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ABSTRACT  

We investigate the optical and morphological properties of gold nanoparticles grown by reducing 

a gold salt with Na2S. Lasers are tuned to the observed plasmon resonances, and the optical 

forces exerted on the nanoparticles are used to selectively print individual nanoparticles onto a 

substrate. This enables us to combine dark-field spectroscopy and scanning electron microscopy 

to compare the optical properties of single nanoparticles with their morphology. By arresting the 

synthesis at different times, we are able to investigate which type of nanoparticle is responsible 

for the respective resonances. We find that thin Au nanotriangles are the source of the observed 

NIR resonance. The initial lateral growth of these triangles causes the plasmon resonance to 
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 2

redshift into the NIR, whereas a subsequent thickening of the triangles and a concomitant 

truncation lead to a blueshift of the resonance. Furthermore we find that the nanotriangles 

produced have extremely narrow linewidths (187±23 meV), show nearly isotropic scattering and 

are stable for long periods of time. This shows their vast potential for applications such as in-vivo 

imaging and bio-(chemical) sensing. The method used here is generally applicable to other 

syntheses, and shows how complex nanostructures can be built up on substrates by selectively 

printing NPs of varying plasmonic resonances. 

KEYWORDS  

Optical printing, gold nanoparticles, cancer therapy, nanoshells, plasmon, nanoparticle sorting  

 

TEXT                         

Noble metal NPs possess remarkable properties that have led to applications in fields ranging 

from solar energy harvesting1-2 and photodetection3-6 to bio-(chemical) sensing,7 nanomedicine8 

and cancer therapy.9-10 One of the main advantages these astounding particles have is the 

collective oscillation of their conduction band electrons, generally known as a localized surface 

plasmon (LSP). This leads to an enhanced optical cross section whose resonance position can be 

tuned by modifying not only the material, but also the size and shape of the NP. Especially 

interesting for biomedical applications are NPs whose resonance is shifted to the near infrared 

(NIR) window, a region of minimum absorption in biological tissues between 750 and 900 nm.11 

Nanoshells, comprising a thin metallic film surrounding a dielectric core have proven especially 

good for this, as the resonance position can be tuned by controlling the ratio of the core to shell 

radius.12 One of the proposed synthesis methods of nanoshells consists in the reduction of an Au 
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 3

salt, HAuCl4, by Na2S (Figure 1a).13 It was said that this leads to spherical nanoshells, less than 

40 nm in size, with resonances in the NIR window, a strong sensitivity to the surrounding 

medium and an extremely narrow line width.14-15 The actual existence of these NPs, however, is 

a matter of dispute, as some researchers argue that the observed features are either caused by 

non-spherical Au NPs16-17 or NP-aggregates.18-19 Settling this dispute is no easy feat and requires 

a combination of strategies. Firstly, the synthesis needs to be carried out in a manner that one can 

investigate the NPs present at any given time during the procedure, as their optical properties 

change during their growth process. Next, the NPs at each time step need to be separated and 

their optical properties correlated to their morphology.  In case there are many types of particles 

in the dispersions then one needs a large amount of statistics to be able to draw significant 

conclusions. Optical forces present an extremely beneficial method for the separation of the 

individual NPs. Using the strong scattering force acting on plasmonic NPs at resonance it has 

been possible to print such particles at specific locations onto hard substrates,20-22 onto 

phospholipid membranes23-25 or even to inject them into cells.24, 26 This effect, termed optical 

printing, uses a laser tuned to the resonance maximum of the plasmonic NP and consequently the 

strong axial optical force to propel the NPs along the Poynting vector. Only nanoparticles with 

particle plasmons in resonance with the laser wavelength experience a force strong enough to 

propel them towards the surface where they are then affixed. Once a nanoparticle is printed onto 

the substrate, the printed nanoparticle then interacts with the laser beam, preventing subsequent 

printing of additional nanoparticles.22, 27 Additionally, it has been shown that in a dispersion 

comprising two kinds of metallic NPs, each kind could be propelled in a different direction based 

on their localized surface plasmon resonance (LSPR), a first step towards NP sorting.28 

Page 3 of 29

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4

In this manuscript we develop a strategy to settle the aforementioned dispute. The synthesis of 

the NPs is carried out and arrested at specified times by addition of Na2S. The NPs are then 

separated and fixed at specific locations on a substrate through an all-optical approach. By 

employing multiple lasers we can selectively print NPs whose LSPRs overlap with the laser 

wavelength. We can then combine dark field Rayleigh scattering and scanning electron 

microscopy (SEM) to compare the optical properties of the printed NPs with their morphology. 

Through this method we found that the NPs responsible for the strong NIR peak are not 

nanoshells, but actually thin Au nanotriangles.16-17 Additionally, we found that unlike in large 

nanoprisms, their optical scattering is nearly isotropic, likely due to their small size.29 Moreover, 

the nanotriangles possess a very narrow line width and also show a strong sensitivity to the 

refractive index of the surrounding medium. All of these features are prerequisites for sensing 

applications, for which these nanotriangles are highly adept. Finally, we propose a mechanism to 

explain the observed dynamics of the UV-Vis spectra of the NP dispersions during synthesis. 

 

RESULTS AND DISCUSSION  

Fabrication of the Au NPs was carried out in a two-step reaction according to previously 

published methods.13-14 Briefly, 10 mL of a 2 mM HAuCl4 solution were mixed with 12 mL of 

fresh 1mM Na2S solution. After two minutes 2 mL of 1 mM Na2S solution were added, giving a 

total molar S/Au ratio of 0.65. The reaction was then allowed to evolve for 3 hours and 

monitored every two minutes by means of UV-Vis spectroscopy (Figure 1b). The initial UV-Vis 

spectrum showed a strong peak at 527 nm with a shoulder on the short wavelength side and a 

very weak signal in the NIR region at 820 nm. As the synthesis progressed, the NIR signal 

rapidly redshifted within approximately 20 minutes while simultaneously gaining in intensity 
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 5

(Figure 1c). This peak subsequently blueshifted, initially increasing in intensity and then 

decreasing again until the peak merged with that of the strong peak in the visible region (see 

Supporting Information Figure S1). The signal in the green spectral region increased in intensity 

while only slightly redshifting to 533 nm during the synthesis. This signal is characteristic of 

small, spherical solid Au NPs with diameters in the range of 20-40 nm,30 while the NIR peak is 

the source of the dispute mentioned previously and whose origin we wish to clarify with this 

work. 
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Figure 1. (a) Scheme of the nanoparticle synthesis by reduction of HAuCl4 by Na2S. (b) Temporal 

evolution of the extinction spectrum during the synthesis. (c) Magnification showing the initial redshift 

during the first 20 minutes of the synthesis. TEM images of nanoparticles when arrested at (d) t1 and 

(e) t2. The scale bar is 100 nm. (f) AFM height distribution of nanotriangles from different syntheses, 

when arrested either at t1 or t2. Box size is 150 nm. 
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 7

In some of the previous studies the initial redshift was purported to stem from the growth of 

the core of the nanoshells. After 20 minutes the growth of the core terminated and the shell 

began to grow in thickness. This was said to be the reason for the subsequent observed blueshift 

of the NIR peak. To investigate these claims we wished to look into the NPs responsible for the 

NIR resonance at the point of the maximum redshift (time t1) and then at a later time during the 

blueshift (time t2), at an optimal position for biological applications, and at which these NPs have 

been traditionally analyzed.13-19 To this end we repeated the synthesis several times, letting it 

progress until the NIR peak position reached the desired wavelength. The synthesis was then 

arrested by adding an additional volume of 1 mM Na2S solution, also leading to high long-term 

stability of the suspensions  (cf. Figure S2).31 In each synthesis there were slight variations in the 

UV-Vis spectra, such as the maximum redshift or the speed of evolution; however the general 

trends were always the same. As a first step we looked at the morphology of the ensemble by 

means of transmission electron microscopy (TEM) on the two aforementioned dispersions. TEM 

images of both samples showed large areas covered with tiny (~ 5 nm) NPs (see Figure S3), 

which we thereupon removed via selective centrifugation. In the purified samples we found that 

the overwhelming majority of remaining NPs (75%) were spherical and between 15 and 40 nm 

in size (Figure 1d, e). The remaining 25 % of NPs turned out to be equilateral triangles. In the 

sample stopped at t1 the majority of these NPs showed were sharp-tipped with side lengths 

ranging from 60 to 100 nm (Figure 1d). The low contrast of the triangles indicates that they were 

much thinner than the spheres. This was confirmed by atomic force microscopy (AFM) 

measurements, which found these triangles to be 6.8 ± 0.7 nm thick (cf. Figure1f and S 4). 

Additionally, the AFM measurements confirmed that the round NPs were actually spherical in 

nature. In contrast to the t1 sample the sample arrested at t2 was found to contain predominantly 
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 8

triangles with strongly truncated or rounded corners (Figure 1e). While also having low contrast 

these triangles were found to be 8.8 ± 1.0 nm thick, which was slightly thicker than those 

observed in the t1 sample (see Figure 1f and Figure S4). A small amount of nanorods and more 

complex looking NPs were also found in both samples. With so many NPs present in each of the 

samples it was impossible to distinguish which of these were responsible for which features 

observed in the extinction spectra without investigating them individually. Additionally, the 

existence of the nanoshells could neither be confirmed nor refuted by these methods. 

Therefore we wanted to determine in which way the individual NPs contributed to the UV-Vis 

spectra and additionally see if nanoshells were present. Our approach consisted of optically 

sorting the NPs depending on their LSPR, printing them individually on substrates and then 

comparing their morphology via SEM and their optical properties through dark field Rayleigh 

scattering. To this end we coupled three lasers into an optical dark field microscope whose 

wavelengths λ1	�	532	nm,		λ2	�	808	nm,		λ3	�	1064	nm overlapped with the previously 

mentioned UV-Vis peaks (Figure 1b). A diluted drop of each of the dispersions was placed on a 

glass coverslip and imaged with a water immersion objective. The lasers were focused by the 

same objective onto the substrates, and printing monitored in the dark field microscope. Once a 

nanoparticle was printed, the substrate was shifted laterally by several microns. In this manner 

we were able to print rows of nanoparticles, which could then easily be found in the dark-field 

and electron microscopes (see Figures S5, 6). When using the 1064 nm laser, the printing could 

not be observed as easily in the dark field microscope. So, instead of waiting for a printing event, 

we continuously moved the substrate, in order to avoid long time exposure of printed 

nanoparticles. The end result however was very similar as for the other two cases.  
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 9

We wanted to concentrate on two specific points in the UV-Vis spectra, namely the NIR peaks 

in the t1 and t2 dispersions, marked as P1 and P2 in Figure 1b. At P1 NPs were printed rapidly 

within a matter of seconds using the 1064 nm laser, and all turned out to be sharp-tipped 

triangles with a large variation in side lengths centered on 70 nm, as confirmed through SEM 

(Figure 2a).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Nanoparticles printed from 

samples arrested at t1 and t2 using laser with the 

wavelengths λ1, λ2 and λ3 respectively. The 

scalebars are 100 nm. (b) Scheme of the 

selective printing process. 
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 10

Likewise, at P2 single NPs were printed easily employing the 808 nm laser. These turned out to 

also be triangles albeit with truncated or rounded edges (Figure 2a). Since there was also a weak 

signal present at P3 we also investigated the NPs responsible for this resonance. Printing events 

only occurred after several minutes, and the printed NPs turned out to be truncated or rounded 

triangles, like at P2. This indicates that there are hardly any NPs present in the solution with a 

plasmon resonance resonant with the laser. No round particles were printed at any of these 

points. However, when investigating P4 and P5 with the 532 nm laser, we were able to rapidly 

print single spherical NPs, approximately 40 nm in diameter. This method proved to be highly 

specific as each laser printed NPs of only one type of morphology (Figure 2b, Figures S5, S6). In 

none of the cases were the printed structures shown to be aggregates of NPs.  

In order to check whether the laser affects the nanoparticles during the printing process, we 

calculated the maximum temperatures of the gold particles by means of the finite element 

method (FEM, Comsol Multiphysics). With the laser powers used, the maximum temperature 

increase in the truncated triangles is only around 65 °C. For the sharp-tipped nanotriangles the 

temperature increase amounts to 245 °C (Figure S7). However this is significantly below the 

melting temperature of bulk gold and also below that of gold nanoparticles.32-33 Additionally, in 

heating experiments of gold nanorods, it was seen that while for thermal heating nanorods 

transformed completely to spheres at 250 °C within an hour, for laser-induced heating no 

changes were observed for heating temperatures of up to 700 °C.  Since our experiment more 

resembles the laser-induced heating, as the nanoparticles only experience these temperatures for 

a very short time due to the constant motion of the substrate, reshaping of the NPs should be 

negligible.34-35  
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 11

For a full investigation of the individual NPs, their respective morphology needed to be 

compared to their optical properties. To this end we acquired Rayleigh scattering spectra of 

optically printed single NPs. All of the spherical NPs showed a strong LSPR around 530 nm, 

with a width of approximately 400 meV comparable to that of the observed peak in the ensemble 

UV-Vis measurements (Figure 

3a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Single particle scattering spectra of 

printed nanoparticles using the laser 

wavelengths λ2 and λ3. Note the considerably 

decreased linewidth of the triangular 

nanoparticle indicating that the huge linewidth 

of the ensemble is due to inhomogeneous 

broadening. Scalebars are 100 nm. (b) 

Scattering cross sections calculated via FDTD 

of the printed nanoparticles matching the 

expected peak positions. Simulation parameters 

were radius = 20 nm for the sphere and side 

length = 80 nm, clip = 10 nm and thickness = 9

nm for the clipped triangle. 
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In contrast to this, the truncated nanotriangles all had resonances located between 750 and 800 

nm, which were significantly narrower, on the order of only 187	±	23	meV. This corresponds 

well to the values reported previously on the purported Au2S/Au nanoshells15 and suggests that 

the broad NIR peak in the UV-Vis spectra was caused by a large inhomogeneous broadening of 

the nanotriangles in the ensemble. Polarization-dependent measurements showed that the 

scattering from the nanotriangles was nearly isotropic, a feature generally ascribed to spherical 

NPs (cf. Figure S8). The narrow linewidth measured should allow for extremely sensitive bio-

(chemical) sensing applications, as slight shifts of the refractive index of the medium 

surrounding the NPs will lead to a large shift of the plasmon resonance (see Figure S9). Based on 

previous studies and using the values obtained from this analysis we carried out finite difference 

time domain (FDTD) simulations on the observed NP shapes.36-42 Using the images obtained 

from SEM, we are able to reproduce the spectra of the triangles and spheres (Figure 3b). 

To corroborate that the nanotriangles alone can reproduce the recorded UV-Vis spectra and 

explain the red- and subsequent blueshift of the NIR peak during synthesis we carried out a 

series of simulations and calculations. Statistics of triangle sizes acquired from TEM analysis 

showed that the side length of the nanotriangles grew during the redshift, reaching a maximum at 

the time t1 (Figure 4a). Additionally, the spread in side lengths became considerably broader with 
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time.  Simulated LSPR of sharp-tipped nanotriangles smaller than 50 nm is very weak and 

located between 650 and 750 nm (Figure 4b). This LSPR redshifts and greatly increases in 

intensity as the nanotriangles grow, reaching 1000 nm for triangles with 100 nm side length (cf. 

Figures S10, S11). For truncated triangles, the LSPR blueshifts as the degree of truncation 

increases, as depicted for triangles of nominal side length 80 nm (Figure 4c). An increasing 

thickness of both types of nanotriangles, which was measured with an AFM, also leads to a 

blueshift of the LSPR peak (cf. Figures S12, S13). FDTD simulations of the spheres showed an 

LSPR around 530 nm, confirming that they are solid Au spheres.14-15, 43 Combining these 

findings together we can fully explain the observed UV-VIS spectra (Figure 4d). To achieve this 

we estimated the distribution of triangle sizes obtained from the TEM, AFM and SEM 

measurements. We used this to weight the single particle cross sections, taking into account that 

the ratio of spheres to triangles was approximately 3:1. We compared the resulting individual 

spectra with the ensemble extinction spectrum obtained from the UV-Vis spectra at t1 (Figure 

4d). The heights of the individual cross sections are normalized with respect to the cross sections 

of the spheres. The intensity of the individual contributions from the nanotriangles nicely follows 

the NIR peak, and the intensity ratio of the signal from the spheres to that of the triangles also 

agrees with the experimental findings, validating the approach we have taken. This shows that 

the existence of solid Au nanotriangles can fully explain all of the observations made via UV-Vis 

spectroscopy. 
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Figure 4. (a) Side lengths of nanotriangles found before (above) and at (below) the maximum red shift. 

(b) FDTD calculations of extinction cross sections for sharp triangles of thickness, d = 7 nm, with 

varying side length, s. (c) Calculated extinction cross sections of clipped triangles with d = 9 nm, s = 

80 nm for different clip length, c. (d) Weighted spectrum of simulated nanoparticles (colored) in 

comparison to the measured ensemble spectrum (black). The size distribution of sharp triangles was 

taken from Fig. 4a, t = 30min and the intensities from Fig. 4b were weighted correspondingly. The 

spectrum of spherical 40nm gold nanoparticles was multiplied by three due to the ratio of spheres to 

triangles of roughly 3:1. The measured ensemble spectrum was normalized to the peak of the 

simulated spherical nanoparticles. (e) Monte Carlo simulation of the evolution of a sharp thin 

nanotriangle to a truncated thicker one for zero, 100, 1000, 2500, 5000 and 10000 Monte Carlo steps. 
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While the synthesis of different nanotriangles has been long investigated,44-46 studies on the 

structural changes of the NPs as their synthesis progresses are lacking.  It is known that particle 

shape results from two competitive phenomena: growth far from equilibrium (fast Au atom 

aggregation) that results in tip formation, and thermodynamics that tends to smooth out these 

instabilities by slow surface diffusion processes.47 We believe that the truncation of originally 

sharp-tipped nanotriangles is the result of both intraparticle Au atom diffusion and the Au 

incorporation from non-reduced Au species (from excess reactant) and the small NPs present in 

the solution through an Ostwald ripening process. Thus, depending on the reaction time, one of 

these two phenomena prevails, explaining the initial redshift (kinetics) and the final blueshift 

(thermodynamics) experimentally observed.   

We performed Monte Carlo (MC) simulations to mimic the structural transformations that 

sharp nanotriangles may experience in the presence of an Au atom source (for details see: 

Supporting Information). For the initial condition we started with a triangular Au NP with sharp 

edges surrounded by a random dispersion of Au atoms occupying 1% of the available sites 

(Figure 4e). Once the simulation commenced these Au atoms rapidly agglomerated, forming 

small clusters. These then condensed on the nanotriangles through an Ostwald ripening process. 

Mass transport by surface diffusion subsequently led to Au atoms wandering from the tips and 

sides to the large top surface, increasing the thickness and rounding the sharp tips. Considering 
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all of the obtained results we have devised a model to explain the observed dynamics of the UV-

Vis spectra during the synthesis. Initially the synthesis produces two main types of NPs, solid Au 

spheres and thin triangles. As the synthesis progresses the spheres become slightly larger in size, 

while the triangles became significantly larger. Once the latter reach side lengths of ≈50 nm, 

their extinction cross sections become large enough to be discernible from the spheres in the UV-

Vis spectra. As the synthesis progresses triangles become larger, but at different rates, so the 

spread in sizes becomes greater, leading in turn to a larger inhomogeneous broadening. The 

triangles then become truncated and thicker, producing the observed blue-shift and explaining 

the slight decrease in inhomogeneous broadening, as the LSPR positions of thicker nanotriangles 

are not quite as dependent on side length as the thinner ones are. This model also agrees with 

experiments showing the formation and growth of silver nanotriangles.48 

 

CONCLUSIONS 

In summary we have used optical printing and single particle spectroscopy to investigate the 

synthesis of Au NPs by the reduction of HAuCl4 with Na2S. UV-Vis spectra showed a strong 

peak in the NIR that first redshifted in time and subsequently blueshifted. By stopping the 

synthesis at different times and employing lasers tuned to the UV-Vis peaks of these dispersions, 

we were able to determine which NPs were responsible for the observed resonances. Single NPs 

whose resonance overlapped with the laser wavelength were printed onto substrates. Rayleigh 

scattering spectra of these single NPs were acquired and compared with SEM images. We found 

that, contrary to previous reports, the NPs responsible for the NIR peak are neither nanoshells 

comprising an Au shell around an Au2S core nor Au NP aggregates, but actually thin, solid Au 

nanotriangles. By arresting the reaction at different times we studied the structural evolution of 
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the nanotriangles and the corresponding effect on their optical properties. The initial redshift is 

caused by the lateral growth of these triangles. The subsequent blueshift is a result of the 

simultaneous increasing thickness and degree of rounding or truncation of the nanotriangle tips 

as was confirmed by MC simulations. FDTD calculations confirmed measurements showing that 

the linewidth of the nanotriangles is extremely narrow, less than 190 meV, and that small 

variations in size, thickness and truncation lead to the large inhomogeneous linewidth of the 

ensembles. These optical properties along with the long-term stability of the nanotriangles show 

the great potential of the Au nanotriangles in various applications, such as in-vivo imaging and 

bio-(chemical) sensing. Optical forces have proven an important tool not only for surface 

patterning of substrates but also as a means to investigate chemical reactions and optical 

properties of NPs. Additionally, the use of multiple laser wavelengths tuned to individual 

plasmon resonances will permit surface structuring simultaneously with a multitude of different 

pre-formed plasmonic NPs, leading to further possible applications in chemical and bio-sensing, 

fluorescence enhancement and photodetection. 

 

METHODS 

Gold Nanoparticle Synthesis 

Gold nanoparticles were synthesized at room temperature in a two-step reaction by reduction 

of HAuCl4 (G4022 Sigma Aldrich) with Na2S (407410 Sigma Aldrich), as reported elsewhere.14 

In a typical procedure, 10 mL of a 2 mM HAuCl4 solution were mixed with 12 mL of fresh 1mM 

Na2S solution (pH = 6). After two minutes 2 mL 1 mM Na2S solution were added, giving a total 

molar S/Au ratio of 0.65. The reaction was then allowed to evolve for different times, between 5 

minutes and 3 hours, and then 14 mL of 1 mM Na2S solution was added to arrest its evolution. 
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Nanoparticle printing  

For the particle printing experiments, cw-lasers of wavelengths 532nm (Coherent Verdi V10, 

Coherent, USA), 1064nm (Cobolt Rumba 05-10, Cobolt, Sweden) and a Ti:Sapphire Oscillator 

(Spectra-Physics Tsunami, Spectra-Physics, USA) pumped by a 532nm Spectra-Physics Millenia 

V (Spectra-Physics, USA) operated in cw mode at 808nm were sequentially coupled into an 

upright Zeiss Axiotech 100 (Zeiss, Germany) microscope. The laser beams were focused by a 

Zeiss Achroplan 100x/1.0W water dipping objective (Zeiss, Germany) which was dipped 

directly into the diluted nanoparticle dispersion of interest. In order to correct for the chromatic 

aberration of the objective appearing in the NIR, the 1064nm laser was prefocused by a lens with 

f=1000mm placing the laser focus in the image plane. Nanoparticles were made visible by 

applying dark field conditions using a dark field condenser placed in the light path.49 

For printing at 808 and 1064nm a laser power around 15mW on the sample was used. The 

power was set so that the average time between two printing events was on the scale of 5s. At 

532nm a lower laser power of around 5mW on the sample was enough due to the significantly 

higher concentration of resonant spherical particles. The particle dispersion was diluted 1:100 

with MiliQ water before printing. More water was added during the experiment to compensate 

for evaporation keeping the particle concentration constant. The laser spot sizes were around 

1µm. After each printing event, the piezo stage was moved by several microns to avoid printing 

of multiple particles in close vicinity. 

The area where the nanoparticles were printed was marked by a scratch to allow their later 

relocation for single particle spectroscopy and SEM. After the optical printing was performed 

samples were rinsed carefully with MiliQ water to remove the nanoparticle dispersion avoiding 

further random deposition. 
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Single particle spectroscopy  

Single particle spectra were acquired using an upright Zeiss AxioLab.A1 microscope in dark 

field condition attached to a Princeton Instruments SP2300 monochromator (Princeton 

Instruments, USA) together with an LN-cooled CCD (Acton Spec-10, Princeton Instruments, 

USA). 

Scanning electron microscopy (SEM) 

The individual printed nanoparticles were imaged using a Zeiss Ultra 55 Plus SEM (Zeiss, 

Germany). In order to avoid electrical charging of the substrate a thin (~1nm) layer of a gold-

palladium alloy was sputtered on top of the substrate with a Leica Sputter Coater EM SCD005 

(Leica Microsystems, Germany) making the substrate’s surface conductive. 

Transmission Electron Microscopy (TEM) 

TEM samples were prepared by deposing 7 µL of arrested nanoparticle dispersion onto a 

carbon coated copper TEM grid (Ted Pella, USA) which was left to dry in the dark and 

subsequently measured with a JEOL JEM-1011 TEM (JEOL, Japan) 

UV-Vis Spectroscopy 

Extinction spectra of the nanoparticle dispersion at different stages of the synthesis were taken 

with an Agilent Cary 60 Spectrophotometer. 

Atomic Force Microscopy (AFM)  

AFM experiments were performed in air in tapping mode with a multimode microscope 

operated by a Nanoscope V control unit, both from Veeco Instruments (Bruker Corporation, 

USA). Silicon tips from NanoWorld (Switzerland) were used in all measurements at fo = 285 

kHz; k = 42 N/m. Samples were prepared by drop-casting the nanoparticle dispersions on freshly 

cleaved HOPG substrates (Ted Pella Inc., USA). 
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Simulations of effective extinction and scattering cross sections: 

Effective cross sections were calculated using the software Lumerical FDTD Solutions 

(Lumerical, Vancouver, Canada). The simulation environment measured 2000 x 2000 x 2000 

nm³ applying 24 perfectly matched layers with a reflection coefficient of 0.0001. The gold 

nanoparticles were modeled by interpolating the dielectric functions of gold and water from the 

measured data of Johnson and Christy50 and Palik51 respectively and placed in the middle of 

simulation volume filled up with water. The particles were surrounded by a mesh with a cell size 

of 0.05nm. The linearly polarized electromagnetic plane-wave was injected in positive z-

direction, resembling the dark field illumination used in the experiments. The simulation time 

was chosen to be 1000 fs after which convergence was attained. 

Simulation of particle temperatures 

The temperatures the nanoparticles have during the printing process were calculated by using 

finite elements method (Comsol Multiphysics 5.2, COMSOL, Sweden). Therefore we 

determined the laser power density by first imaging the laser spot and then fitting a 2D Gaussian 

function. We then integrated this Gaussian over the previously calculated absorption cross-

section of the particular particles at the printing wavelength. Knowing the total laser power this 

gives us the absorbed laser power density which is converted to heat.  

In COMSOL we modeled the dimensions of the particular sharp and clipped triangles in a water 

surrounding. Giving the structure the calculated absorbed laser power density leads to the 

calculated equilibrium temperature. 

Monte Carlo Simulations 

We have implemented a kinetic Monte Carlo model in which particles are able to perform 

diffusion events between nearest neighbors in an FCC lattice. Transition probabilities 
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P(cini→cfin) from a given initial configuration cini into cfin were taken according to the transition 

state theory, i.e. 

P(cini→	cfin)�	ν	exp[-Eact(cini→	cfin)/kBT 

where ν is the attempt frequency set equal to 5 × 1012 Hz, Eact(cini→	cfin) is the activation 

energy for the transition, kB is the Boltzmann constant, and T is the absolute temperature.  

We have chosen a simple model52-53 for the activation energies, in which a linear dependence 

of the energy barrier with the first-neighbor coordination number (n) of the diffusing particle at 

the initial state is assumed: Eact�	Eb⋅n, where Eb can be interpreted as the bond energy between 

two nearest neighbor particles (in this work, we have set Eb = 0.1 eV and T=300 K). 
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