,

(respectively, f(x) ≤ f(x0) + �(x) + λ|x − x0|2 for all x ∈ R
n),

with � an affine function satisfying �(x0) = 0 and f meeting condition (L) (respec-
tively, condition (U)).

(f) The density property provides also another angle from which to view our tight
approximation property in Ref. 48, where we proved that if f satisfies condition
(B), and in a neighborhood of x0 f is C1,1, then Cl

λ(f)(x0) = Cu
λ (f)(x0) = f(x0)

as long as λ > 0 is sufficiently large. If we further assume that f is bounded
and continuous, the density property says that the graphs of the lower and upper
transforms touch that of f on sets whose density can be measured.

The following result is a special case of Theorem 3.5.3 at p. 70 of Ref. 10.

Theorem 3.12. Suppose f : Rn �→ R is a globally Lipschitz function with Lipschitz
constant L > 0. Then for λ > 0, Cl

λ(f) and Cu
λ(f) are both globally Lipschitz
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functions satisfying for all x, y ∈ R
n

|Cl
λ(f)(x) − Cl

λ(f)(y)| ≤ L|x − y|; |Cu
λ (f)(x) − Cu

λ (f)(y)| ≤ L|x − y|. (3.10)

Next we give an estimate of the Lipschitz constants for compensated convex
transforms applied to bounded functions and use Theorem 2.12(iii) to examine
error bounds for the mixed transforms approaching upper and lower transforms.

Theorem 3.13. Suppose f : Rn �→ R is bounded, that is, |f(x)| ≤ M for some
M > 0 and for x ∈ R

n. Then we have the following :

(i) Both Cl
λ(f) and Cu

λ(f) are Lipschitz functions with Lipschitz constants bounded

by 8
√

Mλ, that is, for all x, y ∈ R
n,

|Cl
λ(f)(x) − Cl

λ(f)(y)| ≤ 8
√

Mλ|x − y|,
|Cu

λ (f)(x) − Cu
λ(f)(y)| ≤ 8

√
Mλ|x − y|.

(ii) For λ > 0 and τ > 0, the mixed transforms Cu
τ (Cl

λ(f))(x) and Cl
τ (Cu

λ (f))(x)
are Lipschitz functions with Lipschitz constants bounded by 8

√
Mλ and for

x ∈ R
n,

0 ≤ Cu
λ (f)(x) − Cl

τ (Cu
λ (f))(x) ≤ 16Mλ

τ
,

0 ≤ Cu
τ (Cl

λ(f))(x) − Cl
λ(f)(x) ≤ 16Mλ

τ
.

(3.11)

In fact, the mixed transforms above are bounded C1,1 functions. We will discuss
this elsewhere.

4. Ridge, Valley and Edge Transforms

In this section we introduce the notions of ridge, valley and edge transforms and
study their properties. These are basic operations for extracting geometric singu-
larities.

Definition 4.1. For a function f :Rn �→ R satisfying (B) in (1.1), assume A > 0
the constant entering the conditions (1.1), we define the translation-invariant ridge
Rλ(f), valley Vλ(f) and edge Eλ(f) transform for f of scale λ > A by, respectively,

Rλ(f) = f − Cl
λ(f), Vλ(f) = f − Cu

λ (f),

Eλ(f) = Rλ(f) − Vλ(f) = Cu
λ (f) − Cl

λ(f).
(4.1)

If f is of sub-quadratic growth, that is, |f(x)| ≤ A(1 + |x|α) with 0 ≤ α < 2, in
particular f can be a bounded function, the requirement for λ in Definition 4.1 is
simply λ > 0.

Remark 4.2. (a) Since the original function f is directly involved in the definitions
of our ridge, valley and edge transforms, these transforms are not Hausdorff stable
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if we consider a dense sampling of the original function. In the following section,
however, we will introduce our stable versions of ridge and valley transforms which
are based on these basic transforms.

(b) The ridge transform Rλ(f) = f − Cl
λ(f) and the valley transform Vλ(f) = f −

Cu
λ (f) are non-negative and non-positive, respectively, because of the ordering prop-

erty (2.5) of the compensated convex transforms. As a result, the geometry of ridges
and valleys is better reflected and the algebraic properties stated in Proposition 4.4
below hold. However, in practice, we usually consider −Vλ(f) to make the resulting
function non-negative.

(c) When f is a bounded and continuous function, say, |f(x)| ≤ M for some M > 0,
our density property (Theorem 3.10(ii)) implies that the set on which Rλ(f)(x) = 0
(respectively, Vλ(f)(x) = 0) has the property that its closed Rλ,M -neighborhood is
the whole space R

n. However, without further knowledge of the function, we cannot
say that the supports of Rλ(f) and Vλ(f) are “thin” sets.

The following result shows that our ridge and valley transforms are both invari-
ant with respect to translation, and scale covariant.

Proposition 4.3. (i) The transforms Rλ(f) and Vλ(f) are invariant with respect
to translation, in the sense that

Rλ(f + �) = Rλ(f) and Vλ(f + �) = Vλ(f), (4.2)

for all affine functions � ∈ Aff(Rn). Consequently, the edge transform Eλ(f) is also
invariant with respect to translation.

(ii) The transforms Rλ(f) and Vλ(f) are scale covariant in the sense that

Rλ(αf) = αRλ/α(f) and Vλ(αf) = αVλ/α(f), (4.3)

for all α > 0. Consequently, the edge transform Eλ(f) is also scale covariant.

The numerical experiment depicted in Fig. 2 illustrates the property defined by
Eq. (4.2) for the edge transform Eλ. We use a 256× 256 binary image of a Chinese
character and denote by χ(i, j) its characteristic function. Since the format uint8 can
only display values between 0 and 255, we consider the affine function �(i, j) = i−1

(a) (b) (c) (d)

Fig. 2. (a) A binary image χ of a Chinese character. (b) Image 3χ + �, i.e. the scaled characteristic
function of the character plus a simple affine function. (c) Edges extracted by Canny edge detector.
(d) Edges extracted by the edge transform Eλ(f) with λ = 1 after thresholding.
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and define f(i, j) = 3χ(i, j) + �(i, j) for 1 ≤ i, j ≤ 256. Observe that, for instance,
Canny edge detector is not invariant with respect to translation.

The ridge and valley transforms satisfy also the following properties which, for
simplicity, are stated for bounded functions.

Proposition 4.4. Suppose f : Rn �→ R is bounded. Then for every λ > 0 and τ > 0,

we have the following properties :

(i) Rλ(f) = −Vλ(−f) and Vλ(f) = −Rλ(−f);

(ii) Rτ+λ(f) ≤ Rτ (Rλ(f)) ≤ Rλ(f) and Vλ(f) ≤ Vτ (Vλ(f)) ≤ Vτ+λ(f).

Remark 4.5. For many one-dimensional functions, we can verify that
Rτ (Rλ(f)) = Rτ+λ(f). However, we suspect that the equality does not hold in
general.

The following theorem provides estimates for the stability of our feature detec-
tion transforms under curvature perturbations.

Theorem 4.6. The transforms Rλ(f), Vλ(f) and Eλ(f) are all stable under cur-
vature perturbations in the sense that for any g ∈ C1,1(Rn) satisfying |Dg(x) −
Dg(y)| ≤ ε|x − y|, if λ > ε then

Rλ+ε(f) ≤ Rλ(f + g) ≤ Rλ−ε(f), Vλ−ε(f) ≤ Vλ(f + g) ≤ Vλ+ε(f),

Eλ+ε(f) ≤ Eλ(f + g) ≤ Eλ−ε(f).

Remark 4.7. Of course when the perturbation g belongs to C2(Rn) with
|D2g(x)| ≤ ε, our requirement for g in Theorem 4.6 is satisfied. However, the
slightly weaker assumption for g (i.e. g ∈ C1,1) is not only a technical improve-
ment. It is known that even if a function f is C∞, in general the best regularity we
can expect for the convex envelope co[f ] is C1,1.25

The numerical experiment displayed in Fig. 3 illustrates the stability of our
edge transform under curvature perturbations. The performance of the Canny edge
detector is also shown.

(a) (b) (c) (d)

Fig. 3. (a) A scaled binary image of a Chinese character plus a smoothed cat image. (b) The
image is perturbed by a trigonometric function. (c) Edges extracted by Canny edge detector.
(d) Edges extracted by the edge transform Eλ(f) after thresholding.
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The geometric structure of the ridge, valley and edge transforms is made precise
in the following theorem.

Theorem 4.8. (Geometric characterization for ridge, valley and edge transforms)
Let Ω ⊂ R

n be a non-empty open regular set such that Ω̄ �= R
n and Γ ⊂ ∂Ω. Let

λ > 0. Then we have the following properties :

(i) The ridge and valley transforms Rλ(χΩ̄) and Vλ(χΩ̄) satisfy, respectively, for
x ∈ R

n

Rλ(χΩ∪Γ)(x)




= 0, x ∈ (Ωc\Γ) ∪ Ω\(Ωc)1/
√

λ,

∈ (0, 1), x ∈ (Ωc)1/
√

λ\Ωc,

1, x ∈ Γ,

(4.4)

Vλ(χΩ∪Γ)(x)




= 0, x ∈ (Ω1/
√

λ)c ∪ (Ω̄\Γ),

∈ (−1, 0), x ∈ Ω1/
√

λ\Ω̄,

= −1, x ∈ Γ.

(4.5)

Furthermore both Rλ(χΩ∪Γ) and Vλ(χΩ∪Γ) are continuous in R
n\∂Ω.

(ii) The edge transform Eλ(χΩ∪Γ) satisfies, for x ∈ R
n

Eλ(χΩ∪Γ)(x)




= 0, x ∈ (Ω1/
√

λ)c ∪ Ω\(Ωc)1/
√

λ,

∈ (0, 1), x ∈ Ω1/
√

λ\Ω̄ ∪ (Ωc)1/
√

λ\Ωc,

= 1, x ∈ ∂Ω.

(4.6)

Furthermore, Eλ(χΩ∪Γ) is continuous in R
n and, for x ∈ R

n

lim
λ→+∞

Eλ(χΩ∪Γ)(x) = χ∂Ω(x). (4.7)

The following proposition shows instead that for points with different smooth-
ness properties, the rate of approximations of upper and lower transforms are dif-
ferent.

Proposition 4.9. Suppose f : Rn �→ R maps bounded sets to bounded sets.

(i) If f is lower semicontinuous and satisfies (L) and f is Cα at x0 for 0 < α < 2,

then

lim sup
λ→∞

λα/(2−α)Rλ(f)(x0) ≤ L2/(2−α)
(α

2

)α/(2−α) (
1 − α

2

)
. (4.8)

(ii) If f is upper semicontinuous and satisfies (U) and f is Cα at x0 for 0 < α < 2,

then

lim inf
λ→∞

λα/(2−α)Vλ(f)(x0) ≥ −L2/(2−α)
(α

2

)α/(2−α) (
1 − α

2

)
. (4.9)
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Proposition 4.10. Suppose f : Rn �→ R is a Lipschitz function with Lipschitz con-
stant L. Then for every x ∈ R

n and for all λ > 0,

λRλ(f)(x) ≤ L2

4
and λVλ(f)(x) ≥ −L2

4
. (4.10)

Furthermore, for almost every x ∈ Ω,

lim
λ→∞

λRλ(f)(x) = 0 and lim
λ→∞

λVλ(f)(x) = 0. (4.11)

Figure 4 displays for the special case of f(x, y)= |x|− |y|, the graph of its upper
and lower transform, the scaled valley, ridge and the edge transform λVλ(f), λRλ(f)
and λEλ(f), respectively, for λ = 9.

We conclude this section by examining singularities of continuous piecewise
affine functions defined in R

n. Let f :Rn �→R be a continuous piecewise affine func-
tion, that is (see Ref. 19), f is continuous in R

n and there exists a finite collection
of closed convex polyhedra with non-empty and mutually disjoint interiors whose
union covers the whole space R

n (polyhedral partition) such that the restriction of
f to each of the polyhedra of the partition coincides with the restriction therein
of an affine function. Clearly, in this case, f is a Lipschitz function and f can
be non-differentiable on the boundaries of these polyhedra. The following example
illustrates such behavior in a special case.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Graph of the function: (a) f(x, y) = |x|−|y|; (b) Cu
λ (f); (c) Cl

λ(f); (d) λVλ(f); (e) λRλ(f);

(f) λEλ(f) for λ = 9. Observe that the height of the scaled ridge and valley transform is less than
1/4, in agreement with Proposition 4.10.
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Example 4.11. Suppose x0 ∈R
n is a relative interior point of an (n − 1)-

dimensional polytope so that f(x) = min{�1(x), �2(x)} or f(x) = max{�1(x), �2(x)}
near x0, with �1 and �2 two affine functions. We consider the case where f(x) =
min{�1(x), �2(x)} near x0 first and calculate the ridge transform.

Proof. Without loss of generality we may assume x0 = 0, �1(x) = a1 · x + b and
�2(x) = a2 · x + b with x, a1, a2, b ∈ R

n, a1 �= a2 and ai · x the scalar product
between ai and x, i = 1, 2. Let a = (a1 − a2)/2. Since the ridge transform is
affine-invariant, we may subtract �(x) = (a1 + a2) · x/2 + b from f(x) so that
F (x) := f(x) − �(x) = min{a · x,−a · x} near 0. Let g(x) = min{a · x,−a · x}. If
we define E = span[a] and let E⊥ be the orthogonal complement of E, the lower
transform of g is, for x ∈ R

n,

Cl
λ(g)(x) =




|a|2
4λ

− λ|PE(x)|2 + |PE⊥(x)|2, |PE(x)| ≤ |a|
2λ

,

g(x), |PE(x)| ≥ |a|
2λ

,

where |PE(x)|2 and |PE⊥(x)|2 are orthogonal projections of x to E and E⊥, respec-
tively. By the locality property of lower transforms (see Theorem 2.4 of Ref. 48) we
have, for large λ > 0, Cl

λ(F )(x) = Cl
λ(g)(x) near 0 and

Rλ(f)(0) = Rλ(F )(0) = Rλ(g)(0) =
|a|2
4λ

=
|a1 − a2|2

16λ
.

Thus λRλ(f)(0) = |a1 − a2|2/16. If we compare this with our estimate in Proposi-
tion 4.9, we have L = max{|a1|, |a2|} and λRλ(f)(0) ≤ max{|a1|2, |a2|2}/4.

If f(x) = max{�1(x), �2(x)} with �1(x) = a1 · x + b and �2(x) = a2 · x + b, we
apply the formula Vλ(f) = −Rλ(−f) given by Proposition 4.4. Note that −f(x) =
min{−�1(x),−�2(x)} so that

Rλ(−f)(0) =
|a1 − a2|2

16λ
hence Vλ(f)(0) = −|a1 − a2|2

16λ
.

Note that if x0 is an interior point of an n-dimensional convex polyhedron on
which f(x) is affine, then for sufficiently large λ > 0, Eλ(f)(x0) = 0 as f is locally
C1,1 near x0 (see Theorem 2.3(iv) of Ref. 48).

5. The Hausdorff Stable Ridge Transform

We introduce first a distance-based function D2
λ(x; E) which will serve two purposes:

(i) to prove the Hausdorff–Lipschitz continuity of the upper transform Cu
λ(χE),

and
(ii) to define a Hausdorff-stable operator that will permit the detection of exterior

corners of domains and of intersections of surfaces and curves.
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Definition 5.1. Let E ⊂ R
n be a non-empty closed set with E �= R

n and denote
by dist(x; E) = inf{y ∈ E, |y − x|} the Euclidean distance function to E in R

n,
where |·| is the Euclidean norm in R

n. For a given λ > 0, we define

Dλ(x; E) := max{0, 1 −
√

λdist(x; E)}, x ∈ R
n. (5.1)

In the following, we will mainly consider D2
λ(x; E). Clearly, we have 0 ≤

D2
λ(x; E) ≤ 1 in R

n with

D2
λ(x; E)




= 1, if x ∈ E,

= 0, if dist(x; E) ≥ 1√
λ

,

∈ (0, 1), if 0 < dist(x; E) <
1√
λ

.

(5.2)

The following properties for the function D2
λ(x; E) are easy to verify and will

be used later.

Proposition 5.2. Suppose E, F ⊂ R
n be two non-empty closed sets. Then we have

the following properties :

(i) if E ⊂ F, then

D2
λ(x; E) ≤ D2

λ(x; F ), x ∈ R
n; (5.3)

(ii) if E ∩ B̄(x; 1/
√

λ) �= ∅, then

D2
λ(x; E) = D2

λ(x; E ∩ B̄(x; 1/
√

λ)), x ∈ R
n. (5.4)

The following identity justifies the use of D2
λ(x; E).

Proposition 5.3. Let E ⊂ R
n be a non-empty closed set. Let λ > 0. Then

Cu
λ(χE)(x) = Cu

λ(D2
λ(·; E))(x), x ∈ R

n. (5.5)

Lemma 5.4. Let E and F be non-empty compact subsets of R
n. Assume λ > 0.

Then, the function D2
λ(x; E) is Hausdorff–Lipschitz in the sense that

|D2
λ(x; E) − D2

λ(x; F )| ≤ 2
√

λdistH(E, F ) (for x ∈ R
n). (5.6)

Next we state the Hausdorff–Lipschitz continuity of the upper transform Cu
λ(χE)

of the characteristic function of a non-empty compact subset E ⊂ R
n.

Theorem 5.5. (Hausdorff–Lipschitz continuity) Let E and F be non-empty com-
pact subsets of R

n. Assume λ > 0. Then

|Cu
λ (χE)(x) − Cu

λ (χF )(x)| ≤ 2
√

λdistH(E, F ) (for x ∈ R
n). (5.7)

Remark 5.6. If we apply our locality property for bounded functions (Theo-
rem 3.10), we see that for any non-empty closed set E ⊂ R

n,

Cu
λ (χE)(x) = Cu

λ (χE∩B̄(x;R(λ)))(x), x ∈ R
n, (5.8)
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where 0 < R(λ) ≤ (1 +
√

2)/
√

λ. Here we define χ∅ ≡ 0. This observation and the
Hausdorff–Lipschitz continuity are two useful tools to design and analyze stable
singularity detector operators, such as, our stable ridge transform (see definition
below) and other stable operators.

As an immediate consequence of the preceding Theorem 5.5, we obtain the
following corollary.

Corollary 5.7. Let E and F be non-empty compact subsets of R
n. Assume λ > 0

be fixed. Then

|Cl
τ (Cu

λ (χE))(x) − Cl
τ (Cu

λ (χF ))(x)| ≤ 2
√

λ distH(E, F )

(for x ∈ R
n, τ > 0). (5.9)

The stable ridge transform for characteristic functions is defined next.

Definition 5.8. Let E be a non-empty compact subset of R
n. We define the stable

ridge transform of E by

SRλ,τ (χE)(x) = Rτ (Cu
λ (χE))(x), x ∈ R

n, λ > 0, τ > 0. (5.10)

The stable ridge transform SRλ,τ (χE)(x) is Hausdorff–Lipschitz continuous.
This is the content of the following theorem.

Theorem 5.9. Let E and F be non-empty compact subsets of R
n. Assume λ > 0

and τ > 0. Then,

|SRλ,τ (χE)(x) − SRλ,τ (χF )(x)| ≤ 4
√

λ distH(E, F ) (for x ∈ R
n). (5.11)

Figure 5 illustrates the content of Theorem 5.9. Figure 5(a) displays a domain E

represented by a binary image of a cat, (c) shows a domain F obtained by randomly
sampling E, whereas (b) and (d) picture a suplevel set of the stable ridge transforms
of the respective characteristic functions. Here we recall that given a real-valued
function f defined in Ω ⊆ R

n, and α ∈ R
n, by the suplevel set of f with level α we

mean the set {x ∈ Ω : f(x) ≥ α}.

(a) (b) (c) (d)

Fig. 5. (a) Domain E given by the image of a cat displayed here as 1 − χE . (b) Boundary
extraction using the stable ridge transform, SRλ,τ (χE), for λ = 0.1 and τ = λ/8. (c) Domain F
obtained by randomly sampling E. (d) Boundary extraction of the data sample after thresholding
the stable ridge transform, SRλ,τ (χF ), computed for λ = 0.1 and τ = λ/8.
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Remark 5.10. Similarly to the stable ridge transform of a non-empty compact
subset E of R

n, we can then define the stable valley transform of E for λ > τ as

SVλ,τ (χE)(x) = Vτ (Cu
λ (χE))(x), x ∈ R

n, λ > τ > 0,

and the stable edge transform of E for λ > τ as

SEλ,τ (χE)(x) = Eτ (Cu
λ (χE))(x), x ∈ R

n, λ > τ > 0.

The condition λ > τ is invoked because from Theorem 2.1(iii) in Ref. 48, we have
that

Cu
τ (Cu

λ (f)) =

{
Cu

λ (f) for λ ≤ τ,

Cu
τ (f) for λ ≥ τ.

Hence, if λ ≤ τ , we would get SVλ,τ (χE)(x) = 0 and SEλ,τ (χE)(x) would
simply equal to SRλ,τ (χE)(x). The Hausdorff stability of SVλ,τ (χE)(x) follows
from Theorem 5.5 and the triangle inequality.

6. Prototype Examples

To justify the stable ridge transform as a tool to extract exterior corners and lower-
dimensional objects, we present some prototype examples where it is possible to
derive an explicit expression for the stable ridge transform. To simplify the notation,
for λ > 0 and τ > 0 we introduce the following positive constants:

α =
1√
λ
−
√

τ

λ(λ + τ)
and β =

√
λ + τ

λτ
− 1√

λ
. (6.1)

Example 6.1. We consider first some one-dimensional examples to show the dif-
ferent effects of SRλ,τ (χK) when K is: (i) a single point set K0 = {0}; and (ii) a
single jump K− = (−∞, 0].

Case (i). For this case, with the constants α and β defined by (6.1), we have for
x ∈ R

Cu
λ (χK0)(x) =

{
λ(|x| − 1/

√
λ)2 if |x| ≤ 1/

√
λ,

0 if |x| ≥ 1/
√

λ;

Cl
τ (Cu

λ (χK0))(x) =




τ

λ + τ
− τx2 if |x| ≤

√
λ

λ + τ
,

Cu
λ(χK0)(x) if |x| ≥

√
λ

λ + τ
;

SRλ,τ (χK0)(x) =




(λ + τ)

(
|x| −

√
λ

λ + τ

)2

if |x| ≤
√

λ

λ + τ
,

0 if |x| ≥
√

λ

λ + τ
.

(6.2)
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The function SRλ,τ (χK0)(x) attains its maximum at x= 0 with
SRλ,τ (χK0)(0) = λ/(λ + τ).

Case (ii). For this case, with the constants α and β defined by (6.1), we have for
x ∈ R

Cu
λ (χK−)(x) =




0 if x ≥ 1/
√

λ,

λ(x − 1/
√

λ)2 if 1/
√

λ ≥ x ≥ 0,

1 if x ≤ 0;

Cl
τ (Cu

λ (χK−))(x) =

{
1 − τ(x + β)2 if −β ≤ x ≤ α,

Cu
λ(χK−)(x) otherwise;

SRλ,τ (χK−)(x) =




(λ + τ)(x − α)2 if 0 ≤ x ≤ α,

τ(x + β)2 if −β ≤ x ≤ 0,

0 otherwise.

(6.3)

The function SRλ,τ (χK−)(x) attains its maximum at x = 0 with
SRλ,τ (χK−)(0) = (

√
λ + τ−√

τ )2/λ. For λ > 0, τ > 0 we have moreover
that for x ∈ R

SRλ,τ (χK−)(0) < SRλ,τ (χK0)(0) ⇔ (
√

λ + τ −√
τ )2/λ < λ/(λ + τ)

⇔ 1/(
√

λ + τ +
√

τ )2 < 1/(λ + τ),

(6.4)

which is clearly true since λ, τ > 0.

Figure 6 displays the graph of the transforms SRλ,τ (χK) in the case of K = K0

and K = K−.
We will present the explicit calculations needed to determine Cl

τ (Cu
λ (χK−))

and SRλ,τ (χK−), because these will be used in the proof of our “height theorem”
(Theorem 6.4) below for regular points on the boundary of a domain in R

n.

(a) (b) (c)

Fig. 6. (a) Graph of SRλ,τ (χK− ). (b) Graph of SRλ,τ (χK0 ). (c) Graphs of both the transforms
for λ = 20 and τ = λ/8.
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The expression of the upper transform Cu
λ (χK−) can be obtained quite eas-

ily, hence we focus only on deriving an expression for the lower transform of
Cu

λ (χK−). For this purpose, by definition, we need to compute the convex enve-
lope of Cu

λ (χK−) + τ | · |2. Given

Cu
λ (χK−)(x) + τ |x|2 =




τx2 if x ≥ 1/
√

λ,

λ(x − 1/
√

λ)2 + τx2 if 1/
√

λ ≥ x ≥ 0,

1 + τx2 if x ≤ 0,

(6.5)

we observe that (6.5) is a piecewise quadratic function with each piece a convex
function. In order to find its convex envelope, we look for the common tangent line
of the following two functions f0 and f1, representing restrictions of (6.5), and show
that this is a supporting line of the whole function. Given

f0(x) = 1 + τx2 for x ≤ 0, and

f1(x) = λ(x − 1/
√

λ)2 + τx2 for 0 ≤ x ≤ 1/
√

λ,

the tangent line to f0 is �0(x) = 1 − τx2
0 + 2τx0x with x0 ≤ 0 and the tangent line

to f1 is �1(x) = 1 − (λ + τ)x2
1 − 2

√
λx + 2(λ + τ)x1x with 0 ≤ x1 ≤ 1/

√
λ. As the

common tangent line must satisfy �0 ≡ �1, by comparing the coefficients, (x0, x1)
must then solve the system{

1 − τx2
0 = 1 − (λ + τ)x2

1,

2τx0 = −2
√

λ + 2(λ + τ)x1,
(6.6)

whose solution yields

x0 =
1√
λ
−
√

λ + τ

λτ
= −β, x1 =

1√
λ
−
√

τ

λ(λ + τ)
= α. (6.7)

Since x0 < 0 and 0 < x1 < 1/
√

λ, the common tangent line to the pieces f0 and
f1 is then given by

�0(x) = 1 − τx2
0 + 2τx0x. (6.8)

Clearly �0(x) ≤ f0(x) for x ≤ 0 and �0(x) ≤ f1(x) for 1 ≤ x ≤ 1/
√

λ. Furthermore,
we have �0(x0) = f0(x0) and �0(x1) = f1(x1). To complete the proof, we only need
to show that �0(x) < τx2 for x > 1/

√
λ. For λ > 0, τ > 0 and x > 1/

√
λ we have

�0(x0) < τx2 ⇔ 1 − τx2
0 + 2τx0x < τx2

⇔ τ(x − x0)2 > 1

⇔ x − x0 > 1/
√

τ

⇔ x0 ≤ 1/
√

λ − 1/
√

τ

⇔ 1/
√

τ ≤
√

λ + τ

λτ
, (6.9)
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which is clearly true since λ > 0 and τ > 0. Here we have used the definition of x0

in (6.7) and the fact that x > 1/
√

λ. It thus follows that, for x ∈ R,

co[Cu
λ(χK−) + τ | · |2](x) =




1 + τx2 if x ≤ x0,

�0(x) if x0 ≤ x ≤ x1,

λ(x − 1/
√

λ)2 + τx2 if x1 ≤ x ≤ 1/
√

λ,

τx2 if x ≥ 1/
√

λ.

(6.10)

By subtracting (6.10) to τ |x|2 we obtain first Cl
τ (Cu

λ (χK−)) as given in (6.3), and
then by subtracting Cu

λ (χK−) to Cl
τ (Cu

λ (χK−)) we can verify the explicit expression
for SRλ,τ (χK−) given in (6.3).

Next we show that given an open subset Ω of R
n, along the normal direction to a

δ-regular point x0 of ∂Ω, SRλ,τ (χΩ̄) reaches its maximum at x0, and the height of the
stable ridge transform at x0 is given then by SRλ,τ (χΩ̄)(x0) = (

√
λ + τ −√

τ)2/λ.
To establish this result, we first need the following lemma.

Lemma 6.2. Assume that λ > 0, τ > 0, the positive constants α and β are as
defined by (6.1), and r > max{1/

√
λ, β}. Let B(0; r) ⊂ R

n be the open ball centered
at 0 with radius r. Then, for x ∈ R

n,

Cu
λ(χB̄(0;r))(x) =




1 if |x| ≤ r,

λ(|x| − r − 1/
√

λ)2 if r ≤ |x| ≤ r + 1/
√

λ,

0 if r + 1/
√

λ ≤ |x|;

Cl
τ (Cu

λ (χB̄(0;r)))(x) =

{
1 − τ(|x| − r + β)2 if r − β ≤ |x| ≤ r + α,

Cu
λ(χB̄(0;r))(x) otherwise;

SRλ,τ (χB̄(0;r))(x) =




τ(|x| − r + β)2 if r − β ≤ |x| ≤ r,

(λ + τ)(|x| − r − α)2 if r ≤ |x| ≤ r + α,

0 otherwise.

(6.11)

For the complement Bc(0; r) of B(0; r), we have, for x ∈ R
n,

Cu
λ(χBc(0;r))(x) =




0 if |x| ≤ r − 1/
√

λ,

λ(|x| − r + 1/
√

λ)2 if r − 1/
√

λ ≤ |x| ≤ r,

1 if r ≤ |x|;

Cl
τ (Cu

λ (χBc
r(0)))(x) =

{
1 − τ(|x| − r − β)2 if r − α ≤ |x| ≤ r + β,

Cu
λ(χB̄c(0;r))(x) otherwise;

SRλ,τ (χBc(0;r))(x) =




(λ + τ)(|x| − r + α)2 if r − α ≤ |x| ≤ r,

τ(|x| − r − β)2 if r ≤ |x| ≤ r + β,

0 otherwise.

(6.12)
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Remark 6.3. The assumption r > max{1/
√

λ, β} has been made only to ensure
that r − β > 0 and r − 1/

√
λ > 0, for otherwise the expression of the transforms

can be easily obtained, by direct inspection, specializing the ones given in (6.11).
Recall also that, in general, for λ → 0, Cl

λ(f) and Cu
λ (f) will converge to the convex

and concave envelope of f , respectively. So in the present example, they would be
the constant functions equal to zero and to one, respectively.

Theorem 6.4. (The height theorem) Let λ > 0, τ > 0, and β be as defined in (6.1).
Suppose that Ω is a non-empty open subset of R

n with Ω̄ �= R
n. If r > max{1/

√
λ, β}

and x0 ∈ ∂Ω is an r-regular point (that is, Ω satisfies both the r-interior and r-
exterior ball condition), then ∂Ω has a unique normal line at x0, and along the
outward normal direction ν (with |ν| = 1), we have

Cu
λ (χΩ̄)(x0 + tν) = Cu

λ(χK−)(t),

Cl
τ (Cu

λ (χΩ̄))(x0 + tν) = Cl
τ (Cu

λ (χK−))(t),

SRλ,τ (χΩ̄)(x0 + tν) = SRλ,τ (χK−)(t),

(6.13)

for t ∈ [−r, r] whenever r > 1/
√

λ. The function t �→ SRλ,τ (χΩ̄)(x0 + tν), for
|t| ≤ r, reaches its maximum at t = 0 with

SRλ,τ (χΩ̄)(x0) =
(
√

λ + τ −√
τ )2

λ
. (6.14)

We recall from Ref. 17, for instance, that we say that the boundary ∂Ω is C1,1

at x0 if: (i) there is a neighborhood B(x0; δ) of x0 and an orthogonal coordinate
system (x′

1, . . . , x
′
n) near x0 such that ∂Ω is locally the graph of a function g; (ii) the

function g is locally differentiable in a neighborhood of 0; and (iii) there is a constant
L > 0 such that |Dg(x′

n̂) − Dg(0)| ≤ L|x′
n̂| in a neighborhood of 0, where we have

set x′
n̂ = (x′

1, . . . , x
′
n−1). The relation between this notion of regularity and that

given by Definition 2.16 is contained in the following result.

Proposition 6.5. Let Ω ⊂ R
n be a non-empty open set with Ω̄ �= R

n. Then every
C1,1 point x0 ∈ ∂Ω is an r-regular point of Ω for r > 0 sufficiently small, and

SRλ,τ (χΩ̄)(x0) ≤ (
√

λ + τ −√
τ )2

λ
. (6.15)

The stable ridge transform of the characteristic function of an open set Ω ⊂ R
n

is supported in the 1/
√

λ-closed neighborhood of the boundary ∂Ω.

Proposition 6.6. Let λ > 0 and τ > 0. Assume Ω be a non-empty open sub-
set of R

n with Ω̄ �= R
n. If x0 ∈ R

n is such that dist(x0; ∂Ω) > 1/
√

λ, then
SRλ,τ (χΩ̄)(x0) = 0.

Remark 6.7. By Theorem 6.4 and Proposition 6.6, if we take the suplevel sets
of the stable ridge transform SRλ,τ (χΩ̄), that is, if we consider the set St := {x ∈
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R
n, SRλ,τ (χΩ̄)(x) > t} with 0 < t < (

√
λ + τ − √

τ )2/λ, we are able to extract at
least a small neighborhood of the set of the 1/

√
λ-regular points. Using a prototype

example we will show that if we lift the threshold further (that is, if we consider
a value of t greater than the maximum value (

√
λ + τ −√

τ )2/λ), the stable ridge
transform can actually extract exterior corner points. We can also standardize the
height of regular points by taking, for example, τ = λ/8. For this choice, the height
at regular points will be 1/2. Therefore, for τ = λ/8, if the stable ridge transform
at a point is greater than 1/2, we say that the point is λ-singular.

The preceding observation motivates the following definition of extractable cor-
ner points.

Definition 6.8. Assume Ω be a bounded open subset of R
n. A point x0 ∈ ∂Ω is

called an extractable corner point of Ω if for at least sufficiently large λ > 0
and τ > 0,

SRλ,τ (χΩ)(x0) > µ1(λ, τ), (6.16)

where

µ1(λ, τ) :=
(
√

λ + τ −√
τ )2

λ
(6.17)

is called the standard height for codimension-1 regular boundary points.

To show an application of Definition 6.8, we give below the expression of
SRλ,τ (χK) for the case of K := K

(n)
0 = {0} ⊂ R

n. This example is a straight-
forward generalization to R

n, by a simple rotation, of Case (i) of Example 6.1.

Example 6.9. Let K
(n)
0 = {0} ⊂ R

n. Then, for x ∈ R
n,

Cu
λ

(
χ

K
(n)
0

)
(x) =

{
λ(|x| − 1/

√
λ)2 if |x| ≤ 1/

√
λ,

0 if |x| ≥ 1/
√

λ;

Cl
τ

(
Cu

λ

(
χ

K
(n)
0

))
(x) =




τ

λ + τ
− τx2 if |x| ≤

√
λ

λ + τ
,

Cu
λ (χ

K
(n)
0

)(x) if |x| ≥
√

λ

λ + τ
;

SRλ,τ

(
χ

K
(n)
0

)
(x) =




(λ + τ)
(
|x| −

√
λ

λ + τ

)2
if |x| ≤

√
λ

λ + τ
,

0 if |x| ≥
√

λ

λ + τ
;

(6.18)

The transform SRλ,τ

(
χ

K
(n)
0

)
attains its maximum value at x = 0 with

SRλ,τ

(
χ

K
(n)
0

)
(0) =

λ

λ + τ
>

(
√

λ + τ −√
τ )2

λ
. (6.19)

As a result of the inequality (6.19), it follows that if a regular lower-dimensional
manifold is present in the dataset, for example, if we consider K ∪ Ω̄ ⊂ R

n, where K
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is a smooth compact manifold of dimension ≤ n− 1, then for large λ and τ , the val-
ues of SRλ,τ (χK∪Ω̄) on K are extractable singularities according to Definition 6.8.
This effect is visualized in the numerical experiments displayed in Figs. 7–9.

Notice that Theorem 6.4 tells us nothing about what happens at the singu-
lar points. It might happen that at some r-singular points of ∂Ω, Rτ (Cu

λ (χΩ̄))
takes on values lower than at the regular points of ∂Ω. This indeed happens,
for instance, at the interior corners (see Proposition 6.10 below). By contrast,
by means of a prototype example of an exterior corner, we will see that, using

(a) (b) (c) (d)

Fig. 7. Multiscale extraction of exterior edges and lower-dimensional objects by the stable 2d
corner transform. (a) Original shape. (b) A suplevel set of the stable ridge transform of the object
shown in (a). (c) Randomly sample of the object shown in (a). (d) A suplevel set of the stable
ridge transform of the object shown in (c).

(a) (b)

(c) (d)

Fig. 8. Multiscale extraction of exterior edges and lower-dimensional objects by the stable 3d
corner transform for the case of well-sampled object with different displayed suplevel sets in (a)
and (b); and for the same object loosely sampled with different displayed suplevel sets in (c)
and (d). For sake of visualization, the extracted exterior edges and lower-dimensional objects are
also displayed separately, as well as superimposed to the original object.
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(a) (b)

Fig. 9. Stable ridge transform for a sampled nonconvex polytope: (a) exterior edges; (b) exterior
vertices.

Definition 6.8, Rτ (Cu
λ (χΩ̄)) can detect exterior corners. However, even in this case,

it can happen that on isolated lower-dimensional objects, such as curves or isolated
points, Rτ (Cu

λ (χΩ̄)) can take on values higher than those at the near external corner
point. It follows that, for these cases, a different Hausdorff stable method will be
therefore needed to detect interior corners and boundary intersections of domains.

Proposition 6.10. Assume Ω to be a bounded and open subset of R
n. Let x0 ∈

∂Ω be an interior r-regular point, that is, there is a ball B(x′; r) ⊂ Ω such that
x0 ∈ ∂B(x′; r). Then x0 is not extractable in the sense of Definition 6.8, that is,
for 1/

√
λ ≤ r,

0 ≤ SRλ,τ (f)(x0) ≤ µ1(λ, τ). (6.20)

Using the example of an explicit prototype exterior corner in R
2, we next show

that Rτ (Cu
λ (χΩ̄)) can detect exterior corners following Definition 6.8.

Example 6.11. Assume a > 0, λ > 0 and τ > 0 and denote by α and β the
positive constants defined by (6.1). Let Ka := {(x, y) ∈ R

2, |y| ≤ ax, x ≥ 0}. The
upper transform of χKa has the following expression for (x, y) ∈ R

2,

Cu
λ (χKa)(x, y) =




1 if |y| ≤ ax and x ≥ 0,

λ

(−ax + |y|√
1 + a2

− 1√
λ

)2

if 0 ≤ −ax + |y|√
1 + a2

≤ 1√
λ

and

x + a|y|√
1 + a2

≥ 0,

λ

(√
x2 + y2 − 1√

λ

)2

if
√

x2 + y2 ≤ 1√
λ

and

x + a|y|√
1 + a2

≤ 0,

0 if
√

x2 + y2 ≥ 1√
λ

and

x + a|y|√
1 + a2

≤ 0,

(6.21)
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whereas the mixed transform Cl
τ (Cu

λ (χKa)) is given by, for (x, y) ∈ R
2,

Cl
τ (Cu

λ (χKa))(x, y)

=




τ

λ + τ
− τ(x2 + y2) if

√
x2 + y2 ≤

√
λ

λ + τ
and

x ≤ − a
√

λ√
1 + a2(λ + τ)

,

λ

(√
x2 + y2 − 1√

λ

)2

if

√
λ

λ + τ
≤
√

x2 + y2 ≤ 1√
λ

and

x + a|y|√
1 + a2

≤ 0,

τ(
√

1 + a2 + ax
√

λ)2

λ + (1 + a2)τ
− τy2 if |y| ≤

√
λ(1 + a2) + axλ

λ + (1 + a2)τ
and

− a
√

λ√
1 + a2(λ + τ)

≤ x ≤ β − αa2

a
√

1 + a2
,

λ

(∣∣∣∣−ax + |y|√
1 + a2

∣∣∣∣− 1√
λ

)2

if
−ax + |y|√

1 + a2
≤ 1√

λ
,

|y| ≥
√

λ(1 + a2) + λax

λ + (1 + a2)τ
and

0 ≤ x + a|y|√
1 + a2

≤ β

a
,

1 + τ

(
β
√

1 + a2

a2
− x

a

)2

− τ

(
β +

1√
1 + a2

(
β
√

1 + a2

a2
− x

a
− ax

))2

− τy2

if
x + a|y|√

1 + a2
≤ β

a
and x ≥ β − αa2

a
√

1 + a2
,

λ

(∣∣∣∣−ax + |y|√
1 + a2

∣∣∣∣− 1√
λ

)2

if α ≤ −ax + |y|√
1 + a2

≤ 1√
λ

and
x + a|y|√

1 + a2
≥ β

a
,

1 − τ

(−ax + |y|√
1 + a2

+ β

)2

if −β ≤ −ax + |y|√
1 + a2

≤ α and
x + a|y|√

1 + a2
≥ β

a
,

1 if
−ax + |y|√

1 + a2
≤ −β and

x + a|y|√
1 + a2

≥ β

a
,

0 if
1√
λ
≤ −ax + |y|√

1 + a2
and

x + a|y|√
1 + a2

≥ 0 or

if
√

x2 + y2 ≥ 1√
λ

and
x + a|y|√

1 + a2
≤ 0.

(6.22)
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The value of SRλ,τ (χKa) at the corner tip (0, 0) of Ka is given by

µ2(a, λ, τ) := SRλ,τ (χKa)(0, 0)

=




λ

λ + (1 + a2)τ
if a2 ≤

√
λ + τ

τ
,

1 + a2

a2

(
√

λ + τ −√
τ )2

λ
if a2 ≥

√
λ + τ

τ
.

(6.23)

We call µ2(a, λ, τ) defined by (6.23) the standard height of codimension-2 edges
of a domain with angle θ satisfying a = tan(θ/2). It is easy to verify that in both
cases the value of µ2(a, λ, τ) is greater than that at a 1/

√
λ-regular point, that is,

µ2(a, λ, τ) > µ1(λ, τ), for a > 0, and lim
a→+∞µ2(a, λ, τ) = µ1(λ, τ). (6.24)

The limit above simply says that when the angle approaches π, the singularity at
(0, 0) will disappear. If we further assume that τ is proportional to λ, say, τ = σλ

for some fixed σ > 0, we obtain

µ1(λ, σλ) = (
√

1 + σ −√
σ)2 = µ1(1, σ),

µ2(a, λ, σλ) = µ2(a, 1, σ) =




1
1 + (1 + a2)σ

if a2 ≤
√

1 + σ

σ
,

1 + a2

a2
(
√

1 + σ −√
σ)2 if a2 ≥

√
1 + σ

σ
.

(6.25)

Figure 10 displays the graph of the upper and mixed transform of χKa and of
the stable ridge transform of Ka.

Remark 6.12. Since a prototype interior corner is defined as the complement of
an exterior corner, one could think of detecting interior corners of Ω by looking
at the stable ridge transform of the complement of Ω in R

n. But this would not
provide useful information for geometric objects subject to finite sampling, which
is the principal type of application we have in mind. On the other hand, traditional
methods, such as Harris and Susan, as well as other local mask-based corner detec-
tion methods, would also not apply directly to such a situation. Thus alternative

(a) (b) (c)

Fig. 10. Let Ka := {(x, y) ∈ R
2, |y| ≤ ax, x ≥ 0}. The figure displays the graph of: (a) the upper

transform Cu
λ (χKa ); (b) the mixed transform Cl

τ (Cu
λ (χKa)); and (c) the stable ridge transform

SRλ,τ (χKa ) (for a = 0.5, λ = 16, τ = λ/8).
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methods are needed to suppress lower-dimensional objects. The detection of interior
corners is important when we try to find intersection “curves” of two solid bodies
which are defined by samples. We discuss these aspects in Ref. 51.

Just for comparison purposes, assume a > 0, λ > 0 and τ > 0 and consider
now the set Kac := (Ka)c = R

2\Ka, i.e. Kac is the complement of Ka in R
2 with

Ka = {(x, y) ∈ R
2 : |y| ≤ ax, x ≥ 0}, already introduced in Example 6.11. The set

Kac has an interior corner at the point (0, 0). Also for this case, it is possible to
obtain closed form expressions for the upper and mixed transform of χKac , and the
stable ridge transform of Kac . We limit ourselves, however, to display in Fig. 11
only the graphs of such transforms for two different combinations of a, λ and τ and
to note that SRλ,τ (χKac )(0, 0) is lower than µ1(λ, τ).

From the definition of stable ridge transform and Proposition 6.6, we can cap-
ture a neighborhood of the corner points by taking an appropriate value for the
threshold. Now we consider the limit as λ → +∞ of the stable ridge transform of
the exterior corner domain Ka introduced in Example 6.11. We show that this limit
captures singularities of different nature by its heights.

Lemma 6.13. Assume a > 0 and λ > 0, and let Ka = {(x, y) ∈ R
2, |y| ≤ ax, x ≥

0}. Let τ = σλ with σ > 0 fixed. Then, for (x, y) ∈ R
2,

lim
λ→∞

Rσλ(Cu
λ (χKa))(x, y) =




0 if |y| �= ax,

µ1(1, σ) if |y| = ax and x > 0,

µ2(a, 1, σ) if (x, y) = (0, 0).

(6.26)

(a) (b) (c)

(d) (e) (f)

Fig. 11. Let Kac := (Ka)c = R
2\Ka, with Ka = {(x, y) ∈ R

2 : |y| ≤ ax, x ≥ 0}. Graph of: (a) the
upper transform of χKac ; (b) the mixed transform of χKac ; and (c) the stable ridge transform of
Kac for a = 0.5, λ = 16 and τ = λ/8 (a2λ − τ > 0). Graph of: (d) the upper transform of χKac ;

(e) the mixed transform of χKac ; and (f) the stable ridge transform of Kac , for a = 1/
√

8, λ = 16
and τ = λ/8 (a2λ − τ = 0).
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The pointwise limit (6.26) contains more information than only determining
the regular boundary points and exterior corners. They also provide a measure of
the “strength” of the corners based on their opening angles. However, for interior
corners, we note that if the opening angle is large enough for a given σ > 0, then
such corners are not extractable even in a weak sense, since it does not hold that
limλ→+∞ Rσλ(Cu

λ (χK))(0, 0) > 0.

7. Proofs

Proof of Theorem 2.12. Part (i): We give the proof for 1 < α < 2; the case
0 < α ≤ 1 can be shown using a similar but simpler argument. Note first that
|Df (x) − Df (x0)| ≤ L|x − x0|α−1 for |x − x0| ≤ δ for some δ > 0 and L > 0.
Then by the locality property (see Theorem 2.4 of Ref. 48) for compensated convex
transforms, there exists Λ > 0 such that if λ > Λ and

Cl
λ(f)(x0) = co[f + λ|(·) − x0|2](x0) =

n+1∑
i=1

τi(f(xi) + λ|xi − x0|2), (7.1)

for xi ∈ R
n, τi ≥ 0, i = 1, 2, . . . , n + 1,

∑n+1
i=1 τi = 1 and

∑n+1
i=1 τixi = x0, then

xi ∈ B̄(x0; δ). Now consider F (x) = f(x) − Df (x0) · (x − x0). Since for any affine
function � ∈ Aff(Rn), we have Cl

λ(f + �) = Cl
λ(f)+ �, it follows that, for sufficiently

large λ > 0, we have

F (x0) − Cl
λ(F )(x0) =

n+1∑
i=1

τi(f(x0) − f(xi) + Df (x0) · (xi − x0) − λ|xi − x0|2)

=
n+1∑
i=1

τi

(
−
∫ 1

0

(Df (x0 + t(xi − x0))

− Df (x0) · (xi − x0))dt − λ|xi − x0|2
)

≤
n+1∑
i=1

τi(L|xi − x0|α−1|xi − x0| − λ|xi − x0|2)

=
n+1∑
i=1

τi(L|xi − x0|α − λ|xi − x0|2)

≤ 1
λ

α
2−α

L
2

2−α

(α

2

) α
2−α

(
1 − α

2

)
, (7.2)

where the last inequality follows from the fact that the mapping s �→ Lsα − λs2

attains a maximum value of λ− α
2−α L

2
2−α (α/2)

α
2−α (1 − α/2) on (0,∞) at s =

(Lα/2λ)
1

2−α .

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

A
nt

on
io

 O
rl

an
do

 o
n 

11
/3

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 14, 2014 13:58 WSPC/103-M3AS 1550018

Compensated convexity and geometric singularities 39

Part (ii): In this case, note first that if f is differentiable at x0, then for any ε > 0,
there is a δ > 0 such that

|f(x) − f(x0) − Df (x0) · (x − x0)|
|x − x0| ≤ ε, (7.3)

whenever x ∈ B̄(x0; δ). Again, by the locality property (see Theorem 2.4 of Ref. 48)
for compensated convex transforms, there exists Λ > 0 such that if λ > Λ, then

Cl
λ(f)(x0) = co[f + λ|(·) − x0|2](x0) =

n+1∑
i=1

τi(f(xi) + λ|xi − x0|2), (7.4)

for xi ∈ R
n, τi ≥ 0, i = 1, 2, . . . , n + 1,

∑n+1
i=1 τi = 1 and

∑n+1
i=1 τixi = x0, then

xi ∈ B̄(x0; δ). Thus

f(x0) − Cl
λ(f)(x0) =

n+1∑
i=1

τi(f(x0) − f(xi) − λ|xi − x0|2)

= −
n+1∑
i=1

τi((f(xi) − f(x0) − Df (x0) · (xi − x0)) + λ|xi − x0|2)

≤
n+1∑
i=1

τi(ε|xi − x0| − λ|xi − x0|2) ≤ ε2

4λ
. (7.5)

Here we have used the fact that
∑n+1

i=1 τiDf (x0) ·(xi−x0) = 0. As in (i), we have
also used the fact that the maximum of the function εt − λt2 for t ≥ 0 is ε2/(4λ).

Remark 7.1. Note that when 0 < α ≤ 1, (i) can be proved alternatively by first
showing a corresponding estimate for Mλ(f), developing ideas from Chap. 3 of
Ref. 10, and then using the ordering property (2.5). On the other hand, however,
(ii) and the case of 1 < α < 2 in (i) seem easier to establish directly for the lower
transform Cl

λ(f), because Cl
λ(f) enjoys the property that Cl

λ(f + �) = Cl
λ(f) + �

for any affine function � ∈ Aff(Rn) whereas Mλ(f) does not, and, in fact, we are
not aware of corresponding estimates for the Moreau envelope Mλ(f).

Proof of Theorem 2.12. Part (iii): This is a direct consequence of the charac-
terization (1.6) of the lower transform as a critical mixed Moreau envelope and the
proof of Theorem 3.5.8 of Ref. 10.

Proof of Theorem 2.15. Without loss of generality we may assume that x = 0.
Since f is bounded and continuous, the function y �→ f(y)+λ|y|2 is continuous and
coercive. Therefore, by Proposition 2.1,

Cl
λ(f)(0) = co[f + λ| · |2](0) =

n+1∑
i=1

λi(f(xi) + λ|xi|2), (7.6)
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for some λi ≥ 0 and xi ∈ R
n, i = 1, 2, . . . , n + 1 such that

∑n+1
i=1 λi = 1 and∑n+1

i=1 λixi = 0. Now, on one hand, we have the upper bound

Cl
λ(f)(0) ≤ f(0), (7.7)

whereas on the other hand,

Cl
λ(f)(0) =

n+1∑
i=1

λi(f(xi) + λ|xi|2)

(by (2.15)) ≥ f(0) −
n+1∑
i=1

λiωf (|xi|) + λ

n+1∑
i=1

λi|xi|2

(by (2.18) and concavity of ωc
f) ≥ f(0) − ωc

f

(
n+1∑
i=1

λi|xi|
)

+ λ

n+1∑
i=1

λi|xi|2

(by (2.17)) ≥ f(0) − a

n+1∑
i=1

λi|xi| − b + λ

n+1∑
i=1

λi|xi|2

= f(0) + λ

n+1∑
i=1

λi

(
|xi| − a

2λ

)2
− a2

4λ
− b.

(7.8)

By comparing (7.7) and (7.8), we find

n+1∑
i=1

λi

(
|xi| − a

2λ

)2
≤ a2

4λ2
+

b

λ
. (7.9)

Now using the Cauchy–Schwarz inequality, it follows that(
n+1∑
i=1

λi|xi|
)

− a

2λ
=

n+1∑
i=1

λi

(
|xi| − a

2λ

)
≤

n+1∑
i=1

λi

∣∣∣|xi| − a

2λ

∣∣∣

=
n+1∑
i=1

λ
1/2
i λ

1/2
i

∣∣∣|xi| − a

2λ

∣∣∣

≤
(

n+1∑
i=1

λi

)1/2(n+1∑
i=1

λi

(
|xi| − a

2λ

)2)1/2

≤
(

a2

4λ2
+

b

λ

)1/2

≤ a

2λ
+

√
b

λ
,

so that
n+1∑
i=1

λi|xi| ≤ a

λ
+

√
b

λ
. (7.10)
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Since ωc
f is non-decreasing, from (7.10) and the first part of (7.8) we have

Cl
λ(f)(0) ≥ f(0) − ωc

f

(
n+1∑
i=1

λi|xi|
)

+ λ

n+1∑
i=1

λi|xi|2

≥ f(0) − ωc
f

(
a

λ
+

√
b

λ

)
, (7.11)

which concludes the proof. The proof for the upper transform follows similar argu-
ments.

Proof of Proposition 3.1. By definition of f(x) as pointwise supremum of the
lower semicontinuous functions that are lower than f , we have f(x) ≤ f(x) for all
x ∈ R

n, hence Cl
λ(f)(x) ≤ Cl

λ(f)(x). Next we prove the opposite inequality. By
definition,22,32

co[f + λ| · |2](x) = sup{�(x) : �(y) ≤ f(y) + λ|y|2
for all y ∈ R

n, � ∈ Aff(Rn)}. (7.12)

Now for every � ∈ Aff(Rn) such that �(y) ≤ f(y) + λ|y|2 for all y ∈ R
n, it is

easy to see that �(y) ≤ f(y) + λ|y|2 for all y ∈ R
n. Hence

co[f + λ| · |2](x) ≤ co[f + λ| · |2](x) for all x ∈ R
n, (7.13)

and therefore

Cl
λ(f)(x) ≤ Cl

λ(f)(x), (7.14)

thus, Cl
λ(f) = Cl

λ(f). By passing to the limit for λ → ∞, and recalling Theorem 2.3
of Ref. 48, given that f is lower semicontinuous, we obtain that for each x ∈ R

n

lim
λ→∞

Cl
λ(f)(x) = lim

λ→∞
Cl

λ(f)(x) = f(x), (7.15)

which concludes the proof for the lower transform. The proof for the upper trans-
form follows similar arguments.

We report next the proof of Lemma 3.9, whose arguments are then used also in
the proofs of Theorems 3.4 and 3.10.

Proof of Lemma 3.9. Since E is a closed set, −χE is lower semicontinuous and so
is fλ, hence from Proposition 2.1, there exist (τi, xi) ∈ R ×R

n for i = 1, . . . , n + 1,
with

∑
τixi = 0,

∑
τi = 1 and τi ≥ 0, and a hyperplane �, say �(x) = a · x + b with

some a ∈ R
n and b ∈ R, such that

�(x) ≤ fλ(x) for x ∈ R
n and �(xi) = fλ(xi) for i = 1, . . . , n + 1. (7.16)
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From (7.16) it follows that

�(xi) = co[fλ](xi) for i = 1, . . . , n + 1, (7.17)

and given that co[fλ](0) =
∑n+1

i=1 τifλ(xi), then from (7.16), we have co[fλ](0) =
�(0), that is,

co[fλ](0) = b. (7.18)

Since 0 ≤ χE(x) ≤ 1 for all x ∈ R
n, then

λ|x|2 − 1 ≤ co[fλ](x) ≤ fλ(x) ≤ λ|x|2 for all x ∈ R
n, (7.19)

where we have used the fact that co fλ is the pointwise supremum of the convex
functions below fλ and λ|x|2 − 1 ≤ fλ(x) for all x ∈ R

n. Hence, for x = 0 and by
accounting for (7.18) we obtain

−1 ≤ b ≤ 0. (7.20)

From (7.16), at the supporting points xi we have

λ|xi|2 − χE(xi) = a · xi + b for i = 1, . . . , n + 1, (7.21)

thus,

λ|xi|2 ≤ |a| · |xi| + 1 for i = 1, . . . , n + 1, (7.22)

where we have used the fact that χE(x) + b ≤ 1 for all x ∈ R
n and the Cauchy–

Schwarz inequality. To obtain now an estimate on |a|, we note that since �(x) ≤
fλ(x) for all x ∈ R

n, in particular, then, for x = a/(2λ) we deduce

|a| ≤ 2
√

λ. (7.23)

By combining (7.22) and (7.23) we obtain, therefore, that there must hold

λ|xi|2 − 2
√

λ|xi| − 1 ≤ 0 for i = 1, . . . , n + 1, (7.24)

hence,

|xi| ≤ 1 +
√

2√
λ

for i = 1, . . . , n + 1, (7.25)

which concludes the proof.

Proof of Theorem 3.2. Part (i): Since obviously E ∩Ec = ∅ and E ∪Ec = R
n,

we have χE(x) + χEc(x) = 1 for x ∈ R
n. Thus

Cu
λ(χE)(x) = Cu

λ (1 − χEc)(x) = λ|x|2 − co[λ| · |2 − 1 + χEc ](x)

= λ|x|2 + 1 − co[λ| · |2 + χEc ](x) = 1 − Cl
λ(χEc)(x). (7.26)

Part (ii): This is a direct consequence of Proposition 3.1 as χ̄E = χĒ .
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Part (iii): If Ec = R
n, then by (ii) and the definition (1.3) of Cu

λ , we have

Cu
λ(χEc)(x) = Cu

λ (χEc)(x) = Cu
λ (χRn)(x) = 1. (7.27)

By (i), we have Cl
λ(χE)(x) = 1−Cu

λ(χEc)(x) = 1− 1 = 0, which completes the
proof.

Proof of Theorem 3.4. Note first that by Theorem 3.2(ii), it suffices to prove
the result when E = E. We use the characterization (1.5) with f(x) = χE(x). If
x ∈ E, then

1 = f(x) ≤ Cu
λ(f)(x) ≤ λ|y − x|2 + 1|y=x = 1,

so that Cu
λ (f)(x) = 1. If x ∈ (E1/

√
λ)c, then for each y ∈ E, |x − y|2 ≥ 1

λ , so that
λ|x − y|2 ≥ 1 = f(y). Hence

0 ≤ Cu
λ (f(x)) ≤ λ|x − y|2|y=x = 0,

and thus Cu
λ(f)(x) = 0. Finally, take x ∈ (E1/

√
λ)\E. Then there exist x̂ ∈ E

with |x − x̂| < 1√
λ

and ŷ ∈ (E1/
√

λ)c with |x − ŷ| < 1√
λ
. Since, as above, we have

λ|x − ŷ| ≥ f(y) for all y ∈ R
n, it follows that

Cu
λ(χE)(x) ≤ λ|x − ŷ|2 < 1.

On the other hand, if Cu
λ (χE)(x) = 0, then it follows from (1.5) that there exist

xk → x and ck → 0 such that χE(y) ≤ λ|y − xk|2 + ck for all y ∈ R
n, and hence

χE(y) ≤ λ|x − y|2 for all y ∈ R
n, so that

1 = χE(x̂) ≤ λ|x − x̂|2 < 1,

which is impossible. So Cu
λ (χE)(x) > 0.

Proof of Proposition 3.5. Part (i): For any x ∈ ∂E1/
√

λ, the definition of E1/
√

λ

gives that B(x; 1/
√

λ) ∩ E = ∅ and thus E ⊆ Bc(x; 1/
√

λ), so that χE(y) ≤
χBc(x;1/

√
λ)(y) for all y ∈ R

n. Then applying the upper transform with any λ > 0,
we have

Cu
λ (χE)(y) ≤ Cu

λ(χBc(x;1/
√

λ))(y) for all y ∈ R
n. (7.28)

In particular, for y = x ∈ ∂E1/
√

λ, since x ∈ ∂Bc(x; 1/
√

λ), then applying
Theorem 3.4 to Bc(x; 1/

√
λ) yields

Cu
λ (χBc(x;1/

√
λ))(x) = 0. (7.29)

Part (ii): First note that χBc(x;1/
√

λ)(y) ≤ λ|y − x|2 for all y ∈ R
n. So the char-

acterization (1.5) yields that Cu
λ (χBc(x;1/

√
λ))(y) ≤ λ|y − x|2 for all y ∈ R

n, and
hence

0 ≤ Cu
λ (χE)(y) − Cu

λ (χE)(y)
|y − x| ≤ λ|y − x|,

which, for y → x, shows that Cu
λ(χE)(y) is differentiable at x and DCu

λ(χE)(x) = 0.
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Proof of Theorem 3.7. Part (i): Without loss of generality, we can assume x1 = 0
and take E := Ω. Let us then consider the function λ|y|2 −χE(y) and define �(y) ≡ 0
as the proposed supporting affine function. First we show that

fλ(y) := λ|y|2 − χE(y) ≥ �(y) = 0 for all y ∈ R
n. (7.30)

For this purpose, we distinguish the following two cases.

Case (a): y ∈ B(x1; δ). In this case χE(y) = 0, hence

fλ(y) = λ|y|2 − χE(y) = λ|y|2 ≥ �(y) = 0. (7.31)

Case (b): y /∈ B(x1; δ). In this case λ|y|2 ≥ λδ2 ≥ 1, hence

fλ(y) = λ|y|2 − χE(y) ≥ λδ2 − 1 ≥ �(y) = 0. (7.32)

Next we have fλ(0) = 0 = �(0) and, since x ∈ E,

fλ(x) = λ|x|2 − 1 = λ(1/
√

λ)2 − 1 = 0 = �(x). (7.33)

Therefore co[fλ](y) = �(y) = 0 for y ∈ [0, x], hence Cu
λ (χE)(y) = λ|y|2 for

y ∈ [0, x]. For every point y ∈ [x0, x1], we have y /∈ E1
√

λ, thus Cu
λ(χE)(y) = 0.

Part (ii): By using the identity Cu
λ (χE)+ Cl

λ(χEc) ≡ 1, we can then apply the same
arguments as in Part (i) and conclude the proof.

Proof of Theorem 3.8. We fix x0 ∈ R
n and apply Taylor’s expansion to g at x0.

We have

g(x) = g(x0) + Dg(x0) · (x − x0)

+
∫ 1

0

[Dg(x0 + t(x − x0)) − Dg(x0)] · (x − x0)dt. (7.34)

By our assumption on g, we have the following estimates:

g(x0) + Dg(x0) · (x − x0) − λ0

2
|x − x0|2 ≤ g(x)

≤ g(x0) + Dg(x0) · (x − x0) +
λ0

2
|x − x0|2.

(7.35)

If we let �(x) = g(x0) + Dg(x0) · (x− x0), clearly � is affine and �(x0) = g(x0), thus
we obtain

Cl
λ0
2

(g)(x0) = g(x0) = Cu
λ0
2

(g)(x0). (7.36)

By applying then (2.7) once to f and g, and once to f + g and to −g, and by
accounting for (7.36), we easily conclude with (3.6).
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Proof of Theorem 3.10. Part (i): We prove our result for the lower transform;
the proof for the upper transform is similar. Recall from (1.6) that Cl

λ(f)(x) =
Mλ(Mλ(f))(x). If y, z ∈ R

n are such that |y − z|2 > 2M
λ , then

f(z) + λ|y − z|2 > −M + 2M = M ≥ f(y),

and hence

Mλ(f)(y) = inf{f(z) + λ|y − z|2, z ∈ R
n}

= inf

{
f(z) + λ|y − z|2, z ∈ B

(
y;

√
2M

λ

)}
.

Moreover, since |Mλ(f)(x)| ≤ M , it follows that for x, y ∈ R
n with |x − y|2 > 2M

λ ,
we have

Mλ(f)(y) − λ|x − y|2 < M − 2M = −M ≤ Mλ(f)(x),

so that

Mλ(Mλ(f))(x) = sup{Mλ(f)(y) − λ|x − y|2, y ∈ R
n}

= sup

{
Mλ(f)(y) − λ|x − y|2, y ∈ B

(
x;

√
2M

λ

)}

= sup

{
inf

{
f(z) + λ|y − z|2, z ∈ B

(
y;

√
2M

λ

)}

−λ|x − y|2, y ∈ B

(
x;

√
2M

λ

)}
.

Thus Cl
λ(f)(x)=Mλ(Mλ(f))(x) depends only on points in the ball B(x; 2

√
2M
λ ).

Part (ii): By Proposition 3.1, Cl
λ(f) = Cl

λ(f) hence, the assumption of this part of
the theorem reads also as Cl

λ(f)(x0) < f(x0) and, by accounting for (2.8), this can
also be expressed as

Cl
λ(f)(x0) = co[λ|(·) − x0|2 + f ](x0) < f(x0). (7.37)

Now, let fλ = λ|x − x0|2 + f(x) and observe that fλ is lower semicontinuous
and coercive, hence, for Proposition 2.1, there are xi ∈ R

n with xi �= x0 because
of (7.37), which belong to B(x0; Rλ,M ) in virtue of Part (i) of this theorem, and λi ≥
0 for i = 1, . . . , n +1 satisfying

∑n+1
i=1 λi = 1,

∑n+1
i=1 λixi = x0, and a supporting

hyperplane �(x) = a · x + b such that

�(xi) = fλ(xi) for i = 1, . . . , n + 1, and �(x) ≤ fλ(x) for all x ∈ R
n.

(7.38)

Hence, we have

co[fλ](xi) = �(xi) for i = 1, . . . , n + 1,
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that is, by accounting for (7.38),

co[λ|(·) − x0|2 + f ](xi) = �(xi) = fλ(xi) = λ|xi − x0|2 + f(xi)

for i = 1, . . . , n + 1. (7.39)

Since the convex envelope is invariant with respect to affine functions, we observe
that

co[λ|(·) − xi + xi − x0|2 + f ](x) = co[λ|(·) − xi|2 + f ](x) + λ|xi − x0|2

+ 2λ(xi − x0) · (x − xi),

therefore, for x = xi, we obtain

co[λ|(·) − x0|2 + f ](xi) = co[λ|(·) − xi|2 + f ](xi) + λ|xi − x0|2. (7.40)

By comparing (7.39) and (7.40) we have for i = 1, . . . , n + 1,

co[λ|(·) − x0|2 + f ](xi) = co[λ|(·) − xi|2 + f ](xi) + λ|xi − x0|2

= fλ(xi) = λ|xi − x0|2 + f(xi),

that is,

Cu
λ(f)(xi) = co[λ|(·) − xi|2 + f ](xi) = f(xi) for i = 1, . . . , n + 1,

which concludes the proof.

Proof of Theorem 3.13. Part (i): We prove the case for the lower transform
Cl

λ(f)(x). The proof for the upper transform is similar. Since |f(x)| ≤ M for x ∈ R
n,

we see that |Cl
λ(f)(x)| ≤ M for x ∈ R

n. Fix x0 ∈ R
n and let r > 0 to be determined,

we have

Lip(Cl
λ(f), B(x0; r)) ≤ Lip(co[f + λ|(·) − x0|2], B(x0; r))

+ Lip(co[λ|(·) − x0|2], B(x0; r)).

By Proposition 2.4, we have

Lip(co[f + λ|(·) − x0|2], B(x0; r)) ≤ osc(co[f + λ|(·) − x0|2], B(x0; 2r))
r

≤ 2M + 4λr2

r
,

given that

max
x∈B(x0;2r)

{co[f + λ|(·) − x0|2](x)} ≤ M + 4λr2,

min
x∈B(x0;2r)

{co[f + λ|(·) − x0|2](x)} ≥ −M.
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Moreover,

Lip(co[λ|(·) − x0|2], B(x0; r)) ≤ 2λr,

and thus

Lip(Cl
λ(f), B(x0; r)) ≤ 2M

r
+

6λ

r
.

If |x − x0| ≥ r, as |Cl
λ(f)(x)| is bounded above by M , we have

|Cl
λ(f)(x) − Cl

λ(f)(x0)|
|x − x0| ≤ 2M

r
.

So if we take r =
√

M/(3λ), we then see that for any x ∈ R
n,

|Cl
λ(f)(x) − Cl

λ(f)(x0)| ≤ 4
√

3Mλ|x − x0| ≤ 8
√

Mλ|x − x0|.

Part (ii): Since both Cl
λ(f) and Cu

λ (f) are Lipschitz functions with Lipschitz con-
stants bounded above by 8

√
Mλ, by Theorem 3.12 the Lipschitz constants for

Cu
τ (Cl

λ(f)) and Cl
τ (Cu

λ (f)) are then bounded by 8
√

Mλ, and the inequalities in
(3.11) follow from Theorem 2.12(iii).

Proof of Proposition 4.3. Part (i): We only consider Rλ(f), as the other case
is similar. For given x ∈ R

n and � ∈ Aff(Rn), it follows from Proposition 2.10 that

Cl
λ(f + �)(x) = Cl

λ(f)(x) + �(x), (7.41)

and by Definition 4.1 of Rλ(f) we obtain

Rλ(f + �)(x) = f(x) + �(x) − (Cl
λ(f)(x) + �(x))

= f(x) − Cl
λ(f)(x) = Rλ(f)(x), (7.42)

which concludes the proof.

Part (ii): For given x ∈ R
n and α > 0,

co[αf + λ| · |2](x)

= sup{r(x) : r(y) ≤ αf(y) + λ|y|2 for all y ∈ R
n and r ∈ Aff(Rn)}

= sup
{

α�(x) : α�(y) ≤ α

(
f(y) +

λ

α
|y|2
)

for all y ∈ R
n and � ∈ Aff(Rn)

}

= α sup
{

�(x) : �(y) ≤ f(y) +
λ

α
|y|2 for all y ∈ R

n and � ∈ Aff(Rn)
}

= α co

[
f +

λ

α
| · |2

]
(x). (7.43)
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Thus

Cl
λ(αf)(x) = α

(
co

[
f +

λ

α
| · |2

]
(x) − λ

α
|x|2
)

, (7.44)

so that

Rλ(αf)(x) = αf(x) − α

(
co

[
f +

λ

α
| · |2

]
(x) − λ

α
|x|2
)

= αRλ/α(f)(x), (7.45)

which concludes the proof.

Proof of Proposition 4.4. Part (i): By definition

Rλ(f)(x) = f(x) − Cl
λ(f)(x) = f(x) + λ|x|2 − co[λ| · |2 − (−f)](x)

= −(−f(x) − Cu
λ (−f)(x)) = −Vλ(−f)(x). (7.46)

The proof of the other equality is similar.

Part (ii): We first prove that Rλ+τ (f) ≤ Rτ (Rλ(f)). From (2.7), we have

Cl
λ+τ (f) = Cl

τ (f − Cl
λ(f)) + Cl

λ(Cl
λ(f)), (7.47)

and since Cl
λ(Cl

λ(f)) = Cl
λ(f), we conclude that

Rτ (Rλ(f)) = (f − Cl
τ (f)) − Cl

λ(f)) + Cl
τ (f − Cl

λ(f))

≥ f − Cl
λ+τ (f) = Rλ+τ (f). (7.48)

To show that Rτ (Rλ(f))(x) ≤ Rλ(f)(x), just observe that for any λ > 0, since
Rλ(f)(x) ≥ 0, then from (2.6), we have for any τ > 0 that Cl

τ (Rλ(f))(x) ≥ 0, hence

Rλ(f)(x) − Cl
τ (Rλ(f))(x) ≤ Rλ(f)(x), (7.49)

which concludes the proof.

Proof of Theorem 4.6. The statements are direct consequences of Theorem 3.8.

Proof of Theorem 4.8. Part (i): Observe first that given a regular open set Ω
of R

n and Γ ⊆ ∂Ω, then it is χ
Ω∪Γ

= χΩ, where we recall that χ
Ω∪Γ

is the lower
semicontinuous envelope of χΩ∪Γ. By Proposition 3.1 it thus follows that

Cl
λ(χΩ∪Γ) = Cl

λ(χ
Ω∪Γ

). (7.50)
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By recalling the above, we have that χ
Ω∪Γ

= χΩ, and hence by Theorem 3.2 we
can conclude that

Cl
λ(χ

Ω∪Γ
) = 1 − Cu

λ (χΩc). (7.51)

Now, by Theorem 3.4 we have the following characterization for Cu
λ(χΩc):

Cu
λ (χΩc)(x)




= 1 if x ∈ Ωc,

= 0 if x ∈ Ω\(Ωc)1
√

λ,

∈ (0, 1) if x ∈ (Ωc)1
√

λ\Ωc,

(7.52)

and given that

Rλ(χΩ∪Γ) = χΩ∪Γ − Cl
λ(χΩ∪Γ), (7.53)

taking into account (7.50), (7.51) and (7.53) we can conclude that (4.4) holds. The
continuity claim in R

n\∂Ω also follows as χΩ(x) is continuous at any x ∈ R
n\∂Ω.

The claims for Vλ(χΩ∪Γ) are proved with similar arguments.

Part (ii): This also follows from Theorems 3.2 and 3.4. The continuity claim is a
consequence of the fact that both the upper and the lower transforms are continuous
in R

n. Finally, we establish the limit property. We have, on ∂Ω, Eλ(χΩ)(x) = 1 for
all λ > 0 and on [(∂Ω)1/

√
λ]c, Eλ(χΩ)(x) = 0. Therefore for any given x /∈ ∂Ω, we

have x /∈ [(∂Ω)1/
√

λ]c when λ > 0 is large enough. Therefore limλ→+∞ Eλ(χΩ)(x) =
χ∂Ω(x) for each fixed x ∈ R

n.

Proof of Proposition 4.9. The bound (4.8) is a direct consequence of Theo-
rem 2.12. From (4.8) and the observation that for λ > 1, and 0 ≤ β < α < 2,

0 ≤ lim inf
λ→+∞

λβ/(2−β)Rλf(x0)

≤ lim sup
λ→+∞

λα/(2−α)Rλf(x0) lim
λ→+∞

(1/λ)
α−β

(2−α)(2−β), (7.54)

it follows that lim infλ→+∞ λβ/(2−β)Rλf(x0) = 0.

Proof of Proposition 4.10. The proof follows the arguments used to prove
Proposition 4.9.

Proof of Proposition 5.2. The proof follows from the definition (5.2) of D2
λ(x, E).

Proof of Proposition 5.3. Since by definition (5.2), χE(x) ≤ D2
λ(x; E) for x ∈

R
n, we have, by (2.4), that

0 ≤ Cu
λ (χE)(x) ≤ Cu

λ (D2
λ(·; E))(x), x ∈ R

n. (7.55)
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To establish the opposite inequality, let p(x) := λ|x − x0|2 + c be such that p(x) ≥
χE(x) for all x ∈ R

n and p(x̂) = 1 = χE(x̂) for some x̂ ∈ E. It will suffice to show
that

D2
λ(x; E) ≤ p(x) for all x ∈ R

n, (7.56)

since the characterization (1.5) will then yield that Cu
λ(D2

λ(·; E))(x) ≤ Cu
λ(χE)(x),

x ∈ R
n. Define R :=

√
1−c
λ and note first that E ⊂ B(x0; R)c, since if x ∈ E, then

1 ≤ λ|x−x0|2 + c, and hence x ∈ B(x0; R)c. Hence, by Proposition 5.2(i), we have

D2(x; E) ≤ D2
λ(x; B(x0; R)c) for all x ∈ R

n. (7.57)

Now if x ∈ B(x0; R)c, then p(x) ≥ 1 ≥ D2
λ(x; E), so (7.56) clearly holds. On

the other hand, if x ∈ B(x0; R), then Dλ(x; B(x0; R)c) = max{0, 1 − √
λdist(x,

B(x0; R)c)} = 1 −√
λ(R − |x − x0|), and hence

D2
λ(x; B(x0; R)c) = (1 −

√
λ(R − |x − x0|))2

= λ|x − x0|2 + 2
√

λ|x − x0|(1 −√
1 − c) + (1 −√

1 − c)2

< λ|x − x0|2 + 2
√

1 − c(1 −√
1 − c) + (1 −√

1 − c)2

= λ|x − x0|2 + c = p(x),

which, together with (7.57), yields that (7.56) holds in this case also.

Proof of Lemma 5.4. We have

|D2
λ(x; E) − D2

λ(x; F )| = |Dλ(x; E) + Dλ(x; F )||Dλ(x; E) − Dλ(x; F )|
≤ 2|Dλ(x; E) − Dλ(x; F )|

= 2
∣∣∣∣12(1 −

√
λdist(x; E) + |1 −

√
λdist(x; E)|)

− 1
2
(1 −

√
λdist(x; F ) + |1 −

√
λdist(x; F ))

∣∣∣∣
≤ 2

√
λ|dist(x; E) − dist(x; F )| ≤ 2

√
λ distH(E, F ),

where we used 0 ≤ Dλ(x; E) ≤ 1, 0 ≤ Dλ(x; F ) ≤ 1 and max{0, a} = (a + |a|)/2
for a ∈ R.

Proof of Theorem 5.5. By Proposition 5.3, we only need to show that
Cu

λ (D2
λ(·; E))(x) is Hausdorff continuous. By Lemma 5.4 we have

D2
λ(x; F ) − 2

√
λdistH(E, F ) ≤ D2

λ(x; E) ≤ D2
λ(x; F ) + 2

√
λdistH(E, F ).
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Taking the upper transform in the above inequalities and using the ordered property
for the upper transforms, we obtain

Cu
λ(D2

λ(·; F ) − 2
√

λ distH(E, F )) ≤ Cu
λ (D2

λ(·; E))

≤ Cu
λ (D2

λ(·; F ) + 2
√

λdistH(E, F )).

By the property co[f + �] = co[f ]+ � for the convex envelope when � is an affine
function, we have

Cu
λ(D2

λ(·; F )) − 2
√

λdistH(E, F ) ≤ Cu
λ (D2

λ(·; E))

≤ Cu
λ (D2

λ(·; F )) + 2
√

λ distH(E, F ).

The result follows.

Proof of Corollary 5.7. Since Cu
λ (χE) and Cu

λ (χF ) are bounded functions, it
follows immediately from Theorem 5.5 and the fact that

|Cl
λ(χE)(x) − Cl

λ(χF )(x)| ≤ sup
y∈Rn

|χE(y) − χF (y)| (for all x ∈ R
n), (7.58)

that for all x ∈ R
n,

|Cl
τ (Cu

λ (χE))(x) − Cl
τ (Cu

λ (χF ))(x)| ≤ sup
y∈Rn

|Cu
λ (χE)(y) − Cu

λ (χE)(y)|

≤ 2
√

λdistH(E, F ),

as required.

Proof of Theorem 5.9. The proof follows from the definition (4.1) of ridge trans-
form, the application of the triangle inequality, of Theorem 5.5 and of Corollary 5.7.

Proof of Lemma 6.2. The lemma can be proved by direct calculation using
Proposition 2.3.

Proof of Theorem 6.4. By comparing the expressions of the transforms for
χB̄(0;r) in Lemma 6.2 with those for χK− in Example 6.1, it is easy to see that

Cu
λ (χB̄(0;r))(x) = Cu

λ(χK−)(|x| − r),

Cl
τ (Cu

λ (χB̄(0;r)))(x) = Cl
τ (Cu

λ (χK−))(|x| − r),

SRλ,τ (χB̄(0;r))(x) = SRλ,τ (χK−)(|x| − r).

(7.59)

Now let (x, y) ∈ R
n with x ∈ R and y ∈ R

n−1, and B̄((−r, 0); r) be the closed
ball centered at (−r, 0) ∈ R×R

n−1. If r ≥ max{1/
√

λ, β}, then it follows from (7.59)
that along the line segment [−r, r] × {0} ⊂ R

n, we have

Cu
λ (χB̄((−r,0);r))(t, 0) = Cu

λ(χK−)(t),

Cl
τ (Cu

λ (χB̄((−r,0);r)))(t, 0) = Cl
τ (Cu

λ (χK−))(t),

SRλ,τ (χB((−r,0);r))(t, 0) = SRλ,τ (χK−)(t),

(7.60)
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for t ∈ [−r, r]. The proof then follows from (7.60), a direct application of (2.5) and
Lemma 6.2. We leave the details to interested readers.

Proof of Proposition 6.5. It is well known (see, for example, Lemma 2.2 of
Ref. 1) that a C1,1 point x0 ∈ ∂Ω is an r-regular point for r sufficiently small. Let
x′ ∈ Ω and r > 0 be such that B(x′; r) ⊂ Ω and x0 ∈ ∂Ω. Let x′′ = x0 − (x′ − x0)
be the opposite point of x′ with respect to x0 and consider the open ball B(x′′; r).
Now consider the closed set K := Ω̄\B(x′′; r) ⊂ Ω̄. Clearly x0 is now both an
interior and exterior regular point of K and x0 ∈ K. Furthermore, χK ≤ χΩ̄. By
Theorem 3.4(i), we have Cu

λ (χΩ) = Cu
λ(χΩ̄), whereas from (2.5) we have Cu

λ (χK) ≤
Cu

λ (χΩ̄) and Cl
τ (Cu

λ (χK)) ≤ Cl
τ (Cu

λ (χΩ̄)). Note that since x0 ∈ K and x0 ∈ Ω̄, we
have Cu

λ(χK)(x0) = Cu
λ(χΩ̄)(x0) = 1, hence

SRλ,τ (χΩ)(x0) = SRλ,τ (χΩ̄)(x0) ≤ SRλ,τ (χK)(x0) =
(
√

λ + τ −√
τ )2

λ
, (7.61)

due to Theorem 6.4. This completes the proof.

Proof of Proposition 6.6. By Theorem 3.4(ii), Cu
λ(χΩ)(x) = 0 if dist(x; Ω̄) ≥

1/
√

λ and Cu
λ (χΩ)(x) = 1 if x ∈ Ω̄. To calculate Cl

τ (Cu
λ (χΩ))(x0) for x0 satisfying

dist(x0; ∂Ω) ≥ 1/
√

λ, we first observe that 0 is the minimum value of Cu
λ (χΩ)(x) so

that Cl
τ (Cu

λ (χΩ))(x0) = 0 if dist(x0; Ω̄) ≥ 1/
√

λ. If x0 ∈ Ω and dist(x0; ∂Ω) ≥ 1/
√

λ,
we consider the following function: x → λ|x − x0|2 + Cu

λ (χΩ)(x), and its convex
envelope at x0. We take then the affine function �(x) ≡ 1 and observe that for
|x − x0| ≥ 1/

√
λ, we have

1 ≡ �(x) ≤ λ|x − x0|2 ≤ λ|x − x0|2 + Cu
λ(χΩ)(x), (7.62)

whereas for |x − x0| ≤ 1/
√

λ, we have Cu
λ (χΩ)(x) = 1 so that

1 ≡ �(x) ≤ λ|x − x0|2 + 1 = λ|x − x0|2 + Cu
λ (χΩ)(x). (7.63)

Thus �(x) ≡ 1 is a supporting affine function for x → λ|x − x0|2 + Cu
λ (χΩ)(x) and

this implies that Cl
τ (Cu

λ (χΩ))(x0) = 1, which concludes the proof.

Proof of Proposition 6.10. By a simple translation we may assume the ball is
centered at 0, so that B(0; r) ⊂ Ω and x0 ∈ ∂B(0; r). By (6.11) in Lemma 6.2
and (2.5), we have

Cu
λ (χB̄(0;r))(x) ≤ Cu

λ (χΩ̄)(x), x ∈ R
n, and

Cu
λ (χB̄(0;r))(x0) = Cu

λ (χΩ̄)(x0) = 1,
(7.64)

so that

Cl
τ (Cu

λ (χB̄r(0)))(x0) ≤ Cl
τ (Cu

λ (χΩ̄))(x0), (7.65)

hence

SRλ,τ (χΩ̄)(x0) ≤ SRλ,τ (χB̄r(0))(x0) = µ1(λ, τ). (7.66)

The last equality follows from (6.11) as |x0| = r, and this completes the proof.
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Proof of Lemma 6.13. The value of the limit (6.26) can be evaluated as a direct
consequence of Example 6.11.
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