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Abstract

Nanosensors are simple engineering devices designed to detect and convey
informations about nanoparticles and biomolecules. The nanosized mass
sensors are based on the fact that the resonant frequency is sensitive to the
resonator and the attached mass. The change of the attached mass on the
resonator causes the resonant frequency to deviate from its original value.
The key challenge in mass detection is in quantifying the changes in the
resonant frequencies due to the added masses.

The present paper deals with the free vibration analysis of single-walled
carbon nanotube with attached distributed mass, located in a generic po-
sition. According to the nonlocal Euler-Bernoulli beam theory a system of
three equations of motion, of a single-walled carbon nanotube with a added
mass, is derived. Using an approximate method, generalized nondimensional
calibration constants are derived for an explicit relationship between the
added mass, the nonlocal parameter and the frequency shift. Numerical re-
sults for different boundary conditions, nonlocal coefficient are performed in
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order to evaluate the effect of the added mass.

Keywords: Nonlocal elasticity, Frequency analysis, Nanosensors,
biomolecules, boundary conditions

1. Introduction

Carbon nanotubes (CNTs) constitute a prominent example of nanomate-
rials and nanostructures which have stimulated several studies in nanotech-
nology applications and nano-scale engineering materials. Their discovery,
since the publication of Iijima’s paper [1] in 1991, led to an explosion of
interest within the scientific community and has inspired intensive studies
in a variety of fields of engineering due to their excellent physical proper-
ties, as revealed from both theoretical and experimental studies available in
the literature, ([2]-[5]). These remarkable properties of carbon nanotubes
have been investigated for devices such as scanning probes, nanoelectronic
devices, nanoscale sensors, biomedical devices, and others. As a result, pro-
gressive research activities regarding CNTs have been ongoing in recent years
and there is a wide range of applications, as nanooscillators, nanoelectronics,
nanocomposites and nanosensors, in which the vibrational characteristics of
CNTs are significant. Moreover, such features make CNTs promising can-
didates for resolution mass sensor and several studies have investigated the
use of CNTs as a mass sensor, (see for example ([6]-[16]).

From a theoretical point of view, the nano-scale of these structures sug-
gests an atomistic model, but this approach turns out to be very expensive,
so that continuum mechanical models have been effectively used to study
mechanical behaviors of CNTs. For example, the classical Euler-Bernoulli
beam theory was employed to model a nanomechanical resonator, ([10],[17]).
Although the classical continuum theory is able to predict the behaviors of
nanostructures, it is found to be inadequate because of ignoring the small
size effects. Recently, nonlocal elastic continuum models have been used for
studying the mechanical behaviour of CNTs including beam models. Their
application to the analysis of CNTs allows to evaluate the small-scale effects
influence. The origins of the nonlocal theory of elasticity go to pioneering
works, published in early 80s, by Eringen [18]. The theory of nonlocal elas-
ticity finds general application in the area of nanostructural study such as in
nanorods, nanobeams, nanoplates, nanorings, carbon nanotubes, graphenes,
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nanoswitches and protein microtubules. Via nonlocal elasticity theory the
small-scale effects are incorporated by assuming that the stress, at a given
reference point, is considered to be a function of the strain field at all points
of the body. A good review on nonlocal elasticity is presented in [19]: Reddy
reports a complete development of the classical and shear deformation beam
theories using the nonlocal constitutive differential equations and derives the
solutions for bending, buckling and natural frequencies problems. In recent
years, many researchers have applied the nonlocal elasticity concept to bend-
ing, buckling and vibration analysis of nanostructures. Although initiated by
the work of Eringen, the possibility of using the nonlocal continuum theory
in the field of nanotechnology was first reported by Peddieson et al. [20].
These Authors have used nonlocal Euler-Bernoulli model for static analysis
of nano-beams and particular attention has been paid to cantilever beams
which are often used as actuators in small scale-systems. Further applications
of the nonlocal elasticity theory have been employed in studying the buckling
([21],[22]) and vibration problems, by applying Euler- Bernoulli beam and
shell theories and Timoshenko beam theory, in CNTs ([21]-[25]). Following
these ideas, Lee et al. in [26] used the nonlocal Euler-Bernoulli beam theory
to analyze the frequency shift of carbon nanotube with an attached mass
based upon mass-sensors. In addition, the Authors have analyzed the ef-
fects of nonlocal parameter, attached mass and its location on the frequency
shift value. Aydogdu and Filiz [27] have studied axial vibration behaviour
of single-walled carbon nanotube based mass sensors and have analyzed the
effects of CNT length, attached mass, position and nonlocal parameters on
vibration of SWCNTs. Shen et al. [28] have investigated the transverse vibra-
tion of the CNT-based micro-mass sensor based on the nonlocal Timoshenko
beam theory.

Nanosensors are simple engineering devices designed to detect and convey
informations about nanoparticles and biomolecules. The nanosized mass
sensors are based on the fact that the resonant frequency is sensitive to the
resonator and the attached mass. The change of the attached mass on the
resonator causes the resonant frequency to deviate from its original value.
The key challenge in mass detection is the quantifycation of variations in
the resonant frequencies due to the added masses. Recently, mass detection
based on the resonating nanomechanical tools has been subject of growing
interests as for example in ([29]-[32]).

The present note deals with the approximate problem of the single-walled
carbon nanotube with an attached distributed mass, located in a generic po-
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sition, in the presence of nonlocal effect and under different boundary condi-
tions. Applying the nonlocal Euler- Bernoulli beam theory a system of three
equations of motion is derived. Using an approximate method, generalized
nondimensional calibration constants are derived for an explicit relationship
between the added mass, the nonlocal parameter and the frequency shift.
For this purpose, integral expressions of calibration parameters are given
and their values are used to derive the fundamental natural frequency, which
is obtained by employing an extension of classical Rayleigh quotient to the
case of non-local Euler-Bernoulli beams and in presence of a distributed mass.
The frequency shift is defined as the difference between the fundamental fre-
quencies of single-walled carbon nanotube with and without the attached
distributed mass, and it is usefully in order to assess qualitatively the vi-
brational behaviour of the nanosensor. Once the relative frequency shift is
calculated, it is possible to determine the non dimensional mass expression.
Furthermore, because of the calibration constants change depending on the
boundary conditions, in the present paper the fundamental natural frequency
expression for clamped-free, clamped-clamped, simply-supported, clamped-
supported and clamped-sliding nanosensors is derived. From the literature
it has been found that nonlocal elasticity has been used only in two cases:
clamped-free and clamped -clamped nanotube nanotubes with the attached
mass. Finally, numerical results are illustrated and compared with some re-
sults of literature.

2. Formulation of the problem

A typical single-walled carbon nanotube (SWCNT) with an added dis-
tributed mass m, located between γ1L and γ2L, is shown in Figure 1. The
single-walled carbon nanotube with span L has cross sectional area A, second
moment of area I, Young modulus E and mass density ρ.

According to Hamilton Principle it is possible to write:∫ t2

t1

(δT(t)− δE(t)) dt = 0 (1)
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Figure 1: Geometrical properties of the nanotube
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is the kinetic energy of the structure. It is given by the sum of the kinetic
energies of the three sections, and of the kinetic energy of the additional
mass. The three displacements functions v1, v2 and v3 vary between (0, γ1L),
(γ1L, γ2L), and (γ2L,L), respectively. The total potential energy can be
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expressed as:

E = L− P =

1

2
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0

EI

(
∂2v1(z, t)

∂z2

)2

dz +
1

2
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(
∂2v2(z, t)

∂z2

)2

dz +

1

2

∫ L

γ2L

EI

(
∂2v3(z, t)

∂z2

)2

dz−
∫ γ1L

0

ρA
∂2v1(z, t)

∂t2
(e0a)2 ∂

2v1(z, t)

∂z2
dz−∫ γ2L

γ1L

ρA
∂2v2(z, t)

∂t2
(e0a)2 ∂

2v2(z, t)

∂z2
dz−

∫ L

γ2L

ρA
∂2v3(z, t)

∂t2
(e0a)2 ∂

2v3(z, t)

∂z2
dz

(3)

where L is the sum of the strain energy of the nanotube and P is the potential

energy of the inertial force
(
ρA∂2v(z,t)

∂t2

)
due to the additional displacement

(e0a)2 ∂2v(z,t)
∂z2

, as explained at length in [32]. In this paper the Hamilton prin-
ciple has been employed in order to obtain the correct equations together with
the boundary conditions, so confirming the direct approach of Reddy-Pang
[33], where the nonlocal Eringen theory has been used. On the other hand,
Challamel at al. [34], have shown how the Eringen model can be derived from
a variational approach, where some nonconservative terms must be included.
Nevertheless, their boundary conditions turn out to be coincident with ours,
even for the cantilever beam. In Eq. (3), e0 is a constant which has to be
experimentally determined for each material, a is an internal characteristic
length.

The first variation of these two energies can be easily calculated as, so
that (1) gives:
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∫ t2
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δ
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(
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∂z2
δ
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∂2v2(z, t)

∂z2

)
dz−∫ L

γ2L

(
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(4)

All the terms in (4), as already reported in [35], should be integrated by
parts (see Appendix A).

The equations of motion of free-vibration of a nanotube, in the presence
of the nonlocal effect and added mass, are:

EI
∂4v1(z, t)

∂z4
− (e0a)2 ρA

∂4v1(z, t)

∂z2∂t2
+ ρA

∂2v1(z, t)

∂t2
= 0, 0 < z < γ1L

EI
∂4v2(z, t)

∂z4
− (e0a)2 ρA

∂4v2(z, t)

∂z2∂t2
+ (ρA + m)

∂2v2(z, t)

∂t2
= 0, γ1L < z < γ2L

EI
∂4v3(z, t)

∂z4
− (e0a)2 ρA

∂4v3(z, t)

∂z2∂t2
+ ρA

∂2v3(z, t)

∂t2
= 0, γ2L < z < L (5)

and the corresponding general boundary conditions of the equations system
(5) are reported in Appendix A.

Assuming the following harmonic solution

vj(z, t) = vj(z)eiωt, j = 1, 2, 3 (6)

where ω is the angular frequency and i is the conventional imaginary number
i =
√
−1, the system of three equations of motion (5) becomes:
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EI
∂4v1(z)

∂z4
+ ω2 (e0a)2 ρA

∂4v1(z)

∂z2
− ω2ρAv1(z) = 0, 0 < z < γ1L

EI
∂4v2(z)

∂z4
+ ω2 (e0a)2 ρA

∂4v2(z)

∂z2
− ω2(ρA + m)v2(z) = 0, γ1L < z < γ2L

EI
∂4v3(z)

∂z4
+ ω2 (e0a)2 ρA

∂4v3(z)

∂z2
− ω2ρAv3(z) = 0. γ2L < z < L

(7)

Starting from the equations of motion (7), it is now possible to multiply
each term by a trial function y(z) and to integrate each of them in their
domain, as follows

∫ γ1L

0

EI
∂4v1(z)

∂z4
y(z)dz+∫ γ1L

0

ω2 (e0a)2 ρA
∂2v1(z)

∂z2
y(z)dz−

∫ γ1L

0

ω2ρAv1(z)y(z)dz = 0, 0 < z < γ1L∫ γ2L

γ1L

EI
∂4v2(z)

∂z4
y(z)dz+∫ γ2L

γ1L

ω2 (e0a)2 ρA
∂2v2(z)

∂z2
y(z)dz−

∫ γ2L

γ1L

ω2(ρA + m)v2(z)y(z)dz = 0, γ1L < z < γ2L∫ L

γ2L

EI
∂4v3(z)

∂z4
y(z)dz+∫ L

γ2L

ω2 (e0a)2 ρA
∂2v3(z)

∂z2
y(z)dz−

∫ L

γ2L

ω2ρAv3(z)y(z)dz = 0, γ2L < z < L

(8)

and the resulting integrals can be summed up

∫ γ1L

0

EI
∂4v1(z)

∂z4
y(z)dz +

∫ γ1L

0

ω2 (e0a)2 ρA
∂2v1(z)

∂z2
y(z)dz−

∫ γ1L

0

ω2ρAv1(z)y(z)dz+∫ γ2L

γ1L

EI
∂4v2(z)

∂z4
y(z)dz +

∫ γ2L

γ1L

ω2 (e0a)2 ρA
∂2v2(z)

∂z2
y(z)dz−

∫ γ2L

γ1L

ω2(ρA + m)v2(z)y(z)dz+∫ L

γ2L

EI
∂4v3(z)

∂z4
y(z)dz +

∫ L

γ2L

ω2 (e0a)2 ρA
∂2v3(z)

∂z2
y(z)dz−

∫ L

γ2L

ω2ρAv3(z)y(z)dz = 0.

(9)
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Because of the additive properties of the integrals, it is possible to reduce to
integrals between 0 and L:

∫ L

0

EI
∂4v(z)

∂z4
y(z)dz + ω2

∫ L

0

(e0a)2 ρA
∂2v(z)

∂z2
y(z)dz−

ω2

∫ L

0

ρAv(z)y(z)dz− ω2

∫ γ2L

γ1L

mv(z)y(z)dz = 0. (10)

where v(z) denotes the displacement function along the whole span. Two
successive integrations by parts can be performed (see Appendix B), so that
equation (10) becomes:

∫ L

0

EI
∂2v(z)

∂z2

∂2y(z)

∂z2
dz− ω2

∫ L

0

ρAv(z)y(z)dz− ω2

∫ γ2L

γ1L

mv(z)y(z)dz+∫ L

0

ω2 (e0a)2 ρAv(z)
∂2y(z)

∂z2
dz +

[
EI
∂3v(z)

∂z3
y(z)

]L
0

−
[
EI

∂2v(z)

∂z2

∂y(z)

∂z

]L
0

+[
ω2 (e0a)2 ρA

∂v(z)

∂z
y(z)

]L
0

−
[
ω2 (e0a)2 ρAv(z)

∂y(z)

∂z

]L
0

= 0. (11)

Finally, the integral terms and the finite terms should be zero separately:

∫ L

0

EI
∂2v(z)

∂z2

∂2y(z)

∂z2
dz− ω2

∫ L

0

ρAv(z)y(z)dz−

ω2

∫ γ2L

γ1L

mv(z)y(z)dz +

∫ L

0

ω2 (e0a)2 ρAv(z)
∂2y(z)

∂z2
dz = 0, (12)

[
EI

∂3v(z)

∂z3
y(z)

]L
0

−
[
EI
∂2v(z)

∂z2

∂y(z)

∂z

]L
0

+[
ω2 (e0a)2 ρA

∂v(z)

∂z
y(z)

]L
0

−
[
ω2 (e0a)2 ρAv(z)

∂y(z)

∂z

]L
0

= 0. (13)

If the nondimensional abscissa ζ = z
L

is introduced in equations (12-13),
the equation of motion (12) becomes:
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EI

L3

∫ 1

0

∂2v(ζ)

∂ζ2

∂2y(ζ)

∂ζ2
dζ +

ω2 (e0a)2 ρAL

L2

∫ 1

0

v(ζ)
∂2y(ζ)

∂ζ2
dζ−

ω2ρAL

∫ 1

0

v(ζ)y(ζ)dζ − ω2m (γ2L− γ1L)

∫ γ2

γ1

v(ζ)y(ζ)dζ = 0. (14)

For convenience of analysis, the following nondimensional parameters are
also introduced:

γ = γ2 − γ1; M = mγL; λ =
M

ρAL
; η =

e0a

L
; Ω =

√
ρAL4

EI
. (15)

Then, one gets:

∫ 1

0

∂2v(ζ)

∂ζ2

∂2y(ζ)

∂ζ2
dζ + ω2η2Ω2

∫ 1

0

v(ζ)
∂2y(ζ)

∂ζ2
dζ−

ω2Ω2

∫ 1

0

v(ζ)y(ζ)dζ − ω2λΩ2

∫ γ2

γ1

v(ζ)y(ζ)dζ = 0, (16)

and the frequency ω2 can be written down, putting y(ζ) = v(ζ), as:

ω2 =

∫ 1

0
∂2v(ζ)
∂ζ2

∂2v(ζ)
∂ζ2

dζ

Ω2
∫ 1

0
v2(ζ)dζ + Ω2λ

∫ γ2
γ1
v2(ζ)dζ − η2Ω2

∫ 1

0
v(ζ)∂

2v(ζ)
∂ζ2

dζ
. (17)

The equation (13) should be satisfied by different boundary conditions
analyzed in detail in the numerical examples section.

3. Approximate fundamental frequency and numerical example

In this section, the fundamental frequency induced by the attached dis-
tributed biomolecules is studied.

Here, an alternative approximate method is presented to derive calibra-
tion constants for an explicit relationship between the relative frequency shift
and added distributed mass. For this purpose, integral expressions of calibra-
tion parameters are given and their values are used to derive the fundamental
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natural frequency. Finally, defining the frequency shift ∆f as the difference
between the fundamental frequencies of single-walled carbon nanotube with
and without the attached distributed mass, which gives aid as index to as-
sess qualitatively the vibrational behaviour of the nanosensor, the relative
frequency shift is calculated and then, it is possible to determine the non
dimensional mass expression.

The fundamental natural frequency expression is determined for clamped-
free (C-F), clamped-clamped (C-C), simply-supported (S-S), clamped-
supported (C-S) and clamped-sliding (C-Sl) nanosensors and mass identifica-
tion formulae are derived in terms of the frequency shift. Numerical results
are illustrated and compared with some results of literature. In the numeri-
cal analyses, the effects of the nonlocal parameter, mass and position of the
biomolecules on the natural frequency shift of the nanosensor are evaluated.

Table 1 shows the material and geometrical properties of the single-walled
carbon nanotube, so as deduced from [33], which will be used throughout all
subsequent numerical examples.

SWCNT properties Symbol Value Unit
Cross section area A 7.85 10−19 m2

Radius R 0.5 10−9 m
Length L 9 10−9 m
Moment of inertia I 4.91 10−38 m4

Density ρ 2300 Kg/m3

Young’s modulus E 1000 109 Pa

Table 1: Geometrical and material properties of the single-walled nanotube.

3.1. Clamped-Free nanosensor: approximate fundamental frequency

Firstly, let us consider the value of the first mode of free vibration of a
cantilevered nanosensor in the absence of nonlocal effects and added mass:

v(ζ) = (Cosh(1.8751ζ)− Cos(1.8751ζ))−
(Sinh(1.8751)− Sin(1.8751))

(Cosh(1.8751) + Cos(1.8751))
(Sinh(1.8751ζ)− Sin(1.8751ζ)) (18)

Other choices are obviously possible: for example it is certain that using
free vibration modes of nonlocal beams will lead to more precise values.
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Nevertheless, the proposed choice seems to be a convenient balance between
precision and simplicity.

Substituting the equation (18) into equation (17) the following integrals
I1 and I3 can be obtained as:

I1 =

∫ 1

0

v2(ζ)dζ = 1; I3 =

∫ 1

0

∂2v(ζ)

∂ζ2

∂2v(ζ)

∂ζ2
dζ = 12.3623; (19)

For the case of distributed added mass of abscissae γ2 − γ1, the integral I2

can be expressed as:

I2 =
1

γ2 − γ1

∫ γ2

γ1

v2(ζ)dζ; 0 ≤ γ1 ≤ 1; 0 ≤ γ2 ≤ 1 and γ1 6= γ2 (20)

so as calculated in Table 1 of the paper [31].
We define a fourth integral in order to take into account the nonlocal effects
as:

I4 =

∫ 1

0

v(ζ)
∂2v(ζ)

∂ζ2
dζ = 0.858264; (21)

The fundamental natural frequency for attached distributed mass can be de-
duced from equations ((17),(19),(20) and (21)) in terms of these four integrals
as:

fn1 =
ω

2π
=

β

2π

√
I3

I1 + λI2 − η2I4

(22)

where β = 1
Ω

.
Finally, dividing the above equation for I1, an alternative version of the

first natural frequency can be obtained as

fn1 =
β

2π

Ck√
1 + λCm − η2Cn1

(23)

where Ck, Cm and Cn1 are the so-called calibration constants, so defined:

Ck =

√
I3

I1

= 3.5160; Cn1 =
I4

I1

= 0.858264; Cm =
I2

I1

(24)
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As can be seen the stiffness Ck calibration constant is equivalent to the value
reported in Table 1 of the paper [31] as well as the values of the mass Cm
calibration constant obtained for different values of γ.

It is possible to calculate the frequency shift of the biosensor as:

∆f = f0 − fn1 (25)

where f0 is the natural frequency of the nanotube without added mass and
neglecting the nonlocal effect.

The natural frequency value f0 is given by:

f0 =
1

2π
Ckβ (26)

from this, the equation (25) becomes:

∆f = f0 − fn1 = f0

(
1− 1√

1 + λCm − η2Cn1

)
(27)

The relative frequency shift can therefore be expressed as:

∆f

f0

=

(
1− 1√

1 + λCm − η2Cn1

)
(28)

from which the value of the added mass M can be easily obtained as:

M =
ρAL

Cm

(
1− ∆f

f0

)
2
− ρAL

Cm
+
η2ρALCn1

Cm
(29)

This is the general equation which relates the added mass and the fre-
quency shift in the presence of the nonlocal effect and using the calibration
constants. These calibration constants change depending on the position of
the added mass and boundary conditions. Their values have been calculated
previously.

3.1.1. Clamped-free nanosensor: numerical example

In this numerical case, one assumes a fixed location of attached mass, at
the free end, and setting γ = γ2− γ1 and γ2=1, it is possibile to increase the
value of γ varying γ1. The nondimensional mass is so defined:

13



λ =
m (1− γ1)L

ρAL
(30)

The relative frequency shift, so as deduced from the work of Adikari and
Chowdhury [31] for η=0, is given by the following expression:

∆f

f0

= 1− 1√
1 + Cmλ

(31)

where Cm is mass calibration constant which is a function of the length of
the attached distributed mass γ as shown in Table 1 of the paper [31].

γ ∆f/f0 [31] ∆f/f0 [35] ∆f/f0

0.1 0.13853 0.13908 0.13854
0.2 0.20947 0.21007 0.20947
0.3 0.24918 0.24956 0.24918
0.4 0.27163 0.27180 0.27163
0.5 0.28375 0.28380 0.28375
0.6 0.28965 0.28966 0.28965
0.7 0.29206 0.29206 0.29206
0.8 0.29277 0.29277 0.29277

Table 2: Numerical comparison with the papers [31] and [35].

Table 2 shows a numerical comparison among [31], [35] and the present
approximate approach. The first column gives the fundamental natural fre-
quency in the absence of nonlocal effects. As can be easily observed, with the
increase in the value of γ, the relative frequency shift value deduced from the
approximate formula approaches the value obtained from the exact solution
[35]; whereas for the values of equal to 0.7 and 0.8, the approximate and
exact relative frequency shift values coincide.

In Table 3, the first resonant frequency f1 (exact [35] and present method
(p.m.)) value is reported for the dimensionless coefficients of the length γ
that varies between 0 and 0.9 and the non local effect values η [0, 0.1, 0.3,
0.5].

The first value of the natural frequency, reported in Table 3 and for γ=0,
can be compared with those obtained from the formula (163) in the article

14



γ η = 0 η = 0.1 η = 0.3 η = 0.5
0 [33] 3.60268 3.61834 3.75909 4.18895
0 [p.m.] 3.60268 3.61826 3.75046 4.06512
0.1 [35] 3.10162 3.11245 3.20756 3.46665
0.1 [p.m.] 3.10361 3.11355 3.19659 3.38478
0.2 [35] 2.84585 2.85418 2.926 3.10933
0.2 [p.m.] 2.84804 2.85571 2.91937 3.06062
0.3 [35] 2.70360 2.71057 2.77009 2.91661
0.3 [p.m.] 2.70498 2.71155 2.76587 2.88509
0.4 [35] 2.62348 2.62970 2.68251 2.80985
0.4 [p.m.] 2.62412 2.63011 2.67959 2.78757
0.5 [35] 2.58023 2.58605 2.63527 2.75263
0.5 [p.m.] 2.58045 2.58615 2.63315 2.73539
0.6 [35] 2.55911 2.56473 2.6122 2.72473
0.6 [p.m.] 2.55916 2.56472 2.61055 2.71007
0.7 [35] 2.55048 2.55602 2.60277 2.71335
0.7 [p.m.] 2.55050 2.55602 2.60135 2.69979
0.8 [35] 2.54791 2.55342 2.59996 2.70995
0.8 [p.m.] 2.54792 2.55341 2.59862 2.69673
0.9 [35] 2.54749 2.55301 2.59951 2.70941
0.9 [p.m.] 2.54751 2.55299 2.59817 2.69624

Table 3: First exact [35] and approximate (p.m.) fundamental natural frequency (x 1010)
fn1 for a clamped-free nanotube for various values of the non-dimensional length γ of the
added mass and for increasing values of the nonlocal nondimensional coefficient η.

[33]. As one can see, the results are coincident. For the other numerical
results, the following considerations apply:

- if γ increases, the first natural frequency value decreases;
- if the nonlocal effect non-dimensional parameter increases, the first nat-

ural frequency value increases.
In Figure 2, the normalized added mass λ = M

ρAL
is plotted against the

relative frequency shift equation (28) and the four curves refer to four differ-
ent η values: η = 0 (without nonlocal effects), η = 0.1, η = 0.2 and η = 0.3.
As it can be seen, the relative frequency shift decreases for increasing values
of the nonlocal coefficient η, whereas if the attached mass increases the rela-
tive frequency shift decreases greatly and for λ '0.7 it assumes a stable trend.
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Figure 2: Clamped-free nanosensor: the normalized added mass λ = M
ρAL is plotted against

the relative frequency shift. The four curves refer to four different η values: η=0 (without
nonlocal effect), η=0.1, η=0.3, η=0.5.

3.2. Clamped-Clamped nanosensor: approximate fundamental frequency

Here, a clamped-clamped nanosensor is considered. The first mode shape
of vibration can be expressed as:

v(ζ) = (Cosh(4.73ζ)− Cos(4.73ζ))−
(Cosh(4.73)− Cos(4.73))

(Sinh(4.73)− Sin(4.73))
(Sinh(4.73ζ)− Sin(4.73ζ)) (32)

The integrals of equation (17) become:

16



I1 =

∫ 1

0

v2(ζ)dζ = 1; I3 =

∫ 1

0

∂2v(ζ)

∂ζ2

∂2v(ζ)

∂ζ2
dζ = 500.534;

I4 =

∫ 1

0

v(ζ)
∂2v(ζ)

∂ζ2
dζ = −12.3025. (33)

For the case of distributed added mass of length γ2 − γ1, the integral I2

can be obtained, as into equation (19), and the two calibration constants can
be derived as:

Ck =

√
I3

I1

= 22.3725; Cn1 =
I4

I1

= −12.3024 (34)

3.2.1. Clamped-clamped nanosensor: numerical example

For the numerical example, the nanosensor, carrying a biomolecules of
mass m placed symmetrically about the center, is considered. For example,
for γ=0.2, the mass occupies a space between γ1=0.4 to γ2=0.6. In Table 4
the corresponding exact and approximate values of the first natural frequency,
so as deduced to equation (23), are reported.

It can be seen that with the increase in the value of the added mass and
the nonlocal effect parameter, the value of the fundamental natural frequency
decreases. In Figure 3, the nondimensional ratio M

ρAL
is plotted against the

relative frequency shift equation (31) and the four curves refer to four differ-
ent values of the nonlocal coefficient η (0, 0.1, 0.3, 0.5). It is interesting to
note that the relative frequency shify increases for increasing values of the
added distributed mass and this trend becomes less sensitive to an change in
the mass or location of the attached biomolecules and in particular starting
from a λ value equal to about 0.6. As it can be noted, for λ >0.6 the relative
frequency shift trend becomes constant. In addition, with increasing values
of the nonlocal η parameter, clearly the relative frequency shift increases;
whereas for higher values of the nonlocal coefficient η, the influence of the
attached mass on the relative frequency shift is less significant.

3.3. Simple-supported nanosensor: approximate fundamental frequency
In the following case, the simple-supported nanosensor is considered and

the corresponding mode shape of vibration can be expressed as:
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γ η = 0 η = 0.1 η = 0.3 η = 0.5
0 [35] 2.29249 2.16295 1.57321 1.12623
0 [p.m.] 2.29241 2.1632 1.5792 1.13552
0.1 [35] 2.05034 1.95552 1.48704 1.09327
0.1 [p.m.] 2.05150 1.95734 1.49354 1.10239
0.2 [35] 1.88440 1.80983 1.41968 1.06569
0.2 [p.m.] 1.77340 1.71081 1.37047 1.04452
0.3 [35] 1.77507 1.71302 1.37612 1.05256
0.3 [p.m.] 1.70191 1.64646 1.33706 1.02968
0.4 [35] 1.70284 1.64783 1.34164 1.03688
0.4 [p.m.] 1.65879 1.60746 1.31638 1.02038
0.5 [35] 1.65913 1.60813 1.31994 1.02677
0.5 [p.m.] 1.63550 1.58637 1.30515 1.01533
0.6 [35] 1.63555 1.58663 1.30798 1.02111
0.6 [p.m.] 1.62851 1.58005 1.30185 1.01312
0.7 [35] 1.62501 1.57700 1.30257 1.01853
0.7 [p.m.] 1.62165 1.57511 1.29925 1.01243
0.8 [35] 1.62159 1.57387 1.30081 1.01768
0.8 [p.m.] 1.62106 1.57332 1.29832 1.01232
0.9 [35] 2.54749 2.55301 2.59951 2.70941
0.9 [p.m.] 1.62100 1.57333 1.30050 1.01754

Table 4: First exact [35] and approximate (p.m.) fundamental natural frequency (x 1010)
fn1 for a clamped-clamped nanotube for various values of the non-dimensional length γ of
the added mass and for increasing values of the nonlocal nondimensional coefficient η.

v(ζ) = Sin(πζ). (35)

Starting from equation (22) the integrals become:

I1 =

∫ 1

0

v2(ζ)dζ =
1

2
; I3 =

∫ 1

0

∂2v(ζ)

∂ζ2

∂2v(ζ)

∂ζ2
dζ =

π4

2
;

I4 =

∫ 1

0

v(ζ)
∂2v(ζ)

∂ζ2
dζ = −π

2

2
; (36)

and the two calibration constants, mass-indipendent, are:
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Figure 3: Clamped-clamped nanosensor: the normalized added mass λ = M
ρAL is plotted

against the relative frequency shift. The four curves refer to four different η values: η=0
(without nonlocal effect), η=0.1, η=0.3, η=0.5.

Ck =

√
I3

I1

= π2; Cn1 =
I4

I1

= −π2. (37)

3.3.1. Simple-supported nanosensor: numerical example

Table 5 gives a comparison among the exact and approximate values of
the first fundamental natural frequency - so as deduced from eq. (22) -
for the simple-supported nanosensor case carrying an attached biomolecules
with mass placed symmetrically about center of the nanosensor. As it can
be see, the exact and approximate results are coincident; in addition, it is
clear from Table 5 that the fundamental natural frequency decreases when
the added mass and the nondimensional nonlocal effect coefficient increase.
More precisely, Figure 4 shows that with increasing the normalized added
mass increases the relative frequency shift increases; as pointed out before,
this trend becomes less sensitive to an change in the location of the attached

19



γ η = 0 η = 0.1 η = 0.3 η = 0.5
0 [35] 10.1129 9.64802 7.35945 5.43094
0 [p.m.] 1.01129 9.64802 7.35945 5.43094
0.1 [35] 9.23640 8.87827 7.00047 5.28184
0.1 [p.m.] 9.23810 8.87967 7.00091 5.28196
0.2 [35] 8.5832 8.29364 6.70323 5.15073
0.2 [p.m.] 8.58664 8.29655 6.70427 5.15102
0.3 [35] 8.09970 7.85503 6.46528 5.04043
0.3 [p.m.] 8.10327 7.85812 6.46648 5.04079
0.4 [35] 7.74741 7.53245 6.28171 4.95195
0.4 [p.m.] 7.75004 7.53474 6.28266 4.95224
0.5 [35] 7.49823 7.30279 6.14649 4.88483
0.5 [p.m.] 7.49968 7.30407 6.14705 4.88501
0.6 [35] 7.33083 7.14784 6.05314 4.83752
0.6 [p.m.] 7.33142 7.14837 6.05337 4.83760
0.7 [35] 7.22794 7.05235 5.99475 4.80753
0.7 [p.m.] 7.22810 7.05249 5.99482 4.80755
0.8 [35] 7.17408 7.00229 5.96390 4.79156
0.8 [p.m.] 7.17410 7.00231 5.96390 4.79157
0.9 [35] 7.15385 6.98347 5.95225 4.78552
0.9 [p.m.] 7.15385 6.98347 5.95225 4.78552

Table 5: First exact [35] and approximate (p.m.) fundamental natural frequency (x 1010)
fn1 for a simple-supported nanotube for various values of the non-dimensional length γ of
the added mass and for increasing values of the nonlocal nondimensional coefficient η.

biomolecules and in particular starting from a λ value equal to about 0.8.
Moreover, the relative frequency shift increases if the nondimensional nonlo-
cal effect η increases.

3.4. Clamped-supported nanosensor: approximate fundamental frequency

Here the clamped-supported nanosenor is considered and the following
approximate function for the first mode of vibration is assumed:
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Figure 4: Simple-supported nanosensor: the normalized added mass λ = M
ρAL is plotted

against the relative frequency shift. The four curves refer to four different η values: η=0
(without nonlocal effect), η=0.1, η=0.3, η=0.5.

v(ζ) = (Cosh(3.92660231ζ)− Cos(3.92660231ζ))−
(Cosh(3.92660231)− Cos(3.92660231))

(Sinh(3.92660231)− Sin(3.92660231))
(Sinh(3.92660231ζ)− Sin(3.92660231ζ))

(38)

Using equation (22) the integrals I1, I3 and I4 can be obtained as:

I1 =

∫ 1

0

v2(ζ)dζ = 1; I3 =

∫ 1

0

∂2v(ζ)

∂ζ2

∂2v(ζ)

∂ζ2
dζ = 273.721;

I4 =

∫ 1

0

v(ζ)
∂2v(ζ)

∂ζ2
dζ = −11.5125; (39)

Using these integrals, the calibration factors, mass-indipendent, can be de-
rived as:
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Ck =

√
I3

I1

= 15.4182; Cn1 =
I4

I1

= −11.5125. (40)

3.4.1. Clamped-supported nanosensor: numerical example

In Table 6, the first natural frequency values of clamped-supported nanosen-
sor are reported. As it can note, the difference among the exact and approx-
imated value decreases with increasing the length of attached distributed
mass and it stabilizes for λ '0.8. In addition the first frequency valued de-
creases with increasing the nondimensional nonlocal effect coefficient η.
Figure 5 shows a comparison of the exact value and its approximation for
a clamped-supported nanosensor, where the nonlocal parameter is chosen as
η = 0, 0.1, 0.3, 0.5. From Figure 5, one notes that the clamped-supported
nanosensor behaviour is close to the previous numerical examples behaviour.
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Figure 5: Clamped-supported: the normalized added mass λ = M
ρAL is plotted against the

relative frequency shift. The four curves refer to four different η values: η=0 (without
nonlocal effect), η=0.1, η=0.3, η=0.5.
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γ η = 0 η = 0.1 η = 0.3 η = 0.5
0 [35] 1.57983 1.49591 1.10427 0.79756
0 [p.m.] 1.57983 1.49606 1.10716 0.80223
0.1 [35] 1.43735 1.37351 1.05294 0.77788
0.1 [p.m.] 1.43811 1.37406 1.05488 0.78166
0.2 [35] 1.33264 1.28141 1.01018 0.76043
0.2 [p.m.] 1.33416 1.28255 1.01173 0.76361
0.3 [35] 1.25682 1.21361 0.97617 0.74576
0.3 [p.m.] 1.25839 1.21481 0.97747 0.74855
0.4 [35] 1.20301 1.16493 0.95030 0.73409
0.4 [p.m.] 1.20416 1.16581 0.951340 0.73665
0.5 [35] 1.16601 1.13120 0.93162 0.72536
0.5 [p.m.] 1.16665 1.13167 0.93256 0.72780
0.6 [35] 1.14188 1.10907 0.91901 0.71932
0.6 [p.m.] 1.14214 1.10926 0.91990 0.72173
0.7 [35] 1.12749 1.09583 0.91131 0.71555
0.7 [p.m.] 1.12755 1.09588 0.91223 0.71801
0.8 [35] 1.12017 1.08908 0.90733 0.71358
0.8 [p.m.] 1.12018 1.08910 0.90831 0.71610
0.9 [35] 1.11749 1.08661 0.90586 0.71285
0.9 [p.m.] 1.11749 1.08663 0.90688 0.71539

Table 6: First exact [35] and approximate (p.m.) fundamental natural frequency (x 1011)
fn1 for a clamped-supported nanotube for various values of the non-dimensional length γ
of the added mass and for increasing values of the nonlocal nondimensional coefficient η.

3.5. Clamped-sliding nanosensor: approximate fundamental frequency

Finally, the clamped-sliding (C-Sl) nanosensor case is considered. For
the C-Sl single-walled carbon nanotube the following vibration mode shape
function is given:

v(ζ) =

Sin(2.36502037ζ)− (Cos(2.36502037ζ)(−Cos(2.36502037) + Cosh(2.36502037)))

(Sin(2.36502037) + Sinh(2.36502037))
−

(Cos(2.36502037)− (Cosh(2.36502037))Cosh(2.36502037ζ))

(Sin(2.36502037) + Sinh(2.36502037))− Sinh(2.36502037ζ)
(41)
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Using the equation (22) the integrals I1, I3 and I4 can be obtained as:

I1 =

∫ 1

0

v2(ζ)dζ = 1.03594; I3 =

∫ 1

0

∂2v(ζ)

∂ζ2

∂2v(ζ)

∂ζ2
dζ = 32.4095;

I4 =

∫ 1

0

v(ζ)
∂2v(ζ)

∂ζ2
dζ = −3.18618; (42)

and the calibration factors are:

Ck =

√
I3

I1

= 5.59332; Cn1 =
I4

I1

= −3.07565; (43)

γ η = 0 η = 0.1 η = 0.3 η = 0.5
0 [35] 5.73122 5.6450 5.06895 4.29809
0 [p.m.] 5.73120 5.64506 5.07205 4.30917
0.1 [35] 5.52669 5.44970 4.92848 4.21361
0.1 [p.m.] 5.52792 5.45049 4.92952 4.22073
0.2 [35] 5.33559 5.26656 4.79368 4.13030
0.2 [p.m.] 5.33928 5.26942 4.79435 4.13495
0.3 [35] 5.15336 5.09130 4.66162 4.04631
0.3 [p.m.] 5.15915 5.09604 4.66266 4.04957
0.4 [35] 4.98413 4.92715 4.53225 3.96326
0.4 [p.m.] 4.98413 4.92715 4.53225 3.96326
0.5 [35] 4.80683 4.75638 4.40097 3.87329
0.5 [p.m.] 4.81297 4.76160 4.40240 3.87555
0.6 [35] 4.64135 4.59580 4.27242 3.78460
0.6 [p.m.] 4.64603 4.59978 4.27357 3.78679
0.7 [35] 4.48181 4.44063 4.14628 3.69561
0.7 [p.m.] 4.48469 4.44305 4.14700 3.69789
0.8 [35] 4.32949 4.29221 4.02401 3.60766
0.8 [p.m.] 4.33080 4.29326 4.02441 3.61018
0.9 [35] 4.18592 4.15208 3.90723 3.52222
0.9 [p.m.] 14.15230 4.15230 3.90762 3.52515

Table 7: First exact [35] and approximate (p.m.) fundamental natural frequency (x 1010)
fn1 for a clamped-sliding nanotube for various values of the non-dimensional length γ of
the added mass and for increasing values of the nonlocal nondimensional coefficient η.
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Figure 6: Clamped-sliding nanosensor: the normalized added mass λ = M
ρAL is plotted

against the relative frequency shift. The four curves refer to four different η values: η=0
(without nonlocal effect), η=0.1, η=0.3, η=0.5.

3.5.1. Clamped-sliding nanosensor: numerical example

For this numerical case, the first natural frequency values are listed in
Table 7; as it can be seen the first natural frequency value decreases for
increasing values of the nonlocal η parameter. However, it is interesting to
note that the difference among the exact and approximate value is greater
than the other numerical cases and this is mainly due to the approximate
function considered. In addition, the four curves in Figure 6 show that
the influence of added distributed mass on the relative frequency shift value
becomes stronger and the obtained function has a linear behaviour. This
also implies that for a clamped-sliding nanosensor it has an opposite trend
to the above numerical examples.

Conclusions

In the present note, the natural frequency of SWCNT based mass-sensor,
carrying a distributed mass located in a generic position, has been inves-

25



tigated. The nonlocal Euler-Bernoulli beam theory has been used and the
influence of the nonlocal coefficient on the first natural frequency value has
been evaluated. The fundamental natural frequency close-form expression
has been derived and the corresponding shift frequency have been calculated.
Numerical results for different boundary conditions have been performed in
order to evaluate the effect of the nonlocal coefficient. The obtained results
can be employed to find the distributed added mass: from natural frequency
value, in absence of mass and nonlocal effect, and the natural frequency
value, in presence of the mass and nonlocal effect, it is possibile to derive the
relative frequency shift and from theoretical curves calculate the normalized
added mass M

ρAL
for relative frequency shift.

The conclusions are drawn as follows:

a) The clamped-free nanosensor case has an opposite trend to the other
boundary conditions because:
- if the nonlocal effect nondimensional η increases, the first natural frequency
value increases.
- if the nondimensional added mass m increases, the first natural frequency
value decreases;
whereas the Clamped-Clamped, Simple supported, Clamped-supported e
Clamped-sliding cases hold the following observations:
- if the nondimensional added mass λ increases, the first natural frequency
value decreases;
- if the nonlocal effect nondimensional η parameter increases, the first natural
frequency value decrease.

b) Finally, comparing the approximate results of the present paper and the
exact results given in [35], the different behaviour exhibited by the results
depends on the approximate function chosen.

The present approach can be applied to analyze the dinamic behaviour
of multi-walled carbon nanotubes (MWCNTs) and in the case of nanotubes
based upon the Timoshenko theory.
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Appendix A - Integration by parts and boundary conditions

The Equation (4), which is reported here for the sake of readability, has
to be integrated by part:∫ t2

t1

(∫ γ1L

0

ρA
∂v1(z, t)

∂t
δ
∂v1(z, t)

∂t
dz +

∫ γ2L

γ1L

ρA
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dz +∫ L

γ2L

ρA
∂v3(z, t)

∂t
δ
∂v3(z, t)

∂t
dz +

1

2

∫ γ2L

γ1L

M
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dz−∫ γ1L

0

(
EI

∂2v1(z, t)

∂z2
δ
∂2v1(z, t)

∂z2
− (e0a)2 ρA

∂2v1(z, t)

∂t2
δ
∂2v1(z, t)

∂z2

)
dz−∫ γ2L

γ1L

(
EI

∂2v2(z, t)

∂z2
δ
∂2v2(z, t)

∂z2
− (e0a)2 ρA

∂2v2(z, t)

∂t2
δ
∂2v2(z, t)

∂z2

)
dz−∫ L

γ2L

(
EI

∂2v3(z, t)

∂z2
δ
∂2v3(z, t)

∂z2
− (e0a)2 ρA

∂2v3(z, t)

∂t2
δ
∂2v3(z, t)

∂z2

)
dz
)

dt = 0.

(A1)
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The integrations by parts have been performed as follows:∫ γ1L

0

∫ t2

t1

ρA
∂v1(z, t)

∂t
δ
∂v1(z, t)

∂t
dt =

∫ γ1L

0

[
ρA

∂v1(z, t)

∂t
δv1(z, t)

]t2
t1

dz−∫ γ1L

0

∫ t2

t1

ρA
∂2v1(z, t)

∂t2
δv1(z, t) dt dz;∫ γ2L

γ1L

∫ t2

t1

ρA
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dt =

∫ γ2L

γ1L

[
ρA

∂v2(z, t)

∂t
δv2(z, t)

]t2
t1

dz−∫ γ2L

γ1L

∫ t2

t1

ρA
∂2v2(z, t)

∂t2
δv2(z, t) dt dz;∫ L

γ2L

∫ t2

t1

ρA
∂v3(z, t)

∂t
δ
∂v3(z, t)

∂t
dt dz =

∫ L

γ2L

[
ρA

∂v3(z, t)

∂t
δv3(z, t)

]t2
t1

dz−∫ L

γ2L

∫ t2

t1

ρA
∂2v3(z, t)

∂t2
δv3(z, t) dt dz;∫ γ2L

γ1L

∫ t2

t1

M
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dt dz =

∫ γ2L

γ1L

[
M
∂v2(z, t)

∂t
δv2(z, t)

]t2
t1

dz−∫ γ2L

γ1L

∫ t2

t1

M
∂2v2(z, t)

∂t2
δv2(z, t) dt dz; (A2)

∫ t2

t1

∫ γ1L

0

(e0a)2 ρA
∂2v1(z, t)

∂t2
δ
∂2v1(z, t)

∂z2
dz dt =∫ t2

t1

[
(e0a)2 ρA

∂2v1(z, t)

∂t2
δ
∂v1(z, t)

∂z

]γ1L
0

dt−
∫ t2

t1

[
(e0a)2 ρA

∂3v1(z, t)

∂t2∂z
δv1(z, t)

]γ1L
0

dt +∫ t2

t1

∫ γ1L

0

(e0a)2 ρA
∂4v1(z, t)

∂t2∂z2
δv1(z, t) dz dt; (A3)

∫ t2

t1

∫ γ2L

γ1L

(e0a)2 ρA
∂2v2(z, t)

∂t2
δ
∂2v2(z, t)

∂z2
dz dt =∫ t2

t1

[
(e0a)2 ρA

∂2v2(z, t)

∂t2
δ
∂v2(z, t)

∂z

]γ2L
γ1L

dt−
∫ t2

t1

[
(e0a)2 ρA

∂3v2(z, t)

∂t2∂z
δv2(z, t)

]γ2L
γ1L

dt +∫ t2

t1

∫ γ2L

γ1L

(e0a)2 ρA
∂4v2(z, t)

∂t2∂z2
δv2(z, t) dz dt; (A4)
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∫ t2

t1

∫ L

γ2L

(e0a)2 ρA
∂2v3(z, t)

∂t2
δ
∂2v3(z, t)

∂z2
dz dt =∫ t2

t1

[
(e0a)2 ρA

∂2v3(z, t)

∂t2
δ
∂v3(z, t)

∂z

]L
γ2L

dt−
∫ t2

t1

[
(e0a)2 ρA

∂3v3(z, t)

∂t2∂z
δv3(z, t)

]L
γ2L

dt +∫ t2

t1

∫ L

γ2L

(e0a)2 ρA
∂4v3(z, t)

∂t2∂z2
δv3(z, t) dz dt; (A5)

and:

−
∫ t2

t1

∫ γ1L

0

EI
∂2v1(z, t)

∂z2
δ
∂2v1(z, t)

∂z2
dz dt = −

∫ t2

t1

[
EI

∂2v1(z, t)

∂z2
δ
∂v1(z, t)

∂z

]γ1L
0

dt +∫ t2

t1

[
EI

∂3v1(z, t)

∂z3
δv1(z, t)

]γ1L
0

dt−
∫ t2

t1

∫ γ1L

0

EI
∂4v1(z, t)

∂z4
δv1(z, t) dz dt;

(A6)

−
∫ t2

t1

∫ γ2L

γ1L

EI
∂2v2(z, t)

∂z2
δ
∂2v2(z, t)

∂z2
dz dt = −

∫ t2

t1

[
EI

∂2v2(z, t)

∂z2
δ
∂v2(z, t)

∂z

]γ2L
γ1L

dt +∫ t2

t1

[
EI

∂3v2(z, t)

∂z3
δv2(z, t)

]γ2L
γ1L

dt−
∫ t2

t1

∫ γ2L

γ1L

EI
∂4v2(z, t)

∂z4
δv2(z, t) dz dt,

(A7)

−
∫ t2

t1

∫ L

γ2L

EI
∂2v3(z, t)

∂z2
δ
∂2v3(z, t)

∂z2
dz dt = −

∫ t2

t1

[
EI

∂2v3(z, t)

∂z2
δ
∂v3(z, t)

∂z

]L
γ2L

dt +∫ t2

t1

[
EI

∂3v3(z, t)

∂z3
δv3(z, t)

]L
0

dt−
∫ t2

t1

∫ L

γ2L

EI
∂4v3(z, t)

∂z4
δv3(z, t) dz dt .

(A8)

Finally, the following system of three equations of motion has been ob-
tained:
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EI
∂4v1(z, t)

∂z4
− (e0a)2 ρA

∂4v1(z, t)

∂z2∂t2
+ ρA

∂2v1(z, t)

∂t2
= 0, 0 < z < γ1L

EI
∂4v2(z, t)

∂z4
− (e0a)2 ρA

∂4v2(z, t)

∂z2∂t2
+ (ρA+M)

∂2v2(z, t)

∂t2
= 0, γ1L < z < γ2L

EI
∂4v3(z, t)

∂z4
− (e0a)2 ρA

∂4v3(z, t)

∂z2∂t2
+ ρA

∂2v3(z, t)

∂t2
= 0, γ2L < z < L; (A9)

together with the following particular boundary conditions:

v1(0, t) = 0, (A10)

∂v1(0, t)

∂z
= 0, (A11)

for z = 0 and for z = L:

EI
∂3v3(L, t)

∂z3
− (e0a)2 ρA

∂3v3(L, t)

∂t2∂z
= 0, (A12)

−EI
∂2v3(L, t)

∂z2
+ (e0a)2 ρA

∂2v3(L, t)

∂t2
= 0. (A13)

The boundary conditions for z = γ1L are:

v1 (γ1L, t) = v2 (γ1L, t)

∂v1 (γ1L, t)

∂z
=
∂v2 (γ1L, t)

∂z

(e0a)2 ρA
∂3v1 (γ1L, t)

∂t2∂z
− EI

∂3v1 (γ1L, t)

∂z3
− (e0a)2 ρA

∂3v2 (γ1L, t)

∂t2∂z
+ EI

∂3v2 (γ1L, t)

∂z3
= 0

(e0a)2 ρA
∂2v1 (γ1L, t)

∂t2
− EI ∂

2v1 (γ1L, t)

∂z2
− (e0a)2 ρA

∂2v2 (γ1L, t)

∂t2
+ EI

∂2v2 (γ1L, t)

∂z2
= 0,

(A14)

and at z = γ2L:
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v2 (γ2L, t) = v3 (γ2L, t)

∂v2 (γ2L, t)

∂z
=
∂v3 (γ2L, t)

∂z

(e0a)2 ρA
∂3v2 (γ2L, t)

∂t2∂z
− EI

∂3v2 (γ2L, t)

∂z3
− (e0a)2 ρA

∂3v3 (γ2L, t)

∂t2∂z
+ EI

∂3v3 (γ2L, t)

∂z3
= 0

+ (e0a)2 ρA
∂2v2 (γ2L, t)

∂t2
− EI ∂

2v2 (γ2L, t)

∂z2
− (e0a)2 ρA

∂2v3 (γ2L, t)

∂t2
+ EI

∂2v3 (γ2L, t)

∂z2
= 0.

(A15)

Appendix B - Integration by parts

The Equation (10), which is reported here for the sake of readability, has
to be integrated by part:

∫ L

0

EI
∂4v(z)

∂z4
y(z)dz + ω2

∫ L

0

(e0a)2 ρA
∂2v(z)

∂z2
y(z)dz−

ω2

∫ L

0

ρAv(z)y(z)dz− ω2

∫ γ2L

γ1L

mv(z)y(z)dz = 0. (B1)

where v(z) denotes the displacement function along the whole span. Two
successive integrations by parts can be performed:∫ L

0

EI
∂4v(z)

∂z4
y(z)dz =

[
EI

∂3v(z)

∂z3
y(z)

]L
0

−
∫ L

0

EI
∂3v(z)

∂z3

∂y(z)

∂z
dz =[

EI
∂3v(z)

∂z3
y(z)

]L
0

−
[
EI

∂2v(z)

∂z2

∂y(z)

∂z

]L
0

+

∫ L

0

EI
∂2v(z)

∂z2

∂2y(z)

∂z2
dz, (B2)

and one gets:
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ω2

∫ L

0

(e0a)2 ρA
∂2v(z)

∂z2
y(z)dz =[

ω2 (e0a)2 ρA
∂v(z)

∂z
y(z)

]L
0

−
∫ L

0

ω2 (e0a)2 ρA
∂v(z)

∂z

∂y(z)

∂z
dz =[

ω2 (e0a)2 ρA
∂v(z)

∂z
y(z)

]L
0

−
[
ω2 (e0a)2 ρAv(z)

∂y(z)

∂z

]L
0

+∫ L

0

ω2 (e0a)2 ρAv(z)
∂2y(z)

∂z2
dz. (B3)

Finally, the Equation (10) becomes:∫ L

0

EI
∂2v(z)

∂z2

∂2y(z)

∂z2
dz− ω2

∫ L

0

ρAv(z)y(z)dz− ω2

∫ γ2L

γ1L

mv(z)y(z)dz+∫ L

0

ω2 (e0a)2 ρAv(z)
∂2y(z)

∂z2
dz +

[
EI
∂3v(z)

∂z3
y(z)

]L
0

−
[
EI

∂2v(z)

∂z2

∂y(z)

∂z

]L
0

+[
ω2 (e0a)2 ρA

∂v(z)

∂z
y(z)

]L
0

−
[
ω2 (e0a)2 ρAv(z)

∂y(z)

∂z

]L
0

= 0. (B4)
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