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Abstract

Understanding the flowering cycles of perennial warm-

season grass species may be very important to the

design of management practices and breeding. How-

ever, developmental dynamics are not well understood.

As most plant traits associated with flowering dynamics

do not follow a normal distribution, the use of general

linear models to describe and compare these variables

might be misleading. The aims of this study were (i) to

find a methodology to compare panicle accumulation

curves and (ii) to estimate heritabilities for flowering

curve attributes. Panicle counts were recorded during a

complete flowering cycle on a diverse collection of dal-

lisgrass (Paspalum dilatatum). We compared the effi-

ciency of different linear mixed models based on whole

plot or individual plant data; then, we adjusted nonlin-

ear regression curves for individual plants to estimate

several curve attributes and compared this approach to

the area under the curve. Finally, we calculated the

broad-sense heritabilities of the estimated curve param-

eters. The following reproductive curve attributes were

obtained: panicle production potential, panicle accu-

mulation rate and days until 3, 5, 10 and 15 panicles.

We found that monitoring individual plants is more

efficient when studying flowering attributes. Signifi-

cant differences among genotypes for several flowering

cycle attributes were found. Heritabilities were very

high for all flowering cycle initiation and duration attri-

butes. We also showed that the number of days until

the emergence of a given low number of panicles can

be used as a highly heritable measure to characterize

flowering cycles.

Keywords: flowering time, seeds, dallisgrass, harvest

date, modelling

Introduction

Warm-season grasses are a key component of temper-

ate grasslands. Genetic improvement of grasses

through breeding has led to considerable progress by

increasing feeding value, extending the grazing season

and improving the persistence of pastures (Wilkins

and Humphreys, 2003). However, breeding pro-

grammes leading to the domestication of perennial

warm-season grasses have been less successful than

those of temperate grasses. Some of the main chal-

lenges in breeding warm-season grasses are managing

their growth cycle, flowering asynchrony and harvest-

ing seeds (Miles, 2001). Most perennial warm-season

grasses have indeterminate flowering dynamics, and

consequently, a given plant may bear vegetative and

reproductive tillers at the same time (Moore and Mo-

ser, 1995). Such absence of a clear differentiation

between the vegetative and reproductive phases in

perennial grasses adds great complexity to forage pro-

duction and animal grazing management (Mitchell

et al., 1997). The underlying processes of tillering,

flowering and bud-development dynamics of perennial

warm-season grasses are poorly understood (Ott and

Hartnett, 2011; Williamson et al., 2012). In annual

species, these processes are well characterized (Mace

et al., 2013); however, the complexity of perennial

grasses in terms of their morphological development

leads to a lack of consensus on methods for describing

and quantifying developmental stages (Moore and

Moser, 1995). Because genetic gains could be obtained

through selection of developmental traits, it is relevant

not only to characterize the morphological develop-
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ment of the plant but also the estimation of the heri-

tability of its attributes which has practical implica-

tions for breeding (Van Esbroeck et al., 1998).

Flowering time and dynamics are important, and

complex traits and the strategies to best describe them

have varied considerably. Several approaches have

been proposed to characterize flowering dynamics

such as the change over time in panicle number per

square metre (Mitchell et al., 1997), days until the

emergence of the first panicle (Moore and Moser,

1995) and mean inflorescence stage in species with

multiple flowering tillers (Moore et al., 1991). Appro-

priate statistical models are needed in this context to

describe and compare these variables, because most of

them do not follow a normal distribution, and there-

fore, the use of general linear models as a statistical

approach may be inappropriate. To solve this problem,

methods to linearize models such as data transforma-

tion have been proposed. The use of linear mixed

models on the transformed data allowed working with

this type of distribution while modelling correlations

in time (Molenberghs and Verbeke, 2007). An alterna-

tive is the use of generalized linear mixed models

(GLMM) (Breslow and Clayton, 1993) which are

obtained from generalized linear models that incorpo-

rate random effects within linear predictors. These

models are useful when the objective is modelling the

response of dependent variables in longitudinal studies

to assess variables with overdispersion in binomial or

Poisson distributions (Pan and Lin, 2005). Another

approach, such as the analysis of the area under the

curve (AUC), has been applied in many contexts as a

tool to study the evolution of normal and non-normal

data such as counts (Lobo et al., 2008). This approach

has some limitations as different formulas are used to

derive the AUC, and its interpretation in repeated

measurements over time is not straightforward (Prues-

ner et al., 2003). Nonlinear models are often used to

analyse the evolution of a variable in studies of physi-

ological responses in plants, and they are preferred to

polynomial models because the coefficients obtained

in curve fitting are biologically meaningful (Peek et al.,

2002). Yet another alternative for analysing the evolu-

tion of a variable along time is the adjustment of non-

linear regression models, where information on

potential production and the evolution over time of

each curve can be obtained. Classical model

approaches that ignore the correlations that may exist

result in two problems: inefficient estimates of regres-

sion parameters and inconsistent precision estimates

(Zeger and Liang, 1992). Therefore, it is desirable to

evaluate statistical approaches that model the covari-

ance matrix of measurements repeated in time over

the same experimental subjects in terms of their effi-

ciency. The goal of this study was to evaluate the

performance of different modern statistical tools to

describe the dynamics of panicle emergence in a

perennial grass.

Dallisgrass (Paspalum dilatatum Poir.) is a perennial

warm-season grass widely recognized for its produc-

tive potential (Pizarro, 2002). Significant levels of nat-

ural genetic variability in the species have been

assembled in available collections that are currently

being evaluated to differentiate flowering curves

(Speranza, 2005). Because all biotypes are highly apo-

mictic or selfing perennials, repetitions of the same

genetic material can be easily obtained and broad-

sense heritabilities estimated. To begin to understand

how to characterize these traits for selection or man-

agement purposes, we analysed the complete flower-

ing curves of a diverse collection during one flowering

season. To perform this analysis, we recorded panicle

appearance over time on a diverse collection of

P. dilatatum genotypes and tested different statistical

strategies such as the adjustment of regression curves

and the incorporation of repeated measures in time,

to compare flowering curves and estimate the broad-

sense heritability of different attributes of the flower-

ing curves.

Material and methods

Plant material and data collection

Twelve pentaploid genotypes of P. dilatatum that are

considered to represent the natural genetic diversity

were used. The sampling was based on Speranza

(2009) and further unpublished data. Plant material

was obtained from the Germplasm Bank of the Facul-

tad de Agronom�ıa (Universidad de la Rep�ublica, Uru-

guay). Twelve pentaploid clones from four genetic

groups (group A, B, C, D) were used. Individual plants

from each genotype were grown in pots in a green-

house during 1 year. Seedlings were transplanted to

the experimental field in the autumn of 2011. The

trial was located in Sayago, Montevideo, Uruguay.

The soil of the experimental field was a typic argiu-

doll, with 3�3% organic matter and 18 ppm phospho-

rus. No particular deviation from historical rainfall and

mean temperatures was recorded prior to or during

the experiment (Table 1).

The experimental design was a completely random-

ized design with three replicates. Each plot consisted

of six plants arranged in two rows with a separation of

15 cm between individuals. The distance among plots

was 30 cm. The number of emerged panicles was

recorded in spring 2011 on each individual plant every

3–4 days between November and December. A panicle

was considered emerged when the whole inflores-

cence was visible.
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Statistical analysis

Individual plant assessment

All the data collected were analysed using Statistical

Analysis Software Procedures of SAS (SAS Institute

Inc, 2005) and Infostat Software (Di Rienzo et al.,

2012). Individual plant information was used to deter-

mine whether using data from individual plants over

time was relevant. We evaluated four statistical mod-

els involving different combinations of correlation

structures (i.e. compound symmetry or autoregressive)

and units of study (i.e. plot or individual plant): (i)

whole-plot average data with a compound symmetry

correlation in time for each plot; (ii) whole-plot aver-

age data with an autoregressive correlation (AR1) in

time for each plot; (iii) single plant data with a com-

pound symmetry correlation in time for each individ-

ual plant, and (iv) single plant data with an

autoregressive (AR1) correlation in time for each indi-

vidual plant. Model selection was based on likelihood

ratio tests.

Flowering characterization

To explore the relationships among modelled panicle

accumulation dynamics for each genotype, a logistic

regression model was fitted for each plant:

Yij ¼ b0

1þ b1e�b2xi

where Yij is the panicle number accumulated until the

i-th day for the j-th genotype, b0, b1 and b2 are curve

parameters and xi is the number of days from the start

of the experiment. The regression models were fitted

in SAS (SAS Institute Inc., 2005) using PROC NLIN.

The following attributes of the regression curve

were used to characterize genotypes:

1 Potential number of panicles (b0).

2 Panicle accumulation rate (b1e
�b2).

3 Number of days to 3, 5, 10 and 15 panicles.

4 Number of days to 50% and 80% of the potential

number of panicles.

5 Area under the curve (AUC)

The theoretical potential number of panicles was

calculated from the b0 term of the adjusted logistic

regressions, and the panicle accumulation rate was

calculated as a product of the b1* e(�b2) relationship

between parameters. The number of days to the emer-

gence of the first 3, 5, 10 and 15 panicles, and the

number of days to 50% and 80% of b0 were obtained

using the adjusted parameters for each curve. The

AUC was calculated by integrating over the fitted

logistic regression model for each plant through the

‘areaxy’ function of Infostat Statistical Software (Di Ri-

enzo et al., 2012). Each one of the attributes of the

panicle accumulation curve was analysed with the fol-

lowing linear mixed model:

Yijk ¼ lþ bi þ Gj þ eij þ dijk

where Yijk is the response variable of interest, l is the

overall mean, bi is the i-th replication, Gj is the j-th

genotype, eij is the experimental error and dijk is the

sub sampling or plant error. Adjusted means for each

attribute for each genotype were estimated, and the

Tukey’s test was used when the ANOVA detected signifi-

cant differences among genotypes (a = 0�05).
To determine the prediction power of the adjusted

curves, we obtained the coefficient of determination

(R2) as an indication of the model fit for each individ-

ual plant as follows:

R2 ¼ 1�
Pn

i¼1ðYi � ŶiÞ2
Pn

i¼1ðYi � �YiÞ2

where R2 is the coefficient of determination; yi are the

observed panicle count values for each individual

plant, Ŷi is the predicted value for that model and �Y

its mean value.

Variance components and heritability

Variance components for days to emergence of the

first 3, 5, 10 and 15 panicles, days to the inflection

point, panicle accumulation rate and theoretical

Table 1 Average monthly temperature, humidity, accumulated rain and accumulated evaporation between October and

December of 2011 at the experimental site.

Month

Temperature
Average relative

humidity (%)

Accumulated

rain (mm)

Accumulated

evaporation (mm)M�aximum (°C) M�ınimum (°C) Mean (°C)

October 19�2 11�6 15�4 74�2 51�5 169�3
November 25�4 14�5 20�0 61�7 110�6 245�6
December 24�4 15�6 20�0 68�0 78�6 257�1

© 2015 John Wiley & Sons Ltd. Grass and Forage Science
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potential number of panicles were estimated with

PROC MIXED of SAS using the model described above

but including genotype as a random effect. With these

variance component estimations, broad-sense herit-

abilities on a mean basis were estimated for each of

the attributes of the panicle cumulative curve:

H2 ¼ Vg

Vg þ ðVe=rÞ

where H2 is the heritability, Vg is the genotypic vari-

ance, Ve is the residual variance and r is the number

of replicates. Additionally, in order to describe the

association among curve attributes related to the onset

of the reproductive stage, Pearson’s correlation coeffi-

cients among traits and the ranking of the genotypes

for these traits were compared.

Results

Model comparison

Models based on individual plant data had a better fit

than whole-plot average models (Table 2). The com-

parison of models that assume a constant correlation

among data over time with models that use different

structures in the covariance matrix showed that the

autoregressive adjustment (AR1) performed signifi-

cantly better than the compound symmetry model.

The autoregressive covariance structure assumes that

observations which are more proximate are more cor-

related than measures that are more distant.

Logistic curve parameters

Statistically significant differences among genotypes

were found for some curve attributes (Table 3). No

statistical differences were found for potential number

of panicles (b0) and panicle accumulation rate. Poten-

tial number of panicles ranged from 32 panicles for

genotype B2 to 52 panicles for genotype D2 and for

panicle accumulation rate the values ranged from 687

for genotype B3 to 12759 for genotype D3. The num-

ber of days to 50% and 80% of b0 ranged from a min-

imum of 19 and 23 days for genotype C1 to a

maximum of 27 and 31 days for genotype A2 respec-

tively. The number of days to 50% of b0 was signifi-

cantly higher in genotypes D1 and A2 compared to

genotypes B2 and C1. For number of days to 80% of

b0, genotypes C2 and A2 showed the longest cycles,

while the parameter was significantly lower for C1.

The AUC was different for the different genotypes

(Table 3). Genotypes D2 and B1 had the highest

cumulative area, and genotypes C1, C2 and B2

showed the lowest values of AUC. The model fit was

very good in most of the cases with R2 values higher

than 0�8 (Table 3).

Heritabilities

Very high broad-sense heritability values were

obtained for attributes of the panicle accumulation

curves associated with cycle duration or initiation

traits (H2 > 0�80), including number of days to 50%

and 80% of b0 and days to a given low number of

panicles. On the other hand, lower heritabilities were

found for potential number of panicles and panicle

accumulation rate (Table 4).

Association among flowering date curve attributes

In spite of their nonlinear relationship, the curve attri-

butes that describe the flowering date of a given mate-

rial produced a very similar ranking of the genotypes

as panicle accumulation progresses. However, the

order of the genotypes changes for relationships of the

curve parameters that include fractions of the poten-

tial number of panicles (Fig. 1a). There is a strong cor-

relation among the days until the emergence of 3, 5,

10 and 15 panicles, with the correlation decreasing

with the number of panicles. Correlation between

days until the emergence of panicles and the number

of days to 50 or 80% of the potential number of pani-

cles is low (Fig. 1b).

Table 2 Model comparison for count data where models of whole-plot average with no correlation in time, whole-plot average

with autoregressive correlation in time, single plant with compound symmetry correlation and single plant with autoregressive

correlation in time were compared by likelihood ratio test (LR test).

Model 2 Res Log Pseudo-Likelihood LR test

Whole-plot average data with compound symmetry correlation in time 14453�6
Whole-plot average data with autoregressive correlation in time 9846�0 *

Single plant with compound symmetry correlation in time 7693�6 *

Single plant with autoregressive correlation in time 3539�1 *

*Significant at the probability level of P < 0�05.

© 2015 John Wiley & Sons Ltd. Grass and Forage Science
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Discussion

There is no general agreement on the actual physio-

logical and developmental processes that explain

variations in flowering date and panicle number,

although temperature has been reported as the pri-

mary factor that defines the time between tiller and

inflorescence emergence (Pearson and Shah, 1981).

Several studies have described morphological develop-

ment in response to environmental variation such as

photoperiod and cumulative degree days in relation to

biomass production and quality (Sanderson and Wolf,

1995; Mitchell et al., 1997). In perennial warm-season

grasses, stem developmental stages within a given

plant can vary widely (Moore et al., 1991). There are

results that show that variations in time to flowering

are directly associated with variations in leaf appear-

ance rates in switchgrass (Van Esbroeck et al., 1998)

or variation in total number of leaves to flowering in

switchgrass (Van Esbroeck et al., 1998) and maize

(Van Esbroeck et al., 2008). The use of accurate mod-

els to describe the progression of flowering of individ-

ual plants is essential to improve the statistical analysis

of this complex process as well as to estimate model

parameters of likely physiological meaning.

Analysis models

Our results show that models that utilize information

from individual plants had better fits compared to

those that only use average plot information. Addi-

tionally, comparing different strategies to model the

variance–covariance matrix, we found that the autore-

gressive structure had the best fit. These results are

consistent with other studies on seed production and

flowering attributes in grasses, where different vari-

ance–covariance estimation approaches were com-

pared (Venuto et al., 2002; Sahramaa et al., 2004). The

autoregressive adjustment is a structure where the

count variable depends on its own previous values

Table 4 Estimation of variance components (kg ha�1)2 and broad-sense heritabilities (%) for main characteristics of panicle-

production curves.

Trait

Variance component

Heritability

Genotypic

(among genotypes)

Residual error

(among plots)

Subsampling error

(among plants,

within plots)

Flowering time

Days to 3 panicles 4�378 0�744 8�658 0�8955
Days to 5 panicles 4�788 0�539 8�409 0�9061
Days to 10 panicles 5�219 0�408 9�091 0�9068
Days to 15 panicles 5�394 0�327 11�704 0�8865
Number of days to 50% of b0 10�552 1�650 9�811 0�9480
Number of days to 80% of b0 7�818 2�594 27�87 0�8330

Curve characteristic

Potential number of panicles (b0) 22�077 28�943 213�310 0�6368
Panicle accumulation rate (b1e

�b2xi) 5�5487 0�9145 73�5878 0�5002
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Figure 1 Association among curve attributes on the mod-

elled curves. (a) Ranking of the adjusted genotypic means for

days to 3, 5, 10 and 15 emerged panicles and number of days

to 50% and 80% of the potential number of panicles per

plant. (b) Linear correlations among the curve attributes.
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(Little et al., 2006); thus, it is advantageous to follow

each plant individually and incorporate this informa-

tion into the model of analysis if possible. Further-

more, as the flowering process is asynchronous among

individual tillers, mean values from several individuals

may lead to an inaccurate description of flowering.

Sampling protocols, as well as data analysis and inter-

pretation can be further enhanced by taking into

account the differential response of different tiller age

classes. This would enable the establishment of mean-

ingful relationships between flowering dynamics and

environmental conditions.

Our experimental data were well described by the

logistic regression models, and the adjusted curves

were successfully used to extract several individual

attributes of flowering behaviour, allowing the com-

parison of genotypes in terms of potential panicle

accumulation, panicle accumulation rate and days to

the emergence of 3, 5, 10 and 15 panicles. From a

practical point of view, these measurements can be

informatively used for germplasm characterization in

perennial warm-season grasses with indeterminate

flowering. Differences among genotypes for days to

the emergence of a given low number of panicles

were statistically significant. Despite the underlying

nonlinear association among these variables, the rank-

ing of the genotypes resulting from all of them

remained generally the same. On the other hand, the

ranking of genotypes for days until 50 or 80% of the

potential number of panicles is different, probably due

to the different potential number of panicles of the

genotypes. Therefore, correlation among days to the

number of 3, 5, 10 and 15 panicles remains high

enough to justify the use of few panicles when

characterizing flowering dates in big germplasm

collections.

The AUC analysis as a statistical tool has success-

fully been used in areas such as medicine and life sci-

ences in general. However, this methodology is not

appropriate for all cases (Austin, 2007), and its predic-

tive abilities were reported to be limited because of

problems of parameter overestimation (Manel et al.,

2002). Because of its widespread use, evaluation of

this methodology was considered necessary in this

particular context. In our case, differences between

genotype means were found using the AUC; however,

it showed several limitations for the description of

panicle-emergence dynamics. The same AUC value

can be explained by different combinations of curve

attributes. For example, when comparing genotypes

A2 and C1, both materials had non-significantly differ-

ent low AUC values; however, the number of days to

3, 5, 10 and 15 panicles, and the number of days to

50% and 80% of the potential number of panicles

were significantly different (Fig. 2). For this reason,

parameter characterization of each curve was consid-

erably more informative than the AUC analysis.

Variability and heritability

Statistical analysis of panicle accumulation curves

showed a different behaviour in flowering time when

analysed by genotype. The estimation of number of

days to 50% of the potential number of panicles is

informative because it is the point of maximum pani-

cle accumulation rate. It has been shown that close to

10 days after panicle emergence, Paspalum seeds ripen

and detach from the mother plant (Burson et al.,

1978). Consequently, after the same period of time

from the number of days to 50% of the potential

number of panicles, the highest number of seeds avail-

able for harvest is expected to occur. The number of

days until the maximum rate in the panicle accumula-

tion curve showed differences among genotypes that

exceeded 1 week in several cases which were not sta-

tistically significant. Likewise, no statistically signifi-

cant differences were found among genotypes for

potential number of panicles. Because of the implica-

tions these parameters may have for management, it

is probably reasonable to further analyse these differ-

ences using more powerful experimental designs and

multiple environments.

The analysis of environmental influence on the

reproductive behaviour of these genotypes was

approached through the estimation of the heritabilities

of the cumulative curve attributes during a flowering

season. High broad-sense heritability estimates have

been found for days to flowering in other grasses; for

example, heritability values higher than 90% have

been reported both for summer annual grasses such as

rice (Sadegui, 2011; Seyoum et al., 2012) and perenni-

als such as switchgrass (Van Esbroeck et al., 1998).

The high heritability calculated for days to a given
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types with AUC that did not differ significantly in the experi-
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number of panicles suggests that differences among

genotypes in a given environment for the onset of

flowering in each growing season are largely con-

trolled by the genetic regulation of some morphophys-

iological trait. In other warm-season perennial grass

species, the number of phytomers per tiller is consid-

ered to determine the time elapsed between tiller

emergence and anthesis, and it can be interpreted as

an indicator of adaptation to the length of the growing

season in its region of origin (Casler et al., 2004).

Compared to other morphological tiller traits, the

number of phytomers per tiller shows lower environ-

mental plasticity (Boe and Casler, 2005). On an indi-

vidual plant basis, it is expected that the final number

of panicles is affected by the potential number of til-

lers initiating growth in a given season (Ott and Hart-

nett, 2012). Potential number of panicles and panicle

accumulation rate are known to be strongly influ-

enced by environmental conditions (Ott and Hartnett,

2011), in agreement with our own results for those

traits (Table 4).

Conclusions

This study successfully characterized genetic variability

in panicle-production curves within a diverse collec-

tion of pentaploid P. dilatatum genotypes during one

season. The approach can be applied in the future to

different collections or environmental conditions to

further characterize the process and its biological basis.

We showed by using individual plant information and

modelling, that the correlation of repeated measure-

ments helped to effectively describe panicle accumula-

tion curve attributes by the use of nonlinear

regression models. Curve attributes related to the tim-

ing of the onset of flowering were highly heritable as

was the moment of highest rate of panicle emergence.

Consequently, selection may be applied to this collec-

tion for these traits. From a practical point of view,

the number of days to the emergence of the first 3, 5,

10 or 15 panicles is an easily recorded heritable trait

that can be used instead of a full characterization of

reproductive behaviour to evaluate the phenological

variability of a collection. We have also shown that

regardless of the nonlinear relationship among the

curve attributes, the number of days to the emergence

of the first few panicles yields a genotypic ranking that

is the same as the ranking when more panicles are

considered. Our study focused on designing an

approach to effectively describe the observed variabil-

ity in flowering dynamics in a variable germplasm col-

lection. To gain further understanding of the

physiological basis of each component, a thorough

description of tiller developmental morphology and

the possible interactions of the estimated genetic

components with environmental factors such as pho-

toperiod and/or temperature should be analysed.
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