Accepted Manuscript

A Prospective International *Aspergillus terreus* Survey: An EFISG, ISHAM and ECMM Joint Study

Brigitte Risslegger, Tamara Zoran, Michaela Lackner, Maria Aigner, Ferran Sánchez-Reus, Antonio Rezusta, Anuradha Chowdhary, Saad Jaber Taj-Aldeen, Maiken C. Arendrup, Salvatore Oliveri, Dimitrios P. Kontoyiannis, Ana Alastruey-Izquierdo, Katrien Lagrou, Giuliana Lo Cascio, Jacques F. Meis, Walter Buzina, Claudio Farina, Miranda Drogari-Apiranthitou, Anna Grancini, Anna Maria Tortorano, Birgit Willinger, Axel Hamprecht, Elizabeth Johnson, Lena Klingspor, Valentina Arsic-Arsenijevic, Oliver A. Cornely, Joseph Meletiadis, Wolfgang Prammer, Vivian Tullio, Jörg-Janne Vehreschild, Laura Trovato, Russell E. Lewis, Esther Segal, Peter-Michael Rath, Petr Hamal, Manuel Rodriguez-Iglesias, Emmanuel Roilides, Sevtap Arikan-Akdagli, Arunaloke Chakrabarti, Arnaldo L. Colombo, Mariana S. Fernández, M. Teresa Martin-Gomez, Hamid Badali, Georgios Petrikkos, Nikolai Klimko, Sebastian M. Heimann, Jos Houbraken, Omrum Uzun, Michael Edlinger, Sonia de la Fuente, Cornelia Lass-Flörl

PII: S1198-743X(17)30220-3

DOI: 10.1016/j.cmi.2017.04.012

Reference: CMI 924

To appear in: Clinical Microbiology and Infection

Received Date: 24 February 2017

Revised Date: 7 April 2017 Accepted Date: 9 April 2017

Please cite this article as: Risslegger B, Zoran T, Lackner M, Aigner M, Sánchez-Reus F, Rezusta A, Chowdhary A, Taj-Aldeen SJ, Arendrup MC, Oliveri S, Kontoyiannis DP, Alastruey-Izquierdo A, Lagrou K, Lo Cascio G, Meis JF, Buzina W, Farina C, Drogari-Apiranthitou M, Grancini A, Tortorano AM, Willinger B, Hamprecht A, Johnson E, Klingspor L, Arsic-Arsenijevic V, Cornely OA, Meletiadis J, Prammer W, Tullio V, Vehreschild J-J, Trovato L, Lewis RE, Segal E, Rath P-M, Hamal P, Rodriguez-Iglesias M, Roilides E, Arikan-Akdagli S, Chakrabarti A, Colombo AL, Fernández MS, Martin-Gomez MT, Badali H, Petrikkos G, Klimko N, Heimann SM, Houbraken J, Uzun O, Edlinger M, Fuente Sdl, Lass-Flörl C, A Prospective International *Aspergillus terreus* Survey: An EFISG, ISHAM and ECMM Joint Study, *Clinical Microbiology and Infection* (2017), doi: 10.1016/j.cmi.2017.04.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CLM-17-11596

ACCLITED MINISTERIPT

1	RESEARCH NOTE
2	
3	A Prospective International Aspergillus terreus Survey:
4	An EFISG, ISHAM and ECMM Joint Study
5	
6	
7	Brigitte Risslegger ¹ *, Tamara Zoran ¹ *, Michaela Lackner ¹ ,
8	Maria Aigner ¹ , Ferran Sánchez-Reus ² , Antonio Rezusta ³ ,
9	Anuradha Chowdhary⁴, Saad Jaber Taj-Aldeen⁵, Maiken C.
10	Arendrup ⁶ , Salvatore Oliveri ⁷ , Dimitrios P. Kontoyiannis ⁸ , Ana
11	Alastruey-Izquierdo ⁹ , Katrien Lagrou ¹⁰ , Giuliana Lo Cascio ¹¹ ,
12	Jacques F. Meis ¹² , Walter Buzina ¹³ , Claudio Farina ¹⁴ , Miranda
13	Drogari-Apiranthitou ¹⁵ , Anna Grancini ¹⁶ , Anna Maria
14	Tortorano ¹⁷ , Birgit Willinger ¹⁸ , Axel Hamprecht ¹⁹ , Elizabeth
15	Johnson ²⁰ , Lena Klingspor ²¹ , Valentina Arsic-Arsenijevic ²² ,
16	Oliver A. Cornely ²³ , Joseph Meletiadis ²⁴ , Wolfgang Prammer ²⁵ ,
17	Vivian Tullio ²⁶ , Jörg-Janne Vehreschild ²⁷ , Laura Trovato ²⁸ ,
18	Russell E. Lewis ²⁹ , Esther Segal ³⁰ , Peter-Michael Rath ³¹ , Petr
19	Hamal ³² , Manuel Rodriguez-Iglesias ³³ , Emmanuel Roilides ³⁴ ,
20	Sevtap Arikan-Akdagli ³⁵ , Arunaloke Chakrabarti ³⁶ , Arnaldo L.
21	Colombo ³⁷ , Mariana S. Fernández ³⁸ , M. Teresa Martin-
22	Gomez ³⁹ , Hamid Badali ⁴⁰ , Georgios Petrikkos ⁴¹ , Nikolai
23	Klimko ⁴² , Sebastian M. Heimann ⁴³ , Jos Houbraken ⁴⁴ , Omrum

24	Uzun ⁴⁵ , Michael Edlinger ⁴⁶ , Sonia de la Fuente ⁴⁷ , Cornelia Lass-
25	Flörl ¹
26	
27	* contributed equally
28	
29	Author affiliations:
30	¹ Division of Hygiene and Medical Microbiology, Medical
31	University of Innsbruck, Innsbruck/Austria, ² Servei de
32	Microbiologia, Hospital de la Santa Creu I Sant Pau,
33	Barcelona/Spain, ³ Microbiologia, Hospital Universitario Miguel
34	Servet, IIS Aragon, Universidad de Zaragoza, Zaragoza/Spain,
35	⁴ Department of Medical Mycology, Vallabhbhai Patel Chest
36	Institute, University of Delhi, Delhi/India, ⁵ Microbiology
37	Division, Department of Laboratory Medicine and Pathology,
38	Hamad Medical Corporation, Doha/Qatar, ⁶ Statens Serum
39	Institute, Unit of Mycology, Copenhagen/Denmark &
40	Department of Clinical Microbiology, Copenhagen University,
41	Rigshospitalet, Copenhagen/Denmark, ⁷ Department of
42	Biomedical and Biotechnological Sciences, University of
43	Catania, Catania/Italy, ⁸ The University of Texas MD Anderson
44	Cancer Center, Houston, Texas/USA, ⁹ National Centre for
45	Microbiology, Instituto de Salud Carlos III, Madrid/Spain,
46	¹⁰ Department of Microbiology and Immunology, KU Leuven,
47	Leuven/Belgium, ¹¹ Unità Operativa Complessa di Microbiologia

48	e virologia, Dipartimento di Patologia e diagnostica, Azienda
49	Ospedaliera Universitaria Integrata, Verona/Italy,
50	¹² Department of Medical Microbiology and Infectious
51	Diseases, Canisius Wilhelmina Hospital, Nijmegen/The
52	Netherlands, ¹³ Institute of Hygiene, Microbiology and
53	Environmental Medicine, Medical University of Graz,
54	Graz/Austria, ¹⁴ Microbiology Institute, ASST Papa Giovanni
55	XXIII, Bergamo/Italy, ¹⁵ Infectious Diseases Research
56	Laboratory/4 th Department of Internal Medicine, ATTIKON
57	University Hospital, National and Kapodistrian University of
58	Athens, Athens/Greece, ¹⁶ Laboratorio Centrale di Analisi
59	Chimico Cliniche e Microbiologia, IRCCS Foundation, Cà
60	Granda Ospedale Maggiore Policlinico, Milan/Italy,
61	¹⁷ Department of Biomedical Sciences for Health, Università
62	degli Studi di Milano, Milan/Italy, ¹⁸ Department of Laboratory
63	Medicine, Division of Clinical Microbiology, Medical University
64	of Vienna, Vienna/Austria, ¹⁹ Institute for Medical
65	Microbiology, Immunology and Hygiene, University of
66	Cologne, Cologne/Germany, ²⁰ Mycology Reference Laboratory
67	Public Health England, Bristol/United Kingdom, ²¹ Karolinska
68	Institutet, Department of Laboratory Medicine, F 68,
69	Karolinska University Hospital, Huddinge, Stockholm/Sweden,
70	²² National Reference Medical Mycology Laboratory, Institute
71	of Microbiology and Immunology, Faculty of Medicine,

72	University of Belgrade, Belgrade/Serbia, ²³ Cologne Excellence
73	Cluster on Cellular Stress Responses in Aging-Associated
74	Diseases (CECAD), Department I of Internal Medicine, Clinical
75	Trials Centre Cologne (ZKS Köln), Center for Integrated
76	Oncology (CIO Köln-Bonn), German Centre for Infection
77	Research (DZIF), University of Cologne, Cologne/Germany,
78	²⁴ Clinical Microbiology Laboratory, National Kapodistrian
79	University of Athens, ATTIKON University Hospital Athens,
80	Athens/Greece, ²⁵ Department of Hygiene and Medical
81	Microbiology, Klinikum Wels-Grieskirchen, Wels/Austria,
82	²⁶ Department of Public Health and Pediatrics, Microbiology
83	Division, Turin/Italy, ²⁷ Department I for Internal Medicine,
84	University Hospital of Cologne, Cologne/Germany and German
85	Centre for Infection Research, partner site Bonn-Cologne,
86	Germany, ²⁸ A.O.U. Policlinico Vittorio Emanuele Catania,
87	Biometec – University of Catania/Italy, ²⁹ Infectious Diseases
88	Unit, S. Orsola-Malpighi, Department of Medical and Surgical
89	Sciences, University of Bologna, Bologna/Italy, ³⁰ Department
90	of Clinical Microbiology and Immunology, Sackler School of
91	Medicine, Tel Aviv University, Tel Aviv/Israel, 31 Institute of
92	Medical Microbiology, University Hospital Essen, University of
93	Duisburg- Essen, Essen/Germany, ³² Department of of
94	Microbiology, Faculty of Medicine and Dentistry, Palacky
95	University Olomouc and University Hospital Olomouc/Czech

96	Republic, ³³ Clinical Microbiology, Puerta del Mar University
97	Hospital, University of Cádiz, Cádiz/Spain, 34Infectious Diseases
98	Unit, 3 rd Department of Pediatrics, Faculty of Medicine,
99	Aristotle University School of Health Sciences, Hippokration
100	General Hospital, Thessaloniki/Greece, ³⁵ Department of
101	Medical Microbiology, Hacettepe University Medical School,
102	Ankara/Turkey, ³⁶ Division of Mycology, Department of Medial
103	Microbiology, Chandigarh/India, ³⁷ Escola Paulista de Medicina,
104	Federal University of São Paulo, São Paulo/Brazil,
105	³⁸ Departmento de Micología, Instituto de Medicina Regional,
106	Universidad Nacional del Nordeste, CONICET,
107	Resistencia/Argentina, ³⁹ Division of Clinical Mycology,
108	Department of Microbiology, Vall d'Hebron University
109	Hospital, Barcelona, ⁴⁰ Department of Medical Mycology and
110	Parasitology/Invasive Fungi Research Center, Mazandaran
111	University of Medical Sciences, Sari/Iran, ⁴¹ School of Medicine,
112	European University Cyprus, Nicosia/Cyprus, ⁴² Department of
113	Clinical Mycology, Allergy and Immunology, North Western
114	State Medical University, Saint Petersburg/Russia,
115	⁴³ Department I for Internal Medicine, University Hospital of
116	Cologne, Cologne/Germany, 44CBS-KNAW Fungal Biodiversity
117	Centre, Utrecht/The Netherlands, ⁴⁵ Hacettepe University
118	Medical School, Department of Infectious Diseases and Clinical
119	Microbiology, Ankara/Turkey, ⁴⁶ Department of Medical

120	Statistics, Informatics and Health Economics, Medical
121	University of Innsbruck, Innsbruck/Austria, ⁴⁷ Department of
122	Dermatology, Hospital Ernest Lluch Martin, Calatayud,
123	Zaragoza/Spain
124	
125	Running title: TerrNet Study
126	
127	Corresponding author: Cornelia Lass-Flörl, Division of Hygien
128	and Medical Microbiology. University of Innsbruck,
129	Schöpfstraße 41, 6020 Innsbruck, Austria
130	Tel.No. 0043 512 9003-70703, Fax No. 0043 512 9003-73700
131	email: cornelia.lass-floerl@i-med.ac.at
132	
133	Length of abstract : 87 words
134	Length of paper (excluding abstract and ref.): 1172 words

135	Abstract
136	Objectives: A prospective international multicentre
137	surveillance study was conducted to investigate the
138	prevalence and amphotericin B (AMB) susceptibility of
139	Aspergillus terreus species complex infections.
140	Methods: Three hundred seventy cases from 21 countries
141	were evaluated.
142	Results: The overall prevalence of <i>A. terreus</i> species complex
143	among patients investigated and with mold positive cultures
144	was 5.2% (370/7116). AMB MICs were ranging from 0.125 to
145	32 mg/L, (median 8mg/L).
146	Conclusions: A. terreus species complex infections cause a
147	wide spectrum of aspergillosis and the majority of cryptic
148	species display high AMB MICs.

149	Introduction:
150	Aspergillus terreus species complex holds an exceptional
151	position within the aspergilli, as it appears to be a rare
152	pathogen of infection and displays polyene resistance [1,2,3].
153	A. terreus is a common cause of invasive aspergillosis (IA) at
154	the M. D. Anderson Cancer Center in Houston, USA, and the
155	University Hospital of Innsbruck, Austria [3,4,5]. Almost no
156	data are available on how frequently this species occurs
157	elsewhere and whether differences within amphotericin B
158	(AMB) susceptibility exist. Our objective was to investigate the
159	global prevalence of A. terreus species complex in fungal
160	diseases and to survey AMB susceptibility.
161	
161 162	Methods:
	Methods: An international surveillance network was established on
162	
162 163	An international surveillance network was established on
162 163 164	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the
162 163 164 165	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the International Society for Human and Animal Mycology
162 163 164 165	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the International Society for Human and Animal Mycology *Aspergillus terreus* working group, and the European
162 163 164 165 166	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the International Society for Human and Animal Mycology *Aspergillus terreus* working group, and the European Confederation of Medical Mycology. 38 centres from 21
162 163 164 165 166 167	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the International Society for Human and Animal Mycology *Aspergillus terreus* working group, and the European Confederation of Medical Mycology. 38 centres from 21 countries participated. Each centre collected isolates and
162 163 164 165 166 167 168	An international surveillance network was established on behalf of the European Fungal Infection Study Group, the International Society for Human and Animal Mycology <i>Aspergillus terreus</i> working group, and the European Confederation of Medical Mycology. 38 centres from 21 countries participated. Each centre collected isolates and reported the number of <i>A. terreus</i> and fungal pathogens

173	using www.clinicalsurveys.net online platform. Patients were
174	classified according to the European Organisation for the
175	Research and Treatment of Cancer/Mycoses Study Group
176	consensus definitions [6] by the participating centres. Unless
177	otherwise noted, the isolation of A. terreus from sputa of non-
178	neutropenic patients was categorized as colonisation. Isolates
179	were sent to the Division of Hygiene and Medical Microbiology
180	for molecular species identification [7,8] and susceptibility
181	testing according to EUCAST (European Committee on
182	Antimicrobial Susceptibility Testing) method [2]. A. terreus
183	strains were identified to the cryptic species level by
184	sequencing partial beta-tubulin and applying a validated in-
185	house database owned by Jos Houbraken, CBS Fungal
186	Biodiversity Center, Utrecht, The Netherlands. An AMB
187	epidemiological cut-off value of 4mg/L was set for A. terreus
188	[2].
189	This study was approved by the Ethics Commission of the
190	Medical University of Innsbruck (UN4926).
191	Results:
192	461 cases were enrolled of which 91 were excluded because of
193	insufficient patient documentation (n=45) or lack of fungal
194	isolates (n=46) being available. Consequently, this survey
195	comprises 370 eligible cases with an equal number of
196	corresponding A. terreus isolates. Cases derived from Europe

197	(n=261), followed by Middle East (n=70), India (n=19), South
198	America (n=10), and North America (n=10) (Figure 1). A.
199	terreus sensu stricto (n=315), A. citrinoterreus (n=36), A.
200	alabamensis (n=6), A. hortai (n=10), A. floccosus (n=1), and A.
201	neoafricanus (n=1) were identified. One isolate (A. terreus
202	1214) was most close to A. alabamensis and might represent a
203	new species. Thus, cryptic species accounted for 14.9%
204	(55/370) with <i>A. citrinoterreus</i> (36/55, 65.5%) being dominant.
205	AMB MICs ranged from 0.125 to 32 mg/L for A. terreus sensu
206	stricto; MICs for all cryptic species were consistently higher,
207	ranging from 2 to 32 mg/L, see Table 1. According to the
208	EUCAST cut-off values, 194 isolates (52.4%) were classified as
209	non-wild types. A proportion of 6.3% (n=20) of the <i>A. terreus</i>
210	sensu stricto isolates displayed lower MICs, ranging from 0.25
211	– 0.5 mg/L. Isolates were predominantly acquired from Spain
212	(n=85) and Austria (n=49), see Figure 1.
213	Underlying diseases e described in Table 2. Species distribution
214	did not differ per underlying disease and specimen
215	investigated (Table 2). Diseases comprised IA (25.1%), allergic
216	broncho-pulmonary aspergillosis (12.4%), chronic aspergillosis
217	(11.4%), COPD exacerbation (5.5%), aspergilloma (3.7%), otitis
218	externa (2.5%), and wound infections (0.7%). 25.1% and 27.3%
219	of the patients suffered from proven and probable IA, 28.6%
220	were colonized, 10.1% had onychomycosis, and 8.9% had

221	mycological documented diseases such as otitis externa,
222	aspergilloma and others.
223	Using a random effects model the pooled estimated
224	proportion was 5.6% (95% CI 3.8 to 7.7) with $I^2 = 92\%$
225	(p<0.0001) and the proportions ranged from 0.0% to 58.3%.
226	These calculations were done with MedCalc 16.8.4. Four
227	reference centres and one centre dealing with onychomycosis
228	only were excluded from the analysis.
229	A total of 68 patients received antifungal treatment at the
230	time of fungal diagnosis, 12 were treated with AMB or
231	liposomal - AMB. The remaining 56 received combinations of
232	azoles and echinocandins and improved. Only one patient died
233	due to the A. terreus infection. No information on outcome
234	was available in 13 patients.
235	
236	Discussion:
237	Infections due to A. terreus species complex were detected in
238	21 countries and 38 centres with an overall prevalence of 5.2%
239	among mold infections. High AMB MICs were frequently
240	observed and crossed all cryptic species. Infections were
241	reported from all over the world with three main specific
242	findings. Firstly, Spain and Austria were the countries with the
243	highest density of A. terreus isolates collected. Secondly, the
244	number of A. terreus cases enrolled varied from centre to

245	centre, and displayed a broad range from zero to several cases
246	per country. Thirdly, it seems that few susceptible AMB
247	variants exist within A. terreus sensu stricto.
248	Taking into account the differences on the environmental
249	conditions, host related characteristics, and the use of
250	antifungal agents, it is not possible to conclude on the
251	particular biogeography of A. terreus species complex. In
252	addition, one has to be aware that data collected may depend
253	on the quality of care, patient demographics, infection control
254	practices, frequency of specimen collection, and laboratory
255	methodology. Hence, further studies are needed to determine
256	whether specific risk and/or environmental factors are
257	associated with infections by A. terreus.
258	Notable was the fact that Aspergillus section Terrei was most
259	commonly isolated from patients suffering from chronic lung
260	diseases (39.2%). No similar data have been reported [10] and
261	it remains to be seen whether A. terreus reflects an emerging
262	pathogen of this disease entity.
263	A. terreus is a poor target for AMB and hence is reported as
264	resistant [2]. The role of isolates with MICs < 0.5 mg/L needs
265	further evaluation. The pharmacodynamic target may be
266	attained with the standard AMB dose for isolates with MICs
267	≤0.25 mg/l [10] and infections were successfully treated with
268	high dose liposomal-AMB [11].

269	Cryptic species accounted for 14.8%, with A. citrinoterreus
270	being the most prevalent. Although the clinical implications of
271	sibling species of A. terreus are less well understood, our study
272	confirms that these species are generally resistant to AMB and
273	are causing a wide spectrum of invasive and non-invasive
274	aspergillosis. Guinea et al. [12] observed A. citrinoterreus
275	acting mainly as a co-pathogen with A. fumigatus.
276	Our study has some limitations. We do not have a
277	comprehensive worldwide A. terreus survey network and
278	some countries are missing for a variety of reasons. Also,
279	generally, the diagnosis of fungal infections is difficult to
280	obtain and may often be based on detection of biomarkers
281	rather than on isolation of the infecting organism. Hence,
282	some cases may have been missed and chronic lung diseases
283	were not specified in more detail. Further, we have no data
284	available on co-infections which may complicate diseases. The
285	centres included represent a convenience sample. However,
286	this is the largest and geographically most diverse study on the
287	contemporary epidemiology of A. terreus species complex
288	infections worldwide.
289	Our study shows that A. terreus sensu stricto is widely
290	distributed in climatically divergent countries, and that cryptic
291	species display high AMB MICs. A. terreus species complex was

- 292 most commonly isolated from patients suffering from chronic
- 293 lung diseases (39.2%).

294	Funding
295	This work was supported by ECMM, ISHAM and EFISG and in
296	part by an unrestricted research grant through the Investigator
297	Initiated Studies Program of Astellas and Pfizer as well as by
298	the Austrian Science Fund (W1253-B24 doctoral program
299	HOROS).
300	
301	
302	Transparency Declaration
303	We declare that we have no conflicts of interest related to this
304	study.
305	CLF received research grants, travel grants or honorarium as a
306	speaker or advisor from Gilead Sciences, Pfizer, Schering
307	Plough, MSD and Basilea, VAA received research grants or
308	honorarium as a speaker or advisor from Astellas, Pfizer and
309	Schering Plough, MSD. WB received honorarium as a speaker
310	from Pfizer, Schering Plough and MSD. CF received research
311	grants or honorarium as a speaker or advisor from Astellas,
312	Gilead Sciences, MSD and Basilea. AH received travel grants
313	from Astellas and served on the advisory board of Gilead. EJ
314	received travel grants or honorarium as a speaker or advisor
315	from Bio-Rad, Gilead Sciences, Pfizer, Schering Plough, and
316	MSD. DPK has received research support from Pfizer, Astellas
317	Pharma, honoraria from Astellas, Merck, Pfizer and he serves

318	on the advisory boards of Merck, Amplyx, Cidara and F2G. JFM
319	received grants from Astellas, Basilea and Merck. He has been
320	a consultant to Astellas, Basilea and Merck and received
321	speaker's fees from Merck, United Medical and Gilead. ALC
322	received educational grants from Pfizer, Gilead and United
323	Medical and research grant from Pfizer, Astellas. MCA received
324	research grants/contract work (Paid to SSI) from Amplyx,
325	Basilea, Cidara, F2G, Gilead, Pfizer & T2Candida, speaker
326	honoraria from Astellas, Basilea, Gilead, MSD, Novartis, Pfizer
327	& T2Candida. NK has received research support from Pfizer,
328	honoraria from Astellas, Merck and Pfizer, and he serves on
329	the advisory boards of Merck and Pfizer. OAC is supported by
330	the German Federal Ministry of Research and Education, has
331	received research grants from Actelion, Aranis, Astellas,
332	AstraZeneca, Basilea, Bayer, Cidara, Duke University (NIH
333	UM1AI104681), F2G, Gilead, GSK, Leeds University, MedPace,
334	Melinta Therapeutics, Merck/MSD, Miltenyi, Pfizer, Rempex,
335	Roche, Sanofi Pasteur, Scynexis, Seres Therapeutics, The
336	Medicine Company, is a consultant to Anacor, Amplyx,
337	Actelion, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead,
338	Inositec AG, Janssen Pharmaceuticals, Matinas, Menarini,
339	Merck/MSD, Paratek Pharmaceuticals, Scynexis, Seres,
340	Summit, Vical, Vifor, and received lecture honoraria from
341	Astellas, Basilea, Gilead and Merck/MSD. BW received

342	research support from Pfizer, travel grants or honorarium as a
343	speaker or advisor from Gilead Sciences, Pfizer, Astellas, MSD
344	and Basilea. LK grant from Gilead and has been an adviser to
345	Astellas, Gilead, Schering-Plough, has received research grants
346	from Gilead, Merck, Sharpe&Dohme, Schering-Plough and has
347	received honoraria for educational lectures from Gilead,
348	Pfizer, Merck, Sharpe & Dohme, Schering-Plough and Janssen.
349	AMT received research support from Gilead Sciences, travel
350	grants or honorarium as speaker from Gilead Sciences, Pfizer,
351	Astellas. KL has received research grants from Gilead, MSD and
352	Pfizer, received travel support from MSD, Pfizer and Gilead
353	and received lecture honoraria from Gilead, MSD, and Pfizer.
354	SAA received Investigator Initiated Research grant support
355	from Pfizer and speaker honoraria or travel grants from
356	Astellas, Gilead, Merck and Pfizer. SO received research grants
357	from Pfizer and Astellas, honorarium as advisor from MSD,
358	Astellas Pharma and Gilead Sciences. ER reports grants, and
359	non-financial support from Astellas, Pfizer, Gilead, and Merck,
360	outside the submitted work. AAI received research and/or
361	travel grants from Gilead Sciences, F2G and Pfizer. OU was
362	consultant for and has received travel grants from Merck,
363	Astellas, Pfizer, and Gilead. S.M.H. has received research and
364	travel grants from Astellas, Gilead, and MSD, research grants
365	from Basilea, and travel grants from Pfizer; was consultant to

- 366 Basilea; and received honoraria as a speaker from Astellas and
- 367 Merck.

368	Re	ferences
369	1.	Perkhofer S, Lass-Flörl C, Hell M, Russ G, Krause R, Hönigl
370		M, et al. The Nationwide Austrian Aspergillus Registry: a
371		prospective data collection on epidemiology, therapy and
372		outcome of invasive mould infections in
373		immunocompromised and/or immunosuppressed patients
374		Int J Antimicrob Agents 2010;36:531-6.
375	2.	Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope WW;
376		European Committee on Antimicrobial Susceptibility
377		Testing Subcommittee on Antifungal Susceptibility Testing
378		(EUCAST-AFST). EUCAST technical note on Aspergillus and
379		amphotericin B, itraconazole, and posaconazole. Clin
380		Microbiol Infect. 2012;18:E248-50.
381	3.	Lass-Flörl C, Grif K, Mayr A, Petzer A, Gastl G, Bonatti H et
382		al. Epidemiology and outcome of infections due to
383		Aspergillus terreus: 10-year single center experience. Br J
384		Haematol. 2005;131:201-207.
385	4.	Lass-Florl C, Grif K, Kontoyiannis DP. Molecular typing of A
386		terreus isolates collected in Houston, Texas and Innsbruck,
387	Y	Austria: evidence of great genetic diversity. J Clin
388		Microbiol. 2007;45:2686-90.
389	5.	Lackner M, Coassin S, Haun M, Binder U, Kronenberg F,
390		Haas H et al. Geographically predominant genotypes of
391		Asperaillus terreus species complex in Austria: a

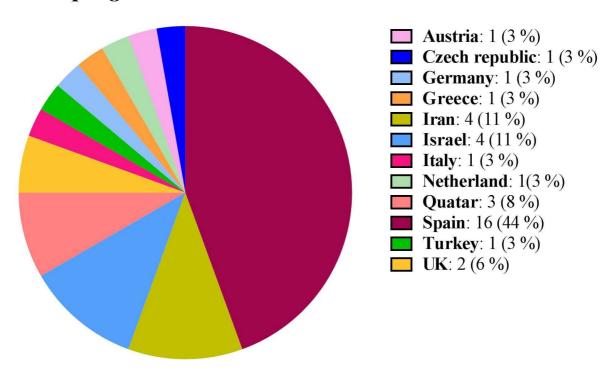
392		microsatellite typing study. Clin Microbiol Infect.
393		2016;22:270-276.
394	6.	De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE,
395		Calandra T et al. Revised definitions of invasive fungal
396		disease from the European Organization for Research and
397		Treatment of Cancer/Invasive Fungal Infections
398		Cooperative Group and the National Institute of Allergy
399		and Infectious Diseases Mycoses Study Group
400		(EORTC/MSG) Consensus Group. Clin Infect Dis
401		2008;46:1813-21.
402	7.	Balajee S A, Baddley JW, Peterson SW, Nickle D, Varga J,
403		Boey A et al., ISHAM Working Group on A. terreus.
404		Aspergillus alabamensis, a new clinically relevant species in
405		the section <i>Terrei</i> . Eukaryotic Cell 2009;8:713–22.
406	8.	Kathuria S, Sharma C, Singh PK, Agarwal P, Agarwal K,
407		Hagen F et al. Molecular epidemiology and in-vitro
408		antifungal susceptibility of Aspergillus terreus species
409		complex isolates in Delhi, India: Evidence of genetic
410		diversity by amplified fragment length polymorphism and
411	<i>></i>	microsatellite typing. PLoS ONE 2015;10:e0118997.
412	9.	Denning DW, Cadranel J, Beigelman-Aubry C, Ader F,
413		Chakrabarti A, Blot S et al. Chronic pulmonary aspergillosis:

414	rationale and clinical guidelines for diagnosis and
415	management. Eur Respir J. 2016;47:45-68.
416	10. Elefanti A, Mouton JW, Verweij, PE, Zerva L, Meletiadis J.
417	Susceptibility breakpoints for amphotericin B and
418	Aspergillus species in an in vitro pharmacokinetic-
419	pharmacodynamic model simulating free-drug
420	concentrations in human serum. Antimicrob Agents
421	Chemother. 2014;58:2356-2362.
422	11. Lewis RE, Albert NP, Liao G, Wang W, Prince RA,
423	Kontoyiannis DP. High-dose induction liposomal
424	amphotericin B followed by de-escalation is effective in
425	experimental Aspergillus terreus pneumonia. J Antimicrob
426	Chemother. 2013;68:1148-1151.
427	12. Guinea J, Sandoval-Denis M, Escribano P, Peláez T, Guarro
428	J, Bouza E. Aspergillus citrinoterreus, a new species of
429	section Terrei isolated from samples of patients with non-
430	hematological predisposing conditions. J Clin Microbiol.
431	2015;53:611-617.

Table 1. Distribution of amphotericin B MICs against *Aspergillus terreus* species complex isolates collected during the study period and tested according to EUCAST methodology

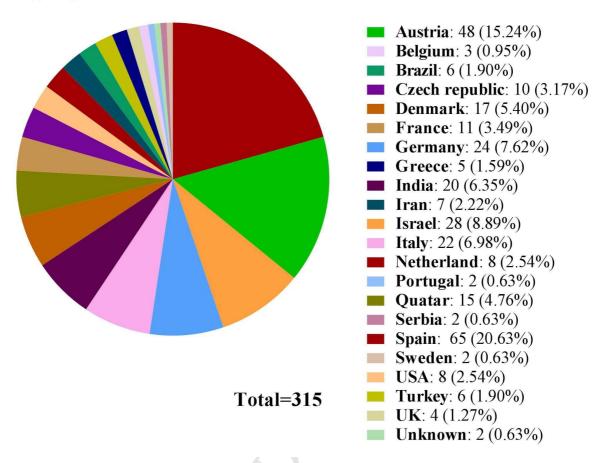
Species	Amphotericin B MICs, mg/L									
Species	0.125	0.25	0.5	1	2	4	8	16	32	
A. terreus sensu stricto	3	7	10	14	36	81	86	55	23	
A. citrinoterreus					3	13	8	7	5	
A. hortai					1	2	5	2		
A. alabamensis					2	3	1			
A. floccosus						1				
A. neoafricanus									1	
Potential new species						5	1			

Table 2. Species distribution of *Aspergillus terreus* species complex isolated from the various human specimens

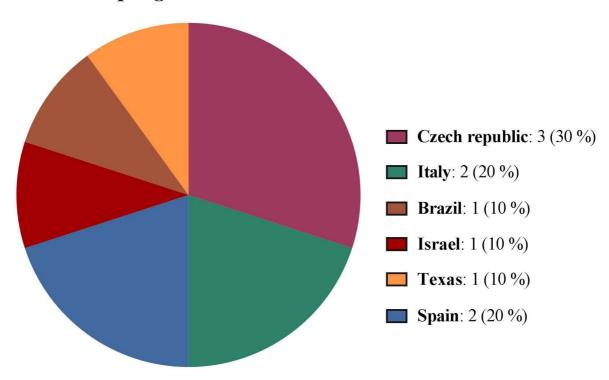

	Specimens, total numbers								
Species	Sputa	Bronchoalveolar lavages and tracheal secretions	Body- fluids	Biopsies	Swabs	Others	Total		
A. terreus sensu stricto	126	65	53	33	17	21	315		
A. citrinoterreus	14	7	3	5	3	4	36		
A. hortai	4	2			1	3	10		
A. alabamensis	3	2			1		6		
A. floccosus					1		1		
A. neoafricanus						1	1		
Potential new species				1			1		
Total	147	76	56	39	23	29	370		

^{*} aspirates, wound secretions, nails

Fig. 1a - c. Overview of countries and *Aspergillus terreus* species complex isolated numbers collected during the study period:


- a) Aspergillus citrinoterreus
- b) Aspergillus terreus sensu stricto
- c) Aspergillus hortai

Aspergillus citrinoterreus



Total=36

Aspergillus terreus sensu stricto

Aspergillus hortai

Total=10