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Luciana Vera-Candioti3
Mário Cesar Ugulino de
Araújo2
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Héctor C. Goicoechea3

1Facultad de Ciencias Exactas y
Naturales, Universidad
Nacional de La Pampa and
Instituto de Ciencias de la Tierra
y Ambientales de La Pampa
(INCITAP), Santa Rosa, La
Pampa, Argentina
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Research Article

Second-order capillary electrophoresis
diode array detector data modeled with the
Tucker3 algorithm: A novel strategy for
Argentinean white wine discrimination
respect to grape variety

Data obtained by capillary electrophoresis with diode array detection (CE-DAD) were mod-
eled with the purpose to discriminate Argentinean white wines samples produced from
three grape varieties (Torrontés, Chardonnay, and Sauvignon blanc). Thirty-eight samples
of commercial white wine from four wine-producing provinces of Argentina (Mendoza,
San Juan, Salta, and Rio Negro) were analyzed. CE-DAD matrices with dimensions of 421
elution times (from 1.17 to 7.39 minutes) × 71 wavelengths (from 227 to 367 nm) were
joined in a three way data array and decomposed by Tucker3 method under non-negativity
constraint, employing 18, 18 and six factors in the modes 1, 2 and 3, respectively. Us-
ing the scores of Tucker model, it was possible to discriminate samples of Argentinean
white wine by linear discriminant analysis and Kernel linear discriminant analysis. Core
element analysis of the Tucker3 model allows identifying the loading profiles in spectral
mode related to Argentinean white wine samples.
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1 Introduction

The wine composition varies depending of the grape type
used in its production and its geographical origin. Con-
sequently, these factors will influence on its commercial
value [1]. Wine is a complex mixture which besides water and
ethanol contains many organic compounds such as polyphe-
nols, flavonoids [2], inorganic compounds minority among
other classes of compounds. They turns wine into a prod-
uct appreciated all over the world and considered a product
with beneficial health properties, among other factors, by its
antioxidant power [3].

Information on wine composition can be accessed by
instrumental analysis techniques and used as a fingerprint
for authenticity of a wine respect to grape variety or even of
its geographical origin [4]. The wine fingerprint information
can be useful in various fields like economy, plant physiology
study, health and forensic purposes [5].

Food fingerprint approaches, also known as non-target
analysis, have become a powerful tool for quality control of

Correspondence: Héctor C. Goicoechea, Laboratorio de Desar-
rollo Analı́tico y Quimiometrı́a (LADAQ), Cátedra de Quı́mica
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many products, for example, edible oil [6], fruit juice [7], alco-
holic beverage [8], milk powder [9] among others [10]. These
methodologies have been developed for different purposes,
like to vouch authenticity brand or geographical origin [11,12]
to detect presence of adulterants compounds [13].

Hyphenated techniques as liquid chromatography with
diode array detection (DAD) or MS provide methodologies
with potential for food fingerprint development. Recently,
capillary electrophoresis (CE) has emerged as a powerful an-
alytical tool able to promote, in some cases, better separation
than traditional HPLC. As discussed by Gomez et al., in his
recent review paper, the main advantage of CE, when com-
pared to traditional methods to analyze wine samples is that
almost no pretreatment of the sample is needed beyond a sim-
ple filtration [14]. The latter fact represents a major advantage
from the viewpoint of green chemistry [15].

CE with DAD instrument furnishes second-order data
which are able to extract important analytical information
about the sample [16]. This type of data can be suitably mod-
eled with mathematical algorithms giving loadings profiles
which can be associated with pure compounds present in the
sample even in the presence of strongly overlapped peaks [17].

The mentioned mathematical algorithms are known as
multiway methods [18], being some of the most popular
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Figure 1. CE-DAD data: (A) typical landscape; (B) electrophero-
gram recorded at 227 nm for Chardonnay (solid red line), Sauvi-
gnon Blanc (Blue dotted line) and Torrontés (cross black line); (C)
spectral profile.

parallel factors analysis (PARAFAC) [19], multivariate curve
resolution with alternating least squares (MCR-ALS) [20]
and Tucker methods [21]. The latter is probably the least
known, certainly for generating more complex models which
have non-trivial interpretation. On the other hand, a Tucker
method variant known as Tucker3 presents a great advantage:

the ability to model properly data with certain drawbacks like
remarkable peak misalignment and shape deformation in a
data mode associated with deficiency rank in the other one.
This drawbacks, usually found when modeling CE-DAD data,
can represent limiting factors to traditional methods [22].

Ledyard Tucker, working with psychometric data, devel-
oped a series of methods which are known as Tucker meth-
ods [23]. These methods are nowadays known as multidi-
mensional principal component analysis (PCA) or multiway
PCA [24]. The Tucker3 methods, when applied to three way
arrays X (I × J × K), with elements xijk, produces the load-
ings matrix A (I × L), B (J × M) and C (K × N), where ail,
bjm and ckn are the elements of the loadings matrices A, B
and C, respectively. The number of columns (L, M and N) in
the loadings matrices corresponds to the number of factors
in each mode. Interestingly, unlike of traditional multiway
methods, in Tucker-3 decomposition different amounts of
factors in each mode are permitted (i.e. L � M � N), being
this feature of great versatility. The mathematical expression
representing the Tucker3 model is given in Eq. (1).

�ijk =
L∑

l=1

M∑

m=1

N∑

n=1

ailbjmcknglmn + eijk (1)

where eijk are the elements of three-way array E (I × J × K)
containing unmolded information by Tucker3 and glmn are
the elements of three-way array G (L × M × N) called core.
The core elements are the magnitude of the interaction be-
tween factors in different modes. Another striking difference
of Tucker-3 method with respect to other multiway methods
is that G is non-diagonal [24, 25]. This means that there is
interaction between factors.

Let suppose a Tucker3 model with complexity 3, 4, 3
(L = 3, M = 4 and N = 3), where the element g121 has very low
value (near zero), this means that the interaction between the
first factor in mode 1, second factor in mode 2 and first factor
in mode 3 is no significant. On the other hand, if g221 has a
high value, the interaction between second factor in mode 1,
second factor in mode 2 and first factor in mode 3 has sig-
nificant importance for the model. These cross-interactions
between factors present in Tucker3 models provide flexibil-
ity but increase complexity, becoming the interpretation in a
non-trivial fact [24].

As in other multiway methods, an important step is the
factor number determination, in this case for each mode.
Several approaches can be used: chemical information about
the system, cross validation and the increase in variance
explained in terms of the number of factors used. A useful
method for choosing the number of components in Tucker3
analysis, which was implemented herein, is based on in-
spection of the eigenvalues of the matrices Xa (I × JK), Xb

(J × IK) and Xc (K × IJ), obtained with frontal planes of X
(I × J × K) [24–26].

In the present work, an investigation of white wine sam-
ples produced from three varieties of Argentinean grapes,
namely Chardonnay (Char), Sauvignon Blanc wine (Sau) and
Torrontés (Tor) is presented. Information on the composition
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Figure 2. Eigenvalues plot of the frontal plane of X, mode 1(circle
line), mode 2 (solid line) and mode 3 (square line).

of the white wine samples was accessed using CE-DAD data,
modeled by Tucker3 method for the purpose of identifying
loadings profiles that may be a fingerprint of the white wine
samples with respect to grape variety. In addition, an inves-
tigation of the discriminating power of the CE-DAD data by
linear discriminant analysis (LDA) and Kernel linear discrim-
inant analysis (K-LDA).

2 Materials and methods

2.1 Samples

Thirty-eight samples of commercial white wine from four
wine-producing provinces of Argentina (Mendoza, San Juan,
Salta, and Rio Negro) were included in this study: 11 Tor-
rontés wine (from Mendoza, San Juan, Salta, and Rı́o Negro),
14 Chardonnay wine (from Mendoza and San Juan), and 13
Sauvignon Blanc wine (from Mendoza, San Juan, and Rı́o
Negro). Wines samples were selected from the 2011 to 2013
vintages. The alcoholic content ranged from 12.2 to 13.8%
vol/vol ethanol. All were bought from a local supermarket.

2.2 CE-DAD measurements

All experiments were conducted on a CE system (Agilent
Technologies, Waldbronn, Germany) equipped with a DAD.
An uncoated fused silica capillary of 40 cm total length
(31.5 cm effective length) and 75 �m inner diameter (Mi-
croSolv Technology Corporation, Eatontown, NJ, USA) was
used. Separation was performed by applying a voltage of
24 kV and with a typical current of approximately 80 �A.
The cartridge was maintained at 25.0°C. The electrophero-
grams were recorded during 10 min, and the second-order
data were obtained by recording UV spectra between 189 and
401 nm each 2 nm at 0.3 s steps. The hydrodynamic injection
was performed in the positive electrode of the capillary by
applying a pressure of 40 mbar for 8 s.

To condition and activate the capillary, daily rinses were
performed with 1.0 mol/L NaOH, ultrapure water, and BGE
for 10 min each. The BGE consisted of a mixture of Na2B4O7
with a concentration of 10 mmol/L and SDS with a concen-
tration of 20 mmol/L, adjusted to pH 9.40.

To remove substances adsorbed on the capillary wall, the
capillary was flushed between runs with 1.0 mol/L NaOH,
ultrapure water, and BGE for 3 min each. At the end of the
day, the capillary was washed with 1.0 mol/L NaOH (5 min)
and ultrapure water (5 min) and then air-dried for 3 min.

2.3 Data analysis and software

Initially, the working range was selected by visual inspection
of CE-DAD arrays and it was maintained only informative
region. The working region corresponds to CE-DAD matrices
with size 421 elution times (from 1.17 to 7.39 min) x 71
wavelengths (from 227 to 367 nm). Following, these matrices
were arranged in a three way array X of size: 38 samples x 421
times x 71 wavelengths.

Three-way array decomposition was carried out
by Tucker3 using N-way toolbox [27] available in
http://www.models.life.ku.dk/nwaytoolbox in MatLab R© en-
vironmental [28]. The model complexity in each instrumen-
tal mode, was based on inspection of the eigenvalues of the
matrices Xa (I x JK), Xb (J x IK) and Xc (K x IJ), obtained
with frontal planes of X (I x J x K). The Tucker decomposi-
tion output information was used in fingerprint analysis and
the elements of the A matrix were used for discrimination
propose by LDA and Kernel-LDA.

3 Results and discussion

3.1 CE-DAD data

In Fig. 1A a typical CE-DAD landscape for one type of white
wine investigated in this study is displayed. As can be seen,
the CE-DAD data has many overlapping peaks correspond-
ing to the complex mixture of chemical compounds which
are present in the white wine. The latter fact can be better
appreciated by visual inspection of Fig. 1B, which displays
the electropherograms recorded at 227 nm for two Chardon-
nay wine samples. As can be seen, a remarkable peak mis-
alignment and shape deformation in electrophoretic mode is
produced.

In addtion, considering the electropherogram of the
Chardonnay wine samples (solid black line) in Fig. 1B, for
example, seventeen peaks can be identified by visual inspec-
tion, disregarding the possibility of full co-elution. But, when
examining the spectra corresponding to the 17 peaks in the
maximum absorbance, several peaks have similar spectra,
this is shown for the case of peak 3, 6 and 13 e.g. (see
Fig. 1C). This is because many of the compounds in white
wine has the same chromophores. this effect is exacerbated
when comparing samples from different varieties of grapes.
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Figure 3. LDA results: (A) linear discriminant function
plot (DF1 x DF2), (B) Kernel discriminant function plot
(DF1 x DF2) and (C) Fisher loading plot, DF1 (black bars) and
DF2 (white bars). Chardonnay (blue circle), Sauvignon Blanc (x
red) and Torrontés (green cross).

From the point of view of chemometrics, most multi-
way methods assume that each chemical compound is as-
sociated with an instrumental profile (electropherogram and
spectrum in this case), which is invariable in shape and po-
sition. Peak misalignment of the samples to sample allows a
single chemical compound, has different retention times and

electrophoretic profile in different samples. This peculiarity
makes the data nontrilinear, precluding the use of trilinear
algorithms as PARAFAC.

An alternative would be modeling with MCR-ALS (with
matrix augmentation in the column wise mode), which can
solve the problem of peak misalignment and shape defor-
mation in electrophoretic mode. But for this to be possible,
spectral profiles should be different from each other, which
does not occur in this case. The consequence of this simi-
larity between the spectra of different compounds is that the
CE-DAD matrix data will be rank deficient, which constitutes
a problem of considerable complexity from the data model-
ing point of view. MCR-ALS can not provide good solutions
for data presenting peak misalignmen, shape deformation
and rank deficiency, simultaneously. For these reasons, the
Tucker3 method, which allows using a different number of
factors in each mode (see above), have been chosen for mod-
eling the present data.

3.2 Tucker3 analysis

Due to the high data complexity comented above, Tucker3
algorithm was chosen to model CE-DAD matrices. Initially,
the number of factors (or model complexity) has been defined
by inspection of the eigenvalues (see Fig. 2) of the matrices
Xa (38×29891), Xb (421×15998) and Xc (71×2698), obtained
from frontal planes of X (38×421×71).

As can be appreciated in Fig. 2, two factors are suggested
in all modes. However, the model (2 2 2) explains only about
77% of data variance. This suggests that a increased number
of factors should be used in order to build a model which
explains a larger percent of the variance. Thus, a visual in-
spection of the zoom in Fig. 2 suggests that the number of
eigenvalues selected could be changed to 18, 18 and 6, for
modes 1, 2 and 3, respectively.

The large number of factors in modes 1 and 2 agrees
well with the complexity of the CE-DAD data, in which sev-
eral peaks appear in electropherograms. In addition, many
of these peaks corresponds to compounds with higly simi-
lar spectra. The latter fact explains that only six factors are
needed in mode 3. Interestingly, the complex model which is
represented as (18 18 6) corresponds to 95% of the variance
of the data.

Tucker3 was implemented on the CE-DAD data employ-
ing the number of factors indicated above, and imposing an
unique constraint: non-negativity in all modes. Although the
concentration profiles obtained by CE-DAD data decompo-
sition must be unimodal, in this case the unimodality was
not fulfilled, certainly due to remarkable peak misalignment
and shape deformation. When this constriant was used, the
Tucker3 algorithm did not achieve convergence. As output of
Tucker3 decomposition three matrices were obtained, con-
taining the loadings A(38 × 18), B(421 × 18) and C(6 ×
71). They correspond to instrumental modes concentration,
electropherogram and spectra profiles, respectively. Besides,
a G core (18×18×6) is obtained after the modeling, whose
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Table 1. Significant core elements used for white wine discrimination purpose

Factors in mode 2 (electropherograms) Factors in mode 3 (spectral)

1 2 3 4 5 6

1 0.54 0.29 0.04 0.05 0.10 −0.01
2 0.43 −0.42 0.24 −0.04 0.06 0.00
3 0.10 −1.00 0.00 −0.34 −0.21 −0.02
4 −0.29 −0.01 0.05 0.08 −0.09 0.10
5 −0.23 −0.08 −0.36 −0.13 −0.32 −0.02
6 −0.57 0.32 0.04 −0.05 −0.13 −0.06
7 0.40 0.68 −0.02 −0.03 0.07 −0.13
8 0.22 −0.24 −0.09 −0.06 −0.12 0.01
9 0.01 −0.02 0.02 0.03 0.03 0.00
10 0.15 −0.17 0.01 0.00 0.04 −0.02
11 0.25 0.30 0.02 0.26 0.19 0.11
12 0.35 0.28 0.21 0.11 0.25 0.04
13 −0.13 0.30 0.11 0.01 0.05 −0.06
14 0.65 0.11 0.06 0.17 0.23 0.01
15 0.16 0.14 0.03 0.03 0.11 −0.03
16 0.18 −0.36 −0.06 −0.07 −0.08 0.06
17 0.14 −0.04 −0.18 −0.07 −0.17 0.00
18 −0.09 −0.15 −0.20 −0.01 −0.13 0.00

elements correspond to the magnitude of the interaction be-
tween factors in different modes.

After that, a linear discrimant analysis performed using
the information regarding the samples contained in the A
Tucker3 loading matrix. The obtained results are shown in
the scatter plot of discriminant functions DF1 vs DF2 (see
Fig. 3A). As can be seen in the scatter plot suggests that, the
CE-DAD data contain the appropriate information to discrim-
inate different types of Argentine white wine with respect to
grape variety. However due to the matrix complexity, wine
samples discrimination can be improved using non-linear
approaches. Thus, A (Tucker output) matrix was projected in
a gaussian space to obtain the Kernel matrix (K) sized 38×38.
Using the new matrix K, was carried out a linear discriminant
analysis. Scatter plot of discriminant functions DF1 vs DF2
by Kernel-LDA is displayed in Fig. 3B.

As can you be seen, in both plots, white wine samples
form clusters according to the type of grape, and it is pos-
sible to note that the Fisher scores of the Torrontés wines
has lower scattering. Moreover, Fisher scores corresponding
to Chardonnay and Sauvignon Blanc wines present high dis-
persion when compared to Torrontés scores. It can also be
observed that wine Chardonnay and Sauvignon Blanc wines
samples show a small overlapping in linear model, in other
hand this overlap is resolved by non-linear approach.

Also with respect to the linear discriminant analysis, it
is possible to observe that the first discriminant function
(DF1) is associated with discrimination of Chardonnay wine
samples owing to this variety of wine presents the larger
values of DF1. On the other hand discrimination of samples
of the type Sauvignon Blanc and Torrontés is mostly based
on the second discriminant function (DF2).

The Fisher loading plot for DF1 (black bars) and DF2
(white bars) can be appreciated in Fig. 3B. Note that the input
data (variables) to the LDA model was the A(38 × 18) matrix
obtained in Tucker3 decomposition. Thus, each column in
A has a Fisher loading in DF1 and a Fisher loading in DF2.
A variable with high value of the Fisher loading indicates a
high discriminant power. It is valid to remember that a Fisher
loading has a similar interpretation than a PCA loading.

As can be seen in the Fig. 3B, the largest contribu-
tion in DF1 and DF2 corresponds to the first variable (the
first A column). In other words, this means that Tucker
factor 1 (corresponding to the first A column) is the most
significant one to discriminate wine the Chardonnay, Tor-
rontés and Sauvignon Blanc samples.

As previously mentioned, the core elements repre-
sent the magnitude of the interaction between factors in
different modes. Therefore, Tucker3 factors in mode 2
(electropherograms) and mode 3 (spectra) presenting signif-
icant interaction as the factor 1 in concentration mode are
also related to discrimination of white wine samples. An in-
spection of the G values reveals the Tucker3 factors in the
electropherogram and spectral modes with significant inter-
action with the factor 1 (concentration mode). In Table 1 are
shown the tensor G (l × m × n) normalized values corre-
sponding to the slice 1 × m × n; were considered significant
the triads with g(lmn) value greater than or equal to 0.5.

As can be seen in Table 1, the highlighted values corre-
spond to the triads g1,1,1; g1,1,4; g1,1,14; g1,2,3 and g1,2,7. In
other words, this means that in electropherogram mode are
important the factors 1, 3, 4, 7 and 14. Moreover in the spec-
tral mode only the factors 1 and 2 show greater contribution
for discrimination proposes.
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Figure 4. Tucker3 loading profiles in spectral mode.

Loading profiles corresponding to the six factors extracted
in the spectral mode are displayed in Fig. 4. The loadings vec-
tors are directly related to the pure spectra of constituents of
white wine samples. Interestingly the profiles represented in
Fig. 4, retrieved by the Tucker3 algorithm, show high agree-
ment with white wine constituents UV-VIS spectra profiles
reported in literature [29–31]. In particular, the factors 1 and
2 (represented by the blue and black solid lines, respectively)
are directly linked to varietal discrimination of Argentinean
white wine samples. Comparing these two profiles with spec-
tral profiles shown in the literature [29–31] it is possible to see
remarkable similarity with the spectra profiles of the phenolic
compounds, rutin and quercetin reported in [30].

It is known that phenolic compounds, as well as, gallic
acid, protocatechuic acid, caffeic acid, salicylic acid, catechin,
quercetin, resveratrol, rutin among others, contribute in an
important manner to wine characteristics like taste and bitter-
ness, for example. In addition, the same chemometric studies
described above were performed to assess vintage discrimina-
tion in white wines. However, the phenolic composition has
shown to have little influence on the vintage in white wines.
Therefore, the grape variety was the largest contributing fac-
tor to the phenolic composition of Argentinean wines. Thus,
it was concluded that concentration of phenolic compounds
can vary of wine to wine as a function of several factors, one
of the most important is the grape type, indicating the po-
tential application of this technique for variety establishment
purposes.

This fact explains why Tucker3 factors related to this
kind of compounds are precisely those containing informa-
tion able of discriminating Argentinean white wine with re-
spect to grape variety.

4 Concluding remarks

In this work it was shown that valuable information about the
grape variety employed in the production of an Argentinean

white wine can be accessed through CE-DAD data modeled by
three way data decomposition based on the versatile Tucker3
algorithm. This approach overcomes the drawbacks origi-
nated when using such complex data. Despite that some
factors can limit the precision of the classification models,
such as the number of samples and the similarities between
some wines due to climate, soil, or other characteristics, this
modeling allows discriminating the white wine samples from
Argentina with respect to grape variety.
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